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Abstract: Unregulated livestock breeding and grazing can degrade grasslands and damage the
ecological environment. The combination of remote sensing and artificial intelligence techniques
is a more convenient and powerful means to acquire livestock information in a large area than
traditional manual ground investigation. As a mainstream remote sensing platform, unmanned aerial
vehicles (UAVs) can obtain high-resolution optical images to detect grazing livestock in grassland.
However, grazing livestock objects in UAV images usually occupy very few pixels and tend to
gather together, which makes them difficult to detect and count automatically. This paper proposes
the GLDM (grazing livestock detection model), a lightweight and high-accuracy deep-learning
model, for detecting grazing livestock in UAV images. The enhanced CSPDarknet (ECSP) and
weighted aggregate feature re-extraction pyramid modules (WAFR) are constructed to improve the
performance based on the YOLOX-nano network scheme. The dataset of different grazing livestock
(12,901 instances) for deep learning was made from UAV images in the Hadatu Pasture of Hulunbuir,
Inner Mongolia, China. The results show that the proposed method achieves a higher comprehensive
detection precision than mainstream object detection models and has an advantage in model size.
The mAP of the proposed method is 86.47%, with the model parameter 5.7 M. The average recall and
average precision can be above 85% at the same time. The counting accuracy of grazing livestock in
the testing dataset, when converted to a unified sheep unit, reached 99%. The scale applicability of
the model is also discussed, and the GLDM could perform well with the image resolution varying
from 2.5 to 10 cm. The proposed method, the GLDM, was better for detecting grassland grazing
livestock in UAV images, combining remote sensing, AI, and grassland ecological applications with
broad application prospects.

Keywords: unmanned aerial vehicle (UAV); deep learning; object detection; grassland grazing
livestock; remote sensing image

1. Introduction

Overgrazing destroys grassland ecological functions. The survey of grazing animals
is of great significance in maintaining the balance of grass and livestock. Investigating
the geographical and temporal distribution of different grazing livestock (sheep, cattle,
horses, etc.) provides the basic and indispensable information for grassland ecological
management [1].

Satellites and manned aircraft are usually used in early animal surveys. Spaceborne
remote sensing data with low and medium spatial resolution (1–60 m) have been used
for indirect animal surveys since the early 1980s [2], mainly by detecting signs indicating
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the presence of animals in the area, such as fecal counts [3–5], food removal, and burrow
counts [6,7]. Submeter very-high-resolution (VHR) spaceborne imagery has potential in
modeling the population dynamics of large (>0.6 m) wild animals at large spatial and
temporal scales, but has difficulty discerning small (<0.6 m) animals at the species level,
although high-resolution commercial satellites, such as WorldView-3 and WorldView-4,
have reached ground resolution of up to 0.31 m in panchromatic mode [2]. Although
satellites have the advantages of wide coverage and not disturbing animals, they are
limited by the weather, and the resolution is still not high enough to finely distinguish
animal objects. Manned aircraft have also been widely used for wild animal surveys, such
as kangaroo censuses in New South Wales, Australia [8] and polar bear censuses in the
seasonally ice-free Foxe Basin, Canada [9]. Although manned aircraft are flexible in terms
of survey time and area, they are relatively expensive [10], require qualified pilots, and
possibly have individual biases when used in real-time censuses [8].

In recent years, unmanned aerial vehicles (UAVs), a convenient and low-cost remote
sensing platform, have been widely used in various fields, including wild animal surveys.
Compared with manned helicopters, UAVs are more flexible and quieter, keeping the
distance between the observer and the animal, ensuring the safety of field investigators
in dangerous environments, and avoiding human interference with animal habitats. Pre-
vious surveys relied on manually observing and counting from large numbers of images.
Researchers developed a series of automatic and semiautomatic object detection methods
to improve efficiency. Moreover, some scholars [11] compared the factors affecting the
detection probability of ground observation, manual inspection, and automatic detection
from UAV images. They concluded that the combination of drone-captured imagery and
machine learning does not suffer from the same biases that affect conventional ground
surveys and could better provide information for managing the ecological population [11].

Studies have shown that some simple threshold-based methods are still sufficient for
detecting and counting animals with similar grayscale values and significant differences
from the background. For example, using threshold segmentation and template matching
techniques, Gonzalez et al. [12] developed an algorithm to count and track koalas and deer
in UAV RGB and thermal imaging videos. However, against complex backgrounds, these
methods’ accuracy will usually be greatly affected. As higher-resolution images become
available, researchers developed various algorithms based on machine learning to extract
more complex features. Xue et al. [13] developed a semi-supervised object-based method
that combined a wavelet algorithm and an adaptive network-based fuzzy neural network
(ANFIS) to detect and count wildebeests and zebras in a single VHR GeoEye-1 panchromatic
image of open savanna. The accuracy of this method is significantly higher than that of the
traditional threshold-based method (0.79 vs. 0.58). Torney et al. [14] developed a method
via rotation-invariant object descriptors combined with machine learning algorithms to
detect and count wildebeests in aerial images collected in the Serengeti National Park,
Tanzania. The algorithm was more accurate for the total count than both manual counts,
while the per-image error rates were greater than manual counts, and the recognition
accuracy was 74.15%. Rey et al. [10] proposed a semiautomated data-driven active learning
system jointly based on an object proposal strategy with an ensemble of exemplar support
vector machine (EESVM) models to detect large mammals, including common elands,
greater kudus, and gemsboks, in the semiarid African savanna from 6500 RGB UAS images,
achieving a recall of 75% for a precision of 10%. The author believes that recall is much
more important than precision in this application. Although machine learning methods
based on non-deep neural networks can still produce good detection results in simple cases,
these methods usually cannot fully mine complex animal features.

Deep learning technology, such as convolutional neural networks (CNNs), has devel-
oped rapidly in recent years and achieved great success in computer vision. Compared
with traditional methods, which only extract shallow image features, convolutional neural
networks can automatically learn much richer semantic information and high-level image
features with higher learning efficiency. It more comprehensively describes the differences
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between various types of objects. The CNN-based object detection algorithm includes
anchor-free and anchor-based models. Anchor-based models include Faster R-CNN [15],
RetinaNet [16], YOLOv3 [17], YOLOv7 [18], etc. These models need to adjust the hyperpa-
rameter settings of the anchor during the training procedure to better match the size of the
objects in the dataset. The anchor-free model is more convenient without such a process,
and the representative models include FCOS [19], CenterNet [20], YOLOX [21], etc.

Some researchers have also introduced the deep learning method to detect animal
objects in UAV remote sensing images. For example, in 2017, Kellenberger et al. [22]
used a two-branch CNN network structure to detect wild animals in the Kuzikus Wildlife
Conservation Park in Namibia, and the precision and speed of the model were greatly
improved compared with Fast RCNN. In 2018, Kellenberger et al. [23] studied how to
extend CNN to large-scale wildlife census tasks. When the recall was set to 90%, false
positives of the CNN were reduced by an order of magnitude, but the precision of the model
was still lower. In short, the above two methods lack consideration for the comprehensive
performance of the model and cannot guarantee good performance in both recall and
precision. In 2020, Roosjen et al. [24] used the neural network resnet18 to automatically
detect and count spotted wing drosophila, including sex prediction and discrimination.
The results showed that UAV images have the potential to be researched and applied
to integrated pest management (IPM) strategies. In 2020, Peng et al. [25] developed an
automatic detection model for kiangs in Tibet, based on the improved Faster R-CNN and
aiming at small object detection of the UAV images, and increased the F1 score from 0.85 to
0.94. However, the dataset in this study was relatively small, and there was only one type
of animal object. The classifying ability of similar types of objects has not been verified.

In this study, the grassland grazing livestock detection in UAV images was different
from that in natural images taken on the ground and other objects’ detection of remote
sensing images, which brings the following challenges to the algorithm design.

First, considering the surveying efficiency, the field of view angle tends to be large, and
the image resolution is low. Therefore, animal objects only occupy very few pixels, making
it difficult to extract useful and distinguishable features to perform detection. Moreover,
grassland grazing livestock such as cattle, horses, and sheep share similar characteristics
and are much more difficult to distinguish than those in the classic applications, vehicles,
aircraft, and ships.

Second, the UAV images contain a large area of invalid complex background, with
changeable illumination conditions, and many false objects exist, such as rocks, haystacks,
and woods. Moreover, due to the posture changes of the animals, the animals of the same
category may have a different appearance in imagery.

In addition, with the development of the deep learning network model, deeper net-
works with high precision consume a large amount of computer resources, making them
hard to use in portable minimized platforms and for real-time processing. Therefore, the
model size is an important index to be considered in the model construction, as well as
the precision.

To solve the difficulties in the above aspects, in this paper, we propose an effective
grazing livestock detection model—GLDM, based on YOLOX nano [21]. The rest of the
paper is organized as follows.

1. A grazing livestock dataset based on UAV imagery data of the Hulunbuir grassland
was established. We describe the dataset in detail and show some examples in
Section 2.

2. The proposed model is elaborated in Section 3.
3. Comparison, ablation, and multi-scale adaptation experiments of the model had been

conducted. The details and results of the experiments are shown in Section 4.
4. Finally, we summarize and conclude the paper in Section 5.
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2. Materials and Methods
2.1. Materials
2.1.1. Study Area and the UAV Imagery

Experimental data in this section were captured in Hadatu Pasture (49◦32′–49◦59′N,
119◦3′–120◦15′E, about 1000 km2), Hulunbuir City, Inner Mongolia, China, as shown in
Figure 1. Hadatu Pasture has a large distribution of common livestock such as cattle,
horses, and sheep. We used a fixed-wing unmanned aerial vehicle (UAV) to collect ground
images in Hadatu Pasture from 24 to 29 July 2021. The UAV images covered 20% of the
total area—about 200 square kilometers. The photography was taken from the overhead
orthographic attitude. The forward overlap rate was 80%, and the flight altitude was about
300 m. The relative altitude of the flight changed with the rugged terrain field. The images’
spatial resolution was about 3~7 cm. A total of 30 flight strips were flown, and 33,304 shots
of RGB images were taken. The image set covered objects of various landforms, buildings,
and large numbers of cattle, horses, and sheep in the area.
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Figure 1. Data collection. (a) Map of Hadatu Pasture and UAV flight routes; (b) flight strip image
captured and mosaiced by the UAV; (c) original image sample of the UAV.

2.1.2. Data Preparation

For the training and testing of the deep learning model, we used Labelme 4.6.0 [26]
software to label the data on the original UAV images. This study used a rectangular box
to label the ground truth, as shown in Figure 2c. The box was composed of an upper left
point and a lower right point, using which the width and height of the object on the image
could be obtained.

The size of the UAV images we obtained was 7952 × 5304. The original images were
split into subpatches of 1024 × 1024 to suit the limited computer memory (as shown in
Figure 2), and the width of the overlapping area was 100 pixels, which was wider than the
largest object, to ensure that an object on the split line would not be lost in the dataset.
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Figure 2. The split UAV image. (a) The original UAV image. The overlapped blue areas are 100 pixels
wide to prevent the object from being split. (b) The subpatches after split are images in our dataset.
The size of them is 1024 × 1024. (c) The annotation of samples using Labelme.

Seventy-five original UAV images with livestock were selected, and after the split, there
were a total of 4050 image subpatches, including 469 animal patches (images containing
animals), to build the dataset. The set was randomly divided into training, validation,
and testing datasets with a ratio of about 7:1:2. More details about dataset allocation are
shown in Table 1. Figure 3 shows the image samples in the dataset containing three types
of animals: cattle, horses, and sheep. Figure 4 shows some object instances of the three
types of animals in the dataset.

Table 1. The allocation of images into the training, validation, and testing datasets.

Datasets Animal Patches Cattle Instances Horse Instances Sheep Instances

Training 344 1511 1149 5354
Validation 39 169 87 1495

Testing 86 471 323 2342
Total 469 2151 1559 9191
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Figure 4. The object instances of the dataset. (a) cattle instances; (b) horse instances; (c) sheep instances.

Table 2 and Figure 5 are the statistical information of the animal samples in the dataset,
as shown below. From Figure 5d, it can be seen that the side length of most object boxes is
10–20 pixels. The size of most sheep objects is in this range. The mean absolute size (MAS)
is defined as the square root of the object box average area, while the mean relative size
(MRS) is defined as the percentage of the mean area to the total patch area. The formula is
as follows:

MAS =
√

Average area (1)

MRS =
Average area

Patch area
(2)

Table 2. Details of objects’ sizes in the dataset.

Category Min
Width

Max
Width

Average
Width

Min
Height

Max
Height

Average
Height MAS MRS Number

cattle 11 73 34.87 9 87 33.37 33.99 0.11% 2151
horse 9 81 37.17 11 82 36.90 36.45 0.13% 1559
sheep 5 42 17.40 6 39 19.60 18.42 0.03% 9191
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Figure 5. (a) The boxplot of object bounding box width. (b) The boxplot of object bounding box
height. (c) The boxplot of object bounding box area. (d) The distribution of the object bounding boxes
in the dataset. The horizontal axis is the width of the object bounding boxes and the vertical axis is the
height. The color represents the number of boxes with the width and height in the coordinate system.
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In order to test the multi-scale adaptability of the model, we made a multi-scale dataset
with nine scales of 0.2, 0.25, 0.33, 0.5, 1, 2, 3, 4, and 5. Each scale set of the dataset consisted
of 10 random animal patches, so there were a total of 90 patches, and each patch was still
1024× 1024. Image scaling uses the bilinear interpolation method, in which an image with a
scale smaller than 1 is a scaled-down image patch, and its surroundings are filled with zero
values. In comparison, an image with a scale greater than 1 is the window for capturing
the original image patch after scaling up, as shown in Figure 6. The details of the objects in
the multi-scale dataset are shown in Table 3. Among them, the mean absolute size of the
objects in the 0.2-scale set was already lower than 10 pixels, and the mean absolute size of
the sheep was only 3.03 pixels. However, in the 5-scale set, the mean absolute size of sheep
reached 72.04 pixels, and that of cattle reached 179.24 pixels. Generally, the multi-scale
dataset scaled across an approximately 22–24 times change. Table 3 shows that the number
of objects (scale > 1) was reduced due to the image being intercepted by the fixed window.
The average size of the objects was not strictly proportional to the previous scale.
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Table 3. Details of objects’ size in multi-scale dataset.

Scale Category MAS MRS Number

0.2
cattle 8.12 0.79% 108
horse 6.41 0.63% 107
sheep 3.03 0.30% 605

0.25
cattle 10.15 0.99% 108
horse 8.03 0.78% 107
sheep 3.82 0.37% 605

0.33
cattle 13.38 1.31% 108
horse 10.55 1.03% 107
sheep 5.01 0.49% 605

0.5
cattle 20.31 1.98% 108
horse 16.04 1.56% 107
sheep 7.6 0.74% 605

1
cattle 40.59 3.96% 108
horse 32.07 3.13% 107
sheep 15.21 1.49% 605

2
cattle 79.55 7.77% 61
horse 63.87 6.24% 92
sheep 29.68 2.90% 347

3
cattle 114.73 11.20% 36
horse 94.45 9.22% 78
sheep 43.79 4.28% 195

4
cattle 150.94 14.74 28
horse 122.43 11.96% 64
sheep 59.23 5.78% 153

5
cattle 179.24 17.50% 23
horse 149.89 14.64% 50
sheep 72.04 7.04% 90

2.2. Proposed Method

Before selecting a model, we conducted a large number of model experiments. For
details, see the experimental part later. According to the experiment results, the YOLOX
series models were more suitable for our application because they have a higher recall rate
than other models, which could achieve better performance when we calculated sheep
units in the area. Moreover, this model was the state-of-the-art model in the past two years,
integrating many effective strategies. The model’s performance, such as accuracy, size, and
speed, reached a good balance. Therefore, the GLDM (grazing livestock detection model)
proposed in this paper was improved based on YOLOX.

YOLOX is an anchor-free model in the YOLO series proposed by Ge et al. [21] in July
2021. Another iconic model in the YOLO series after YOLOv5, the YOLOX model is based
on different network depths and widths. The YOLOX model contains six different sizes:
nano, tiny, s, m, l, and x, arranged from small to large. The nano version was designed
for lightweight models with a weight size of only 3.9 MB. Regarding network structure,
the YOLOX model used CSPDarknet in the backbone network, PANet [27] in the neck
part, and proposed a decoupled head in the head part, improving the performance and
convergence speed of the model. Mosaic and Mixup were used as data augmentation
methods in training. The model also proposed to use a new sample matching method,
SimOTA, to better improve the performance of the anchor-free model.

However, YOLOX had certain limitations in this study. First, the capability of detection
for small objects with low resolution was inadequate, leading to missed detection. Second,
the model was susceptible to confusion when distinguishing between different animal
objects with similar body shapes. To facilitate the deployment of the model in the future,
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the nano in the YOLOX family was chosen as the baseline. The model was improved
as follows.

1. An enhanced CSPDarknet (ECSP) was proposed as the backbone network of our
model with three improvement tricks: a cascaded hybrid dilated convolutional mod-
ule, stage compute ratio optimization, and input size optimization. The new backbone
introduced context-related features and improved the feature extraction ability. This
maximized the performance, especially the recall, with as few parameters as possible.

2. A weighted aggregation feature re-extraction pyramid module (WAFR) was also
proposed as the neck part of our model, which made better use of the shallow features
in the network and achieved effective multi-scale feature fusion.

The network structure of the GLDM is shown in Figure 7.
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2.2.1. Enhanced CSPDarknet

The backbone network is an essential part of an object detection model, which is
responsible for the feature extraction of images. Modifying the backbone network to
improve feature extraction ability is the key to improving the performance of the network.
CSPDarknet, as an excellent backbone network after the proposal of CSPNet [28], was
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first used in YOLOv4 [29]. The subsequent YOLOv5 and YOLOX have continued to use
this network. Therefore, based on the CSPDarknet, an enhanced CSPDarknet (ECSP) was
proposed to further enhance its ability to extract small object features.

1. Cascade Hybrid Dilated Convolution Module

Introducing a large receptive field will bring more context-related features, improving
the detection ability for small objects. Ordinary convolutional networks mainly obtain
further feature maps through pooling operations, such as maximum pooling or average
pooling, to increase the receptive field. However, this approach will make the size of the
feature map smaller and inevitably lose information in the network downsampling process,
which will seriously impact the detection accuracy, especially for small objects with fewer
features in the original image. To avoid information loss, expand the receptive field, and
increase the object context feature information, this study introduced the idea of dilated
convolution. Dilated convolution was proposed by Yu et al. [30], and it was originally
used for intensive prediction tasks such as semantic segmentation. This convolution can
systematically aggregate multi-scale context information and exponentially expand the
receptive field without reducing the resolution and without additional parameters. In-
spired by [31], this study used dilated convolutions in combination with different dilation
rates to expand the receptive field. However, the selection of the expansion rate here is
not arbitrary. When the expansion rate of continuous hole convolution is the same, the
features on the original image will be missed. Therefore, according to a design criteria of
the hybrid dilated convolution module proposed by [31], combined with our large number
of experiments, an effective cascaded hybrid dilated convolution module (CHDC) was pro-
posed, as shown in Figure 8. The dilated rate of the convolution combination we designed
is [1,2,5]. Convolution kernels with different dilated rates will sample features of different
scales. After the combination and superposition, the receptive field will significantly exceed
three consecutive standard convolutions, and there will be no missing samples in this
combination. In this module, we uniquely use two sets of such hybrid dilated convolution
for cascading. What is more, inspired by the residual idea of Resnet [32], we performed
a shortcut connection to prevent gradient problems caused by too many convolutional
layers. The shortcut adds the original information and the convolved information by matrix
addition instead of concatenating. This module effectively improves the mAP, especially
the recall in experiments.
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Figure 8. The designed cascaded hybrid dilated convolution module (CHDC), in which dilated
conv-1, 2, and 5 are dilated convolutions with dilated rates of 1, 2, and 5, respectively, as shown on
the right.
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Figure 9 shows the comparison of the receptive fields of the two convolutions. The
color from light to dark indicates the number of pixel calculations from less to more.
Figure 10 is a schematic diagram of the sampling effect of the module in the image. For
example, select a partial area of 224 × 224 in the original image, which is 61 × 61 after
dark2 (4 times downsampling). Each grid in the figure represents a pixel, and the blue
grid is a sampling point. It can be seen that the sampling coverage obtained after CHDC
is wider than the original bottleneck in nano, and the associated information around the
object can be obtained.
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2. Stage Compute Ratio Optimization

The stage settings in the backbone network can be traced back to Resnet, and the
feature maps of each stage have different resolutions. The authors of [33] believe that the
original design of the computation distribution across stages in Resnet is largely empirical.
Different dark modules in CSPDarknet represent different stages, and the initial stage
compute ratio is 1:3:3:1. In the past two years, Transformer has shown extraordinary
performance in computer vision. Swin-T [34] also used similar ideas in the network but
with a slightly different stage compute ratio of 1:1:3:1. The author of ConvNeXt [33]
discovered and applied this ratio to Resnet, changing the number of blocks in each stage
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from (3, 4, 6, 3) in ResNet-50 to (3, 3, 9, 3). Here, we have carried out much experimental
exploration based on this idea and finally adjusted the stage compute ratio in CSPDarknet
to 1:1:3:1. Experiments have proved that this ratio not only reduces the model parameters
but also improves the accuracy of the model. Overall, it is the best ratio at present. The
specific experimental results are shown in Section 3.2.1.

3. Input Size Optimization

In order to ensure the consistency of the size and dimension of the output of the
features by the network, we usually perform data size preprocessing before the image
enters the backbone network; that is, bilinear interpolation operation, to force the image to
be converted into the same size. For natural image detection tasks, to reduce GPU memory
usage and reduce calculations, the YOLOX baseline usually compresses the input image
to 640 × 640, which is larger than that. Although such an operation may cause image
deformation and information loss, it is also beneficial, reducing the amount of calculation
and the risk of model overfitting. However, for the small object detection in this study, if
the algorithm compresses the image, the feature information of the small object will be lost
before entering the model. This lost information cannot be recovered, which ultimately
affects the detection performance of the model. Therefore, according to this study’s image
size and data characteristics, we bilinearly interpolated the input image into a size of
1024 × 1024 in this model because bilinear interpolation has a balance between effects and
computation. That ensured the image lost no data before entering the network training and
obtained more effective feature extraction in the subsequent network, effectively improving
the model accuracy.

2.2.2. Weighted Aggregation Feature Re-Extraction Pyramid

Some researchers believe that low-level features from shallow layers of the network
contain more fine-grained feature information and background noise, while features ex-
tracted from deeper layers contain more semantic information [35]. A modern detector
consists of at least two parts: a backbone and a detection head. With the development of
the model, there are many layer structures between the backbone and the head. This part
of the structure is usually used to obtain feature maps at different stages for fusion to learn
better features, which we call the model neck. FPN is a classic feature fusion structure
with a top-down pathway proposed by Lin et al. [36] in 2017. It has been widely used in
object detection models. Subsequently, many effective multi-scale feature fusion structures
have emerged. Starting from YOLOv4, the YOLO model uses PANet [27] as a neck. PANet
is a feature fusion structure divided into two processes: top-down and bottom-up. The
structure fuses the features of different layers equally. Hence, the extraction effect for small
object features is limited.

Therefore, to facilitate the detection of small objects in our dataset, we propose a new
feature fusion structure: a weighted aggregation feature re-extraction pyramid (WAFR)
with top-down and bottom-up two pathways as well. In this structure, the weighted fusion
is started from the highest layer upwards, and the way of concatenating in the original
PANet is abandoned, instead of the form of matrix addition. The fusion formula is as
follows: where rC4 : rC5 is 2:1, and rC3 : rs4 is 2:1, the N3 layer after the top-down weighted
fusion is re-extracted by the Dark4 and Dark5 in the backbone. Moreover, the S4 layer
and the C5 layer are cross-fused during the extraction process. Finally, three feature map
outputs with different scales are obtained. The structure is shown in Figure 11.

F =
1

ri + rj

(
riFi + rjFj

)
(3)

F is the fused feature, Fi and Fj are the i and j feature layers, respectively, and ri and rj are
the weights of the feature layer.
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Figure 11. Weighted aggregation feature e-extraction pyramid (WAFR). In the figure, layer C5 is the
deepest output of the backbone network, which has the most semantic information. Layer N3 is a
top-down fusion feature map. Layers N4 and N5 are feature maps after re-extraction and cross-fusion
of backbone network features.

2.2.3. Standard of Performance Evaluation

A series of indices were adopted to evaluate object detection performance from differ-
ent aspects: the precision, the recall, the F1 score, and mean average precision (mAP).

The precision evaluates the accuracy in the total number of predictions, whereas the
recall provides insight into how well the prediction covers the objects of interest [25]. The
mathematical formula of precision and recall are defined as follows:

precision =
TP

TP + FP
(4)

recall =
TP

TP + FN
(5)

where TP, FP, and FN represent the true positive, false positive, and false negative.
F1 score and average precision (AP) were adopted to make a comprehensive eval-

uation of the results, since recall and precision reflect only one aspect of the model’s
performance [25]. F1 score is the harmonic mean of precision and recall, and the formula is
defined as:

F1 score =
2

1
precision + 1

recall
(6)

AP is defined as the area surrounded by the recall-precision curve, which is formu-
lated as:

AP =
∫ 1

0
precision(recall)d(recall) (7)

To evaluate the overall performance of the model on the dataset, mAP was adopted,
which is formulated as:

mAP =
1
n

n

∑
i=1

APi (8)

where n is the number of categories in the dataset.
In order to apply the model to the survey of grassland grazing livestock, we proposed

a new evaluation index—livestock accuracy (LAC), which is the accuracy of the evaluation
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model when calculating the number of grazing livestock in an area. This evaluation index
reflects the accounting accuracy of regional livestock volume (without distinguishing
categories) under the premise of no prior knowledge and full trust model. The formula is
defined as:

LAC =
SUtruth −

∣∣∣SUpredicted − SUtruth

∣∣∣
SUtruth

(9)

SUpredicted = σclass(TPclass + FPclass) (10)

SUtruth = σclassGTclass (11)

where SU is the sheep unit, which is a unified conversion unit for calculating the amount
of livestock. One sheep unit is a sheep with a live weight of 40 kg and its suckling lambs,
and the daily eclipse of forage grass is 5.0–7.5 kg [37]. GT is the number of ground truth
and σclass is the conversion factor of the object class and sheep unit. For example, in this
research area, 1 cattle unit can be converted into 5 sheep units. σclass is defined as follows:

σsheep = 1, 1 sheep = 1 SU (12)

σcattle = 5, 1 cattle = 5 SU (13)

σhorse = 5, 1 horse = 5 SU (14)

3. Results

The model was run on an InterXeon(R) Gold 5118 CPU@2.30GHZ, NVIDIA RTX A6000
GPU, and Ubuntu 18.04.5 LTS system, using the Pytorch 1.10 deep learning framework. The
model used the stochastic gradient descent (SGD) optimizer and was trained for 500 epochs.
In the training strategy, we froze the backbone network at 0–50 epochs and trained with a
batch size of 16. Then, we unfroze the backbone network, all model parameters participated
in the training together, and the batch size was 8. The learning rate was initially set to
0.01, the minimum learning rate was set to 0.0001, the momentum was set to 0.937, and
the weight decay was set to 0.0005. The learning rate drop method adopted was the cos
drop method.

3.1. Algorithm Performance Comparison

To demonstrate the advantage of the proposed method, different deep learning object
detection models are executed in this section, such as Faster R-CNN, RetinaNet, FCOS, and
YOLO series, including the-state-of-art models. The above experimental models include
the classic one-stage, two-stage, and anchor-based and anchor-free classic models as the
object detection model. We used these models to make a horizontal comparison with our
proposed GLDM and observed the performance of these models on our dataset from a
large number of experiments, as shown as Table 4.

Faster RCNN is a milestone model in the RCNN series proposed by Ren et al. [15] in
2016. As a two-stage classic model, Faster RCNN once became the most accurate object
detection model. However, the model is anchor-based, and the accuracy of the model
depends on the setting of anchor hyperparameters, which requires prior knowledge. After
some simple anchor hyperparameter adjustments, the experimental results’ mAP only
reached 21.75%.

RetinaNet is a one-stage detection model as well as an anchor-based model proposed
by He et al. [16] in 2017. In order to solve the problem of class imbalance, the author
proposed using the Focal Loss. Through experiments, the mAP of this model reached
35.78%, which was slightly better than that of the Faster RCNN model, but the detection
effect for the category sheep was not satisfactory.
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Table 4. Comparison of state-of-the-art object-detection models.

Model Time Category AP F1 Recall Precision mAP Parameters 1

Faster
R-CNN

2016
cattle 39.34% 0.48 54.99% 42.88%

21.75% 28.3Mhorse 25.37% 0.36 42.72% 31.15%
sheep 0.53% 0.53 0.60% 60.87%

RetinaNet 2017
cattle 60.09% 0.52 36.73% 91.05%

35.78% 36.4Mhorse 47.26% 0.42 27.86% 85.71%
sheep 0.00% 0 0.00% 0.00%

YOLOv3 2018
cattle 82.43% 0.78 71.76% 85.79%

74.69% 61.5Mhorse 69.06% 0.67 60.06% 74.62%
sheep 72.59% 0.75 74.72% 75.82%

FCOS 2019
cattle 84.95% 0.85 83.23% 87.31%

78.06% 32.1Mhorse 82.06% 0.8 78.95% 81.99%
sheep 67.17% 0.55 40.73% 86.73%

YOLOX-
nano

2021
cattle 84.69% 0.83 82.80% 82.80%

77.73% 0.9Mhorse 75.72% 0.76 74.30% 77.67%
sheep 72.78% 0.77 71.69% 82.87%

YOLOX-x 2021
cattle 89.61% 0.87 90.23% 83.66%

87.19% 99.0Mhorse 86.63% 0.85 87.93% 82.08%
sheep 85.32% 0.88 86.68% 88.53%

GLDM
(ours) 2022

cattle 88.52% 0.86 87.47% 84.25%
86.47% 5.7Mhorse 85.87% 0.84 83.90% 84.16%

sheep 85.03% 0.86 83.99% 87.42%
1 The parameter quantity here is an approximate value, and the conversion relationship is taken as 1 M = 1000 k.

YOLOv3 was proposed by Redmon et al. [17] in 2018, using DarkNet-53 as the back-
bone network and absorbing the idea of FPN with high computing efficiency. As a one-stage
anchor-based model, YOLOv3 introduced the most effective tricks in the industry at that
time, and it is also a milestone object detection model. Through experiments, although the
model size was larger, the accuracy was greatly improved: the mAP reached 74.69%.

FCOS is an anchor-free detection model. It was proposed by Tian et al. [19] in 2019.
This model no longer depends on the anchor and avoids all hyperparameters related to
the anchor that affect the final detection result, and it is a fully convolutional, one-stage
model for pixel-by-pixel prediction. Experiments showed that compared with YOLOv3,
the model achieved a higher mAP with a smaller number of parameters, reaching 78.06%.

The YOLOX-nano in the YOLOX series had a mAP of 77.73% with 0.9 M parameters,
and the YOLOX-x was the model with the largest number of parameters and the highest
accuracy in the series, with a mAP of 87.19%.

The mAP of the GLDM reached 86.47%, a bit lower than the YOLOX-x model. While
improving the detection performance, we also considered the model size. The number
of parameters of the proposed model was only 5.7 M, or only about 5.76% of that of
YOLOX-x. The average precision (AP) for sheep detection exhibited a notable increase of
12.25%, indicating the effectiveness of our enhancements in the detection of small objects. In
summary, we achieved a lighter and higher-precision unification on our UAV dataset, which
is currently a more efficient detection model for grassland grazing livestock detection.

Figure 12 shows a comparison of the detection results from different models. The
chosen models were Faster R-CNN, FCOS, and YOLOv3, which are the typical two-stage,
anchor-free, and classic YOLO model, respectively. Faster R-CNN had a very poor detection
effect on sheep, which had been greatly improved in YOLOv3. Although FCOS was not
as good as YOLOv3 in detecting sheep, it was better in detecting horses than YOLOv3. It
can also be seen from the figure that the above objects all had excellent detection results in
our model.
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3.2. Ablation Experiments

To verify the effectiveness of the method proposed, ablation experiments were per-
formed in this study. First, we carried out the ablation verification of the overall model
and conducted experiments on the two improved modules, ECSP and WAFR in sequence.
The experimental results are shown in Table 5. After using ECSP, the mAP of the model
was improved by 8.25%. Due to the increase of CHDC in ECSP to the receptive field, and
bilinear interpolation input, the recall rate was significantly improved. The average recall
improved by 8.48%, which aligned with our expectations. Results with high recall are
more beneficial for our application. After the model used WAFR, the mAP of the model
increased by 8.74%, reaching 86.47%. The average recall was improved by 8.86%. Although
the number of parameters changed and increased, the model accuracy improvement in
exchange was worthwhile.



Remote Sens. 2023, 15, 1593 17 of 24

Table 5. Ablation experiments for the proposed method.

Baseline Backbone Neck Average Recall Average Precision mAP Parameters

nano 76.26% 81.11% 77.73% 0.9M
nano ECSP 84.74% 84.93% 85.98% 3.8M
nano ECSP WAFR 85.12% 85.28% 86.47% 5.7M

3.2.1. Use of Enhanced CSPDarknet

The experimental results above proved that ECSP improved the mAP and recall of the
model. To verify the effectiveness of the three tricks proposed in ECSP, as mentioned above,
we decomposed ECSP and conducted more in-depth ablation experiments. As shown in
Table 6, the experimental results proved that mAP had been improved by each trick.

Table 6. Ablation experiments for ECSP as the backbone.

Baseline Bottleneck Image Input Block Rate mAP

nano 77.73%
nano CHDC 78.17%
nano CHDC 1024 × 1024 85.04%
nano CHDC 1024 × 1024 1:1:3:1 85.98%

As for improving our stage compute rate on the backbone, it is an optimal ratio that
we have explored through many experiments. In Table 7 below, several representative
experiments are given. The original ratio was 1:3:3:1, referring to the ratio of CHDC in
Dark2-5. In the nano model, the depth factor was 1, so 1:3:3:1 was also the real number ratio
of CHDC in each stage. First, the ratio was adjusted based on keeping the total number
consistent. Although higher accuracy was obtained, the size of the model was sacrificed.

Table 7. Ablation experiments for stage compute rate in ECSP.

Baseline Bottleneck Image Input Block Rate mAP Parameter

nano CHDC 1024 × 1024 1:3:3:1 85.04% 3.949M
nano CHDC 1024 × 1024 1:1:3:3 84.96% 5.642M
nano CHDC 1024 × 1024 1:1:4:2 85.19% 4.965M
nano CHDC 1024 × 1024 1:1:5:1 85.88% 4.288M
nano CHDC 1024 × 1024 1:1:3:1 85.98% 3.836M

In the final experiment, the mAP of the model with a ratio of 1:1:3:1 was 0.94%
higher than that of the original model. The parameters were reduced by 0.11 M, which
achieved higher accuracy and smaller volume than the original model, and is currently the
best choice.

3.2.2. Use of Weighted Aggregation Feature Re-Extraction Pyramid

In this part, we give the ablation tests for WAFR, as shown in Table 8 below. Exper-
iments in the table verify the effect of WAFR on the model with or without ECSP. When
not using our proposed ECSP, WAFR brought a 0.9% improvement to the model, and after
using ECSP, WAFR brought a 0.49% improvement to the model. Experiments proved that
WAFR was effective for model improvement.

3.2.3. Visualization of Results

In order to see the difference before and after the model improvement more clearly, we
show in Figure 13 the original test image, the test result image before and after the model
improvement, and the ground truth. The figure shows the detection results of typical
sheep, horses, and cattle images. We can see an improvement in missed detection and false
detection. In a dense scene like a flock of sheep, the improved model significantly improved
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the recall of sheep and detected some previously undetected objects efficiently. For horses,
false detections before improvement were corrected. For the cattle in the figure, there may
be two cattle with one detection box before the improvement, and the individuals were
better distinguished after the improvement.

Table 8. Ablation experiments for WAFR.

Baseline Backbone Neck mAP

nano CSPDarknet PAN 77.73%
nano CSPDarknet WAFR 78.63%
nano ECSP PAN 85.98%
nano ECSP WAFR 86.47%
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3.3. Model Application

In this part, we study the application of the model, including the scale adaptability of
the model; that is, in what resolution range the model can still maintain a good accuracy,
the model inference method of large-size remote sensing image, and the grassland livestock
counting in the test dataset.

3.3.1. Model Scale Adaptability

The data used in this study were collected by UAVs flying at 300 m, although due
to the ups and downs of the terrain, the actual shooting distance to the ground varied.
However, generally speaking, the resolution was roughly within a range; that is, the size
of similar objects did not change much. Since the model proposed was trained from such
data, we needed to test the model’s adaptability to large-scale changes. Therefore, we
made a test dataset with multi-scale variation, as described in Section 2. The test results
are shown in Table 9 and Figure 14. The general trend was that as the scale shrank or
expanded, the detection performance decreased, but the performance of different categories
was slightly different.

Table 9. AP of three animals’ detection at different scales.

Scale 0.2 0.25 0.33 0.5 1 2 3 4 5

cattle AP 0.5047 0.6361 0.7955 0.9035 0.9142 0.8467 0.245 0.1038 0.029
horse AP 0.1479 0.4022 0.5168 0.7929 0.8919 0.9159 0.7309 0.3634 0.089
sheep AP 0.0255 0.1187 0.2602 0.6222 0.9074 0.9457 0.9127 0.7319 0.4122

mAP 0.226 0.3857 0.5242 0.7728 0.9045 0.9028 0.6296 0.3997 0.1767Remote Sens. 2023, 15, x FOR PEER REVIEW 21 of 26 
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Figure 14. (a) The line graph of the AP values of cattle, horse, sheep, and mAP on the multi-scale test
dataset; (b) the heat map of the AP values of the three types of objects on the multi-scale test dataset.
This more intuitively reflects the difference in the detection of scale changes in the model for cattle,
horses, and sheep.
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From Figure 14b, it can be seen more intuitively that cattle and sheep have misplace-
ment for scale changes. Cattle have stronger adaptability to scale reduction, and sheep have
stronger adaptability to scale expansion. Assuming that the AP value of any category is
required to be greater than or equal to 0.5, a scale change of 0.5–2 can meet the requirements.
Performance drops off significantly outside of a scale change of 0.33-3.

Considering that the original image resolution of our dataset was about 5 cm, and
corresponding to the above conclusion, our model still performed well between 2.5 and
10 cm through resolution conversion. The range could be expanded appropriately, but it
was best to stay within 15 and 1.7 cm. Figure 15 below is the test dataset detection results
at scales of 0.5, 1, and 2.
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3.3.2. Large-Size Remote Sensing Image Inference and Grassland Livestock Accounting

In practical applications, we often obtain large-size remote sensing images. For
example, the original image size of the UAV in our research reached 7952 × 5304. If an
image of this size is directly detected without a split, the entire image will be compressed



Remote Sens. 2023, 15, 1593 21 of 24

to a fixed size before entering the network. The algorithm directly filters a large amount of
image information in the preprocessing stage. Because the object to be detected is extremely
small, the image entering the network may have no object information.

We used the sliding window detection method to achieve the inference process of
large-size remote sensing images. The detection window slides from the upper left of the
image until it slides to the lower right, traversing the entire image. The final large-size
image detection result is obtained, as shown in Figure 16. The object in the figure, which is
the original UAV image, has been effectively detected without split.
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We used the model in this paper to calculate the number of livestock in the testing
dataset, and the detailed data are shown in Table 10. The test set had 3136 livestock samples,
which could be converted into 6312 sheep units. The model detected 489 cattle objects,
322 horse objects, and 2261 sheep objects, which were converted into 6316 sheep units.
Therefore, LAC (the accuracy of accounting for livestock in Section 2.2.3) using UAV images
in this testing dataset reached 99% without prior knowledge.
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Table 10. Livestock accounting in testing dataset.

Category Truth TP FP FN LAC

cattle 471 412 77 59
0.99horse 323 271 51 52

sheep 2342 1967 294 375

4. Discussion

The use of UAV images combined with deep learning for the automatic detection of
grassland grazing livestock presents several technical difficulties, such as small objects,
easy false detection, and easily missed detection. In this study, an improved deep learning
detection model GLDM was designed based on the YOLOX nano model to deal with the
above difficulties. The enhanced backbone network ECSP we proposed incorporates the
hybrid dilated convolution idea to expand the receptive field to extract the context features
of small objects. We also optimized the stage compute ratio and the input size. These
techniques enhanced the feature extraction ability of small objects in the image, significantly
improving the model’s recall. Additionally, a feature fusion structure WAFR was designed
to strengthen the network’s utilization of objects’ shallow features, further enhancing
the detection and positioning capabilities of small objects. Experimental results have
also shown that our proposed model achieves better performance than before, effectively
addressing the challenges posed by small object detection, false detection, and missed
detection. The proposed model can also be used for large-scale grassland livestock surveys.

Nonetheless, there remain several areas for improvement in this study. First, the
computational efficiency of the model has not been optimized. Secondly, the model has
not improved the detection of ultra-dense sheep in sheep pens, which is also a direction
for future research. For future work, in addition to exploring the above issues, there are
several directions that are worthy of further work.

1. Increase the number of labeled samples and add other object categories to explore
possible long-tail object detection. This is a complex problem in the field of object
detection that warrants further investigation.

2. Collect multi-angle and multi-scale data to expand the model’s application scenarios.
This will make the model more flexible and allow it to be applied to tasks such as
target tracking in the future, as well as enabling the description of objects at ultra-high
resolution.

3. Study the domain adaptation problem in transfer learning and explore the knowledge
transfer of the model. This is critical for the inheritance and evolution of the model,
as well as the reduction of data labeling costs.

5. Conclusions

In this study, a deep learning dataset based on UAV images was constructed, and a
deep learning method GLDM for grassland grazing livestock detection was proposed to
better integrate deep learning technology into remote sensing and serve grassland animal
husbandry. The model’s detection ability for small and confusing objects in UAV images
was effectively strengthened by the enhanced backbone network ECSP and the feature
fusion module WAFR. Experimental results show that this model has better detection
performance and fewer model parameters than existing object detection algorithms. It per-
formed well in the recall rate, and the mAP of the model reached 86.47%, which is suitable
for detecting grassland grazing livestock in UAV images. Moreover, the performance of the
model was investigated, and it was observed to maintain good performance in images with
a spatial resolution ranging from 2.5 to 10 cm. The inference process of large-size remote
sensing images was implemented without splitting. Overall, the proposed model can
achieve remarkable results in livestock detection, effectively overcome the main practical
problems, and can practicably perform livestock surveys using UAV remote sensing over
extensive grassland.
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