Quaternary Crustal Shortening of the Houyanshan Structure in the Eastern Chinese Tian Shan: Constrained from Geological and Geomorphological Analyses
Abstract
:1. Introduction
2. Geologic Setting
2.1. The Tian Shan
2.2. The Turpan Basin and the Huoyanshan Anticline
2.3. Stratigraphy
3. Materials and Methods
3.1. Geomorphology and Quaternary Chronology
3.2. Structural Interpretation from Outcrops and Seismic Profiles
3.3. ADS Analysis
3.4. Inverse Modeling
4. Results
4.1. Late Pleistocene Shortening Rate
4.1.1. Surface Geometry and OSL Age Constraint
4.1.2. Subsurface Geometry
4.1.3. Kinematic Model and Shortening Rate
4.2. ADS Results
4.3. Best-Fit Model Parameters
5. Discussion
5.1. Estimation of Uncertainties in Structural Interpretation
5.2. Onset Time of the Huoyanshan Anticline and Its Reliability
5.3. The 2 Ma Synchronous Growth Stage around the Tibetan Plateau
6. Conclusions
- (1)
- Based on the features present in both surface and subsurface deformation, we first describe a curved thrust ramp and related fold pairs of the structure.
- (2)
- By using the kinematic model, deformed record, and OSL dating results of terrace T4, we estimate a geologic shortening rate of 1.6 ± 0.2 mm/a since ~52 ka.
- (3)
- We interpret three seismic reflection profiles using the theory of quantitative fault-related fold, ADS, and reverse modeling analyses. These profiles provide direct evidence that this structure connects by a listric thrust ramp to a shallow detachment level. ADS analysis reveals that the maximum shortening of the structure is ~4.5 km, which is consistent with a quantitative inverse model.
- (4)
- The above shortening rate and total shortening amount suggest that the structure may have formed at 1.8–3.7 Ma, a nearly synchronous growth stage around the Tibetan Plateau.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Armstrong, F.C.; Oriel, S.S. Tectonic development of Idaho-Wyoming thrust belt. AAPG Bull. 1965, 49, 1847–1866. [Google Scholar]
- Bally, A.W.; Gordy, P.; Stewart, G.A. Structure, seismic data, and orogenic evolution of southern Canadian Rocky Mountains. Bull. Can. Pet. Geol. 1966, 14, 337–381. [Google Scholar]
- Dahlstrom, C.D. Structural geology in the eastern margin of the Canadian Rocky Mountains. Bull. Can. Pet. Geol. 1970, 18, 332–406. [Google Scholar]
- Boyer, S.E. Styles of folding within thrust sheets: Examples from the Appalachian and Rocky Mountains of the USA and Canada. J. Struct. Geol. 1986, 8, 325–339. [Google Scholar] [CrossRef]
- Vann, I.; Graham, R.; Hayward, A. The structure of mountain fronts. J. Struct. Geol. 1986, 8, 215–227. [Google Scholar] [CrossRef]
- Erslev, E.A.; Mayborn, K.R. Multiple geometries and modes of fault-propagation folding in the Canadian thrust belt. J. Struct. Geol. 1997, 19, 321–335. [Google Scholar] [CrossRef]
- Hardy, S.; Ford, M. Numerical modeling of trishear fault propagation folding. Tectonics 1997, 16, 841–854. [Google Scholar] [CrossRef]
- Homza, T.X.; Wallace, W.K. Detachment folds with fixed hinges and variable detachment depth, northeastern Brooks Range, Alaska. J. Struct. Geol. 1997, 19, 337–354. [Google Scholar] [CrossRef]
- Delcaillau, B.; Deffontaines, B.; Floissac, L.; Angelier, J.; Deramond, J.; Souquet, P.; Chu, H.T.; Lee, J. Morphotectonic evidence from lateral propagation of an active frontal fold; Pakuashan anticline, foothills of Taiwan. Geomorphology 1998, 24, 263–290. [Google Scholar] [CrossRef]
- Burbank, D.; McLean, J.K.; Bullen, M.; Abdrakhmatov, K.; Miller, M.M. Partitioning of intermontane basins by thrust-related folding, Tien Shan, Kyrgyzstan. Basin Res. 1999, 11, 75. [Google Scholar] [CrossRef] [Green Version]
- Tozer, R.; Butler, R.; Corrado, S. Comparing thin-and thick-skinned thrust tectonic models of the Central Apennines, Italy. EGU Stephan Mueller Spec. Publ. Ser. 2002, 1, 181–194. [Google Scholar] [CrossRef]
- Heermance, R.V.; Chen, J.; Burbank, D.W.; Miao, J. Temporal constraints and pulsed Late Cenozoic deformation during the structural disruption of the active Kashi foreland, northwest China. Tectonics 2008, 27, TC6012. [Google Scholar] [CrossRef] [Green Version]
- McClay, K. Introduction to Thrust Fault-Related Folding. In Thrust Fault-Related Folding; American Association of Petroleum Geologists: Tulsa, OK, USA, 2011. [Google Scholar]
- Calamita, F.; Pace, P.; Satolli, S. Coexistence of fault-propagation and fault-bend folding in curve-shaped foreland fold-and-thrust belts: Examples from the Northern Apennines (Italy). Terra Nova 2012, 24, 396–406. [Google Scholar] [CrossRef]
- King, G.; Vita-Finzi, C. Active folding in the Algerian earthquake of 10 October 1980. Nature 1981, 292, 22–26. [Google Scholar] [CrossRef]
- Philip, H.; Meghraoui, M. Structural analysis and interpretation of the surface deformations of the El Asnam earthquake of October 10, 1980. Tectonics 1983, 2, 17–49. [Google Scholar] [CrossRef]
- Stein, R.S.; King, G.C. Seismic potential revealed by surface folding: 1983 Coalinga, California, earthquake. Science 1984, 224, 869–872. [Google Scholar] [CrossRef]
- Nicol, A.; Campbell, J.K. The impact of episodic fault-related folding on late Holocene degradation terraces along Waipara River, New Zealand. N. Z. J. Geol. Geophys. 2001, 44, 145–156. [Google Scholar] [CrossRef]
- Kao, H.; Chen, W.-P. The Chi-Chi earthquake sequence: Active, out-of-sequence thrust faulting in Taiwan. Science 2000, 288, 2346–2349. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-G.; Chen, W.-S.; Lee, J.-C.; Lee, Y.-H.; Lee, C.-T.; Chang, H.-C.; Lo, C.-H. Surface rupture of 1999 Chi-Chi earthquake yields insights on active tectonics of central Taiwan. Bull. Seismol. Soc. Am. 2001, 91, 977–985. [Google Scholar] [CrossRef]
- Johnson, K.; Segall, P. Viscoelastic earthquake cycle models with deep stress-driven creep along the San Andreas fault system. J. Geophys. Res. Solid Earth 2004, 109, B10403. [Google Scholar] [CrossRef] [Green Version]
- Guzofski, C.A.; Shaw, J.H.; Lin, G.; Shearer, P.M. Seismically active wedge structure beneath the Coalinga anticline, San Joaquin basin, California. J. Geophys. Res. Solid Earth 2007, 112, B03S05. [Google Scholar] [CrossRef] [Green Version]
- Lin, A. Fossil Earthquakes: The Formation and Preservation of Pseudotachylytes; Springer: Berlin/Heidelberg, Germany, 2007; Volume 111. [Google Scholar]
- Allmendinger, R.W.; Shaw, J.H. Estimation of fault propagation distance from fold shape: Implications for earthquake hazard assessment. Geology 2000, 28, 1099–1102. [Google Scholar] [CrossRef]
- DeVecchio, D.E.; Keller, E.A.; Fuchs, M.; Owen, L.A. Late Pleistocene structural evolution of the Camarillo fold belt: Implications for lateral fault growth and seismic hazard in Southern California. Lithosphere 2012, 4, 91–109. [Google Scholar] [CrossRef] [Green Version]
- Saint-Carlier, D.; Charreau, J.; Lavé, J.; Blard, P.-H.; Dominguez, S.; Avouac, J.-P.; Wang, S.; Team, A. Major temporal variations in shortening rate absorbed along a large active fold of the southeastern Tianshan piedmont (China). Earth Planet. Sci. Lett. 2016, 434, 333–348. [Google Scholar] [CrossRef]
- Yang, H.; Yang, X.; Zhang, H.; Huang, X.; Huang, W.; Zhang, N. Active fold deformation and crustal shortening rates of the Qilian Shan Foreland Thrust Belt, NE Tibet, since the Late Pleistocene. Tectonophysics 2018, 742, 84–100. [Google Scholar] [CrossRef]
- Charreau, J.; Sartégou, A.; Saint-Carlier, D.; Lavé, J.; Blard, P.H.; Dominguez, S.; Wang, S.L.; Rao, G.; Team, A.; Aumaître, G. Late Miocene to Quaternary slip history across the Qiulitag anticline in the southern Tianshan piedmont. Terra Nova 2020, 32, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.Z.; Deng, Q.D.; Yang, X.P.; Peng, S.Z.; Xu, X.W. Late Cenozoic tectonic deformation and mechanism along the Tianshan Mountain, northwestern China. Earthq. Res. China 1996, 12, 127–140, (In Chinese with English abstract). [Google Scholar]
- Abdrakhmatov, K.Y.; Aldazhanov, S.; Hager, B.; Hamburger, M.; Herring, T.; Kalabaev, K.; Makarov, V.; Molnar, P.; Panasyuk, S.; Prilepin, M. Relatively recent construction of the Tien Shan inferred from GPS measurements of present-day crustal deformation rates. Nature 1996, 384, 450–453. [Google Scholar] [CrossRef]
- Reigber, C.; Michel, G.; Galas, R.; Angermann, D.; Klotz, J.; Chen, J.; Papschev, A.; Arslanov, R.; Tzurkov, V.; Ishanov, M. New space geodetic constraints on the distribution of deformation in Central Asia. Earth Planet. Sci. Lett. 2001, 191, 157–165. [Google Scholar] [CrossRef]
- Yang, S.; Li, J.; Wang, Q. The deformation pattern and fault rate in the Tianshan Mountains inferred from GPS observations. Sci. China Ser. D Earth Sci. 2008, 51, 1064–1080. [Google Scholar] [CrossRef]
- Zubovich, A.V.; Wang, X.Q.; Scherba, Y.G.; Schelochkov, G.G.; Reilinger, R.; Reigber, C.; Mosienko, O.I.; Molnar, P.; Michajljow, W.; Makarov, V.I. GPS velocity field for the Tien Shan and surrounding regions. Tectonics 2010, 29, TC6014. [Google Scholar] [CrossRef]
- Zhang, P.-Z.; Shen, Z.; Wang, M.; Gan, W.; Burgmann, R.; Molnar, P.; Wang, Q.; Niu, Z.; Sun, J.; Wu, J. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology 2004, 32, 809–812. [Google Scholar]
- Avouac, J.-P.; Tapponnier, P.; Bai, M.; You, H.; Wang, G. Active thrusting and folding along the northern Tien Shan and late Cenozoic rotation of the Tarim relative to Dzungaria and Kazakhstan. J. Geophys. Res. Solid Earth 1993, 98, 6755–6804. [Google Scholar] [CrossRef] [Green Version]
- Burchfiel, B.; Brown, E.; Qidong, D.; Xianyue, F.; Jun, L.; Molnar, P.; Jianbang, S.; Zhangming, W.; Huichuan, Y. Crustal shortening on the margins of the Tien Shan, Xinjiang, China. Int. Geol. Rev. 1999, 41, 665–700. [Google Scholar] [CrossRef]
- Deng, Q.D.; Feng, X.Y.; Zhang, P.Z.; Xu, X.W.; Yang, X.P.; Peng, S.Z.; Li, J. Active Tectonics of the Tian Shan Mountains; Seismology Press: Beijing, China, 2000; p. 399. (In Chinese) [Google Scholar]
- Thompson, S.C.; Weldon, R.J.; Rubin, C.M.; Abdrakhmatov, K.; Molnar, P.; Berger, G.W. Late Quaternary slip rates across the central Tien Shan, Kyrgyzstan, central Asia. J. Geophys. Res. Solid Earth 2002, 107, ETG 7-1–ETG 7-32. [Google Scholar] [CrossRef]
- Lu, H.; Li, B.; Wu, D.; Zhao, J.; Zheng, X.; Xiong, J.; Li, Y. Spatiotemporal patterns of the Late Quaternary deformation across the northern Chinese Tian Shan foreland. Earth-Sci. Rev. 2019, 194, 19–37. [Google Scholar] [CrossRef]
- Brown, E.T.; Bourlès, D.L.; Raisbeck, G.M.; Yiou, F.; Clark Burchfiel, B.; Molnar, P.; Qidong, D.; Jun, L. Estimation of slip rates in the southern Tien Shan using cosmic ray exposure dates of abandoned alluvial fans. Geol. Soc. Am. Bull. 1998, 110, 377–386. [Google Scholar] [CrossRef]
- Yin, A.; Nie, S.; Craig, P.; Harrison, T.; Ryerson, F.; Xianglin, Q.; Geng, Y. Late Cenozoic tectonic evolution of the southern Chinese Tian Shan. Tectonics 1998, 17, 1–27. [Google Scholar] [CrossRef]
- Hendrix, M.S.; Dumitru, T.A.; Graham, S.A. Late Oligocene-early Miocene unroofing in the Chinese Tian Shan: An early effect of the India-Asia collision. Geology 1994, 22, 487–490. [Google Scholar] [CrossRef]
- Molnar, P.; Brown, E.T.; Burchfiel, B.C.; Deng, Q.; Feng, X.; Li, J.; Raisbeck, G.M.; Shi, J.; Zhangming, W.; Yiou, F. Quaternary climate change and the formation of river terraces across growing anticlines on the north flank of the Tien Shan, China. J. Geol. 1994, 102, 583–602. [Google Scholar] [CrossRef]
- Bullen, M.; Burbank, D.; Garver, J.; Abdrakhmatov, K.Y. Late Cenozoic tectonic evolution of the northwestern Tien Shan: New age estimates for the initiation of mountain building. Geol. Soc. Am. Bull. 2001, 113, 1544–1559. [Google Scholar] [CrossRef]
- Lu, H.; Burbank, D.W.; Li, Y. Alluvial sequence in the north piedmont of the Chinese Tian Shan over the past 550 kyr and its relationship to climate change. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 285, 343–353. [Google Scholar] [CrossRef]
- Thompson, J.A.; Burbank, D.W.; Li, T.; Chen, J.; Bookhagen, B. Late Miocene northward propagation of the northeast Pamir thrust system, northwest China. Tectonics 2015, 34, 510–534. [Google Scholar] [CrossRef] [Green Version]
- Thompson Jobe, J.A.; Li, T.; Chen, J.; Burbank, D.W.; Bufe, A. Quaternary tectonic evolution of the Pamir-Tian Shan convergence zone, Northwest China. Tectonics 2017, 36, 2748–2776. [Google Scholar] [CrossRef]
- Chen, J.; Burbank, D.; Scharer, K.; Sobel, E.; Yin, J.; Rubin, C.; Zhao, R. Magnetochronology of the Upper Cenozoic strata in the Southwestern Chinese Tian Shan: Rates of Pleistocene folding and thrusting. Earth Planet. Sci. Lett. 2002, 195, 113–130. [Google Scholar] [CrossRef]
- Chen, J.; Heermance, R.; Burbank, D.W.; Scharer, K.M.; Miao, J.; Wang, C. Quantification of growth and lateral propagation of the Kashi anticline, southwest Chinese Tian Shan. J. Geophys. Res. Solid Earth 2007, 112, B03S16. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Zhu, R.; Bowler, J. Timing of the Tianshan Mountains uplift constrained by magnetostratigraphic analysis of molasse deposits. Earth Planet. Sci. Lett. 2004, 219, 239–253. [Google Scholar] [CrossRef]
- Charreau, J.; Avouac, J.-P.; Chen, Y.; Dominguez, S.; Gilder, S. Miocene to present kinematics of fault-bend folding across the Huerguosi anticline, northern Tianshan (China), derived from structural, seismic, and magnetostratigraphic data. Geology 2008, 36, 871–874. [Google Scholar] [CrossRef]
- Charreau, J.; Saint-Carlier, D.; Lavé, J.; Dominguez, S.; Blard, P.-H.; Avouac, J.-P.; Brown, N.D.; Malatesta, L.C.; Wang, S.; Rhodes, E.J. Late Pleistocene acceleration of deformation across the northern Tianshan piedmont (China) evidenced from the morpho-tectonic evolution of the Dushanzi anticline. Tectonophysics 2018, 730, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Chen, J.; Thompson, J.A.; Burbank, D.W.; Xiao, W. Equivalency of geologic and geodetic rates in contractional orogens: New insights from the Pamir Frontal Thrust. Geophys. Res. Lett. 2012, 39, L15305. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Zhang, T.; Zhao, J.; Si, S.; Wang, H.; Chen, S.; Zheng, X.; Li, Y. Late Quaternary alluvial sequence and uplift-driven incision of the Urumqi River in the north front of the Tian Shan, northwestern China. Geomorphology 2014, 219, 141–151. [Google Scholar] [CrossRef]
- Fu, X.; Li, S.-H.; Li, B.; Fu, B. A fluvial terrace record of late Quaternary folding rate of the Anjihai anticline in the northern piedmont of Tian Shan, China. Geomorphology 2017, 278, 91–104. [Google Scholar] [CrossRef]
- Peng, S. Active Tectonics and Earthquake Hazards of the Turfan Basin, Northwestern China. Sci. China Ser. D Earth Sci. 1995, 46, 13–24, (In Chinese with English abstract). [Google Scholar]
- Ren, G.; Li, C.; Wu, C.; Wang, S.; Zhang, H.; Ren, Z.; Li, X. The late Quaternary activity and formation mechanism of Baoertu Fault zone, eastern Tian Shan segment. Seismol. Geol. 2019, 41, 856–871, (In Chinese with English abstract). [Google Scholar]
- Wu, C.; Wu, G.; Shen, J.; Dai, X.; Chen, J.; Song, H. Late Quaternary tectonic activity and crustal shortening rate of the Bogda mountain area, eastern Tian Shan, China. J. Asian Earth Sci. 2016, 119, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Deng, Q.; Zhang, P.; Xu, X.; Yang, X.; Peng, S.; Feng, X. Paleoseismology of the northern piedmont of Tianshan Mountains, northwestern China. J. Geophys. Res. Solid Earth 1996, 101, 5895–5920. [Google Scholar] [CrossRef]
- Fu, B.; Lin, A.; Kano, K.-I.; Maruyama, T.; Guo, J. Quaternary folding of the eastern Tian Shan, northwest China. Tectonophysics 2003, 369, 79–101. [Google Scholar] [CrossRef]
- Cardozo, N.; Jackson, C.A.-L.; Whipp, P.S. Determining the uniqueness of best-fit trishear models. J. Struct. Geol. 2011, 33, 1063–1078. [Google Scholar]
- Cardozo, N.; Brandenburg, J. Kinematic modeling of folding above listric propagating thrusts. J. Struct. Geol. 2014, 60, 1–12. [Google Scholar] [CrossRef]
- Allen, M.; Windley, B.; Zhang, C. Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, central Asia. Tectonophysics 1993, 220, 89–115. [Google Scholar] [CrossRef]
- Burtman, V. Structural geology of variscan Tien Shan, USSR. Am. J. Sci. 1975, 275, 157–186. [Google Scholar]
- Windley, B.; Allen, M.; Zhang, C.; Zhao, Z.; Wang, G. Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan range, central Asia. Geology 1990, 18, 128–131. [Google Scholar] [CrossRef]
- Hendrix, M.S.; Graham, S.A.; Carroll, A.R.; Sobel, E.R.; McKNIGHT, C.L.; Schulein, B.J.; Wang, Z. Sedimentary record and climatic implications of recurrent deformation in the Tian Shan: Evidence from Mesozoic strata of the north Tarim, south Junggar, and Turpan basins, northwest China. Geol. Soc. Am. Bull. 1992, 104, 53–79. [Google Scholar] [CrossRef]
- Carroll, A.; Graham, S.; Hendrix, M.; Ying, D.; Zhou, D. Late Paleozoic tectonic amalgamation of northwestern China: Sedimentary record of the northern Tarim, northwestern Turpan, and southern Junggar basins. Geol. Soc. Am. Bull. 1995, 107, 571–594. [Google Scholar] [CrossRef]
- Dumitru, T.A.; Zhou, D.; Chang, E.Z.; Graham, S.A.; Hendrix, M.S.; Sobel, E.R.; Carroll, A.R. Uplift, exhumation, and deformation in the Chinese Tian Shan. Mem.-Geol. Soc. Am. 2001, 194, 71–100. [Google Scholar]
- Tapponnier, P.; Molnar, P. Active faulting and tectonics in China. J. Geophys. Res. 1977, 82, 2905–2930. [Google Scholar] [CrossRef]
- Gao, J.; Long, L.; Klemd, R.; Qian, Q.; Liu, D.; Xiong, X.; Su, W.; Liu, W.; Wang, Y.; Yang, F. Tectonic evolution of the South Tianshan orogen and adjacent regions, NW China: Geochemical and age constraints of granitoid rocks. Int. J. Earth Sci. 2009, 98, 1221–1238. [Google Scholar] [CrossRef]
- Sobel, E.R.; Dumitru, T.A. Thrusting and exhumation around the margins of the western Tarim basin during the India-Asia collision. J. Geophys. Res. Solid Earth 1997, 102, 5043–5063. [Google Scholar] [CrossRef]
- Sobel, E.R.; Chen, J.; Heermance, R.V. Late Oligocene–Early Miocene initiation of shortening in the Southwestern Chinese Tian Shan: Implications for Neogene shortening rate variations. Earth Planet. Sci. Lett. 2006, 247, 70–81. [Google Scholar] [CrossRef]
- Allen, M.B.; Vincent, S.J. Fault reactivation in the Junggar region, northwest China: The role of basement structures during Mesozoic-Cenozoic compression. J. Geol. Soc. 1997, 154, 151–155. [Google Scholar] [CrossRef]
- Charvet, J.; Shu, L.S.; Laurent-Charvet, S. Paleozoic structural and geodynamic evolution of eastern Tianshan (NW China): Welding of the Tarim and Junggar plates. Epis. J. Int. Geosci. 2007, 30, 162–186. [Google Scholar]
- Buslov, M.; De Grave, J.; Bataleva, E.; Batalev, V.Y. Cenozoic tectonic and geodynamic evolution of the Kyrgyz Tien Shan Mountains: A review of geological, thermochronological and geophysical data. J. Asian Earth Sci. 2007, 29, 205–214. [Google Scholar] [CrossRef]
- Wang, M.; Shen, Z.K. Present-day crustal deformation of continental China derived from GPS and its tectonic implications. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018774. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.; Gan, W.; Shen, C.; Xiao, G.; Liu, J.; Chen, W.; Ding, X.; Zhou, D. Three-dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements. J. Geophys. Res. Solid Earth 2013, 118, 5722–5732. [Google Scholar] [CrossRef]
- Métivier, F.; Gaudemer, Y. Mass transfer between eastern Tien Shan and adjacent basins (central Asia): Constraints on regional tectonics and topography. Geophys. J. Int. 1997, 128, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Bullen, M.; Burbank, D.; Garver, J. Building the northern Tien Shan: Integrated thermal, structural, and topographic constraints. J. Geol. 2003, 111, 149–165. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Piper, J.D.; Peng, S.; Liu, T.; Li, Z.; Wang, Q.; Zhu, R. Magnetostratigraphic study of the Kuche Depression, Tarim Basin, and Cenozoic uplift of the Tian Shan range, western China. Earth Planet. Sci. Lett. 2006, 251, 346–364. [Google Scholar] [CrossRef] [Green Version]
- Ji, J.; Luo, P.; White, P.; Jiang, H.; Gao, L.; Ding, Z. Episodic uplift of the Tianshan Mountains since the late Oligocene constrained by magnetostratigraphy of the Jingou River section, in the southern margin of the Junggar Basin, China. J. Geophys. Res. Solid Earth 2008, 113, B05102. [Google Scholar] [CrossRef]
- Charreau, J.; Chen, Y.; Gilder, S.; Dominguez, S.; Avouac, J.-P.; Sen, S.; Sun, D.; Li, Y.; Wang, W.-M. Magnetostratigraphy and rock magnetism of the Neogene Kuitun He section (northwest China): Implications for Late Cenozoic uplift of the Tianshan mountains. Earth Planet. Sci. Lett. 2005, 230, 177–192. [Google Scholar] [CrossRef] [Green Version]
- Charreau, J.; Gilder, S.; Chen, Y.; Dominguez, S.; Avouac, J.-P.; Sen, S.; Jolivet, M.; Li, Y.; Wang, W. Magnetostratigraphy of the Yaha section, Tarim Basin (China): 11 Ma acceleration in erosion and uplift of the Tian Shan mountains. Geology 2006, 34, 181–184. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Zhang, Z. Syntectonic growth strata and implications for late Cenozoic tectonic uplift in the northern Tian Shan, China. Tectonophysics 2009, 463, 60–68. [Google Scholar] [CrossRef]
- Daëron, M.; Avouac, J.P.; Charreau, J. Modeling the shortening history of a fault tip fold using structural and geomorphic records of deformation. J. Geophys. Res. Solid Earth 2007, 112, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Chen, J.; Thompson, J.A.; Burbank, D.W.; Yang, X. Quantification of three-dimensional folding using fluvial terraces: A case study from the Mushi anticline, northern margin of the Chinese Pamir. J. Geophys. Res. Solid Earth 2013, 118, 4628–4647. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Chen, J.; Thompson, J.A.; Burbank, D.W.; Yang, H. Hinge-migrated fold-scarp model based on an analysis of bed geometry: A study from the Mingyaole anticline, southern foreland of Chinese Tian Shan. J. Geophys. Res. Solid Earth 2015, 120, 6592–6613. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Burbank, D.W.; Li, Y.; Liu, Y. Late Cenozoic structural and stratigraphic evolution of the northern Chinese Tian Shan foreland. Basin Res. 2010, 22, 249–269. [Google Scholar] [CrossRef]
- Lu, H.; Wang, Z.; Zhang, T.; Zhao, J.; Zheng, X.; Li, Y. Latest Miocene to Quaternary deformation in the southern Chaiwopu Basin, northern Chinese Tian Shan foreland. J. Geophys. Res. Solid Earth 2015, 120, 8656–8671. [Google Scholar] [CrossRef] [Green Version]
- Lü, L.; Sun, J.; Jia, Y.; Wu, L. Late Cenozoic thrust propagation within the Keping fold-and-thrust belt along the southern foreland of Chinese Tian Shan: Evidence from apatite (UTh)/He results. Tectonophysics 2021, 814, 228966. [Google Scholar] [CrossRef]
- Allen, M.; Windley, B.; Chi, Z.; Zhong-Yan, Z.; Guang-Rei, W. Basin evolution within and adjacent to the Tien Shan Range, NW China. J. Geol. Soc. 1991, 148, 369–378. [Google Scholar] [CrossRef]
- Nishidai, T.; Berry, J. Geological interpretation and hydrocarbon potential of the Turpan Basin (NW China) from satellite imagery. In Proceedings of the Thematic Conference on Geologic Remote Sensing, 8th, Denver, CO, USA, 29 April–2 May 1991. [Google Scholar]
- Huang, W.; Yang, X.; Li, S.; Yang, H. The late Quaternary activity characteristics of the strike-slip faults in the Tianshan orogenic belt: A case study of Kaiduhe Fault. Seismol. Geol. 2018, 40, 1040–1058. [Google Scholar]
- Wang, S.; Jiao, R.; Ren, Z.; Wu, C.; Ren, G.; Zhang, H.; Lei, Q. Active thrusting in an intermontane basin: The Kumysh Fault, eastern Tian Shan. Tectonics 2020, 39, e2019TC006029. [Google Scholar] [CrossRef]
- Yang, X.; Wu, C.; Li, Z.; Wang, W.; Chen, G.; Duan, L. Late Quaternary Kinematics and Deformation Rate of the Huoyanshan Structure Derived from Deformed River Terraces in the South Piedmont of the Eastern Chinese Tian Shan. Front. Earth Sci. 2021, 9, 649011. [Google Scholar] [CrossRef]
- Shao, L.; Stattegger, K.; Li, W.; Haupt, B.J. Depositional style and subsidence history of the Turpan Basin (NW China). Sediment. Geol. 1999, 128, 155–169. [Google Scholar] [CrossRef]
- Carroll, A.; Graham, S.; Hendrix, M.; Chu, J.; McKnight, C.; Feng, Y.; Liang, Y.; Xiao, X.; Zhao, M.; Tang, Y. Characteristics of sedimentation in Late Paleozoic Junggar basin and its basement. In On Tectonic Evolution of the Southern Margin of the Paleoasian Composite Megasuture Zone; Beijing Science and Technic Publishing House: Beijing, China, 1991; pp. 136–150. [Google Scholar]
- Amos, C.B.; Burbank, D.W.; Nobes, D.C.; Read, S.A. Geomorphic constraints on listric thrust faulting: Implications for active deformation in the Mackenzie Basin, South Island, New Zealand. J. Geophys. Res. Solid Earth 2007, 112, B03S11. [Google Scholar] [CrossRef] [Green Version]
- Trexler, C.C.; Cowgill, E.; Spencer, J.Q.; Godoladze, T. Rate of active shortening across the southern thrust front of the Greater Caucasus in western Georgia from kinematic modeling of folded river terraces above a listric thrust. Earth Planet. Sci. Lett. 2020, 544, 116362. [Google Scholar] [CrossRef]
- Aitken, M.J. Physics and Archaeology; CERN-VIDEO-C-204-B; CERN: Meyrin, Switzerland, 1995. [Google Scholar]
- Aitken, M.J. Introduction to Optical Dating: The Dating of Quaternary Sediments by the Use of Photon-Stimulated Luminescence; Clarendon Press: Oxford, UK, 1998. [Google Scholar]
- Prescott, J.R.; Hutton, J.T. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations. Radiat. Meas. 1994, 23, 497–500. [Google Scholar] [CrossRef]
- Chen, K.G.C.; Augier, R.; Chen, Y.; Mei, Y.H.; Lin, W.; Wang, Q.C. A multidiscipline method of geological survey, seismic line and gravity measurement applied to fold-and-thrust belt: A case study along the Hutubi River in the northern piedmont of Tianshan. Chin. J. Geophys. 2014, 57, 75–87. [Google Scholar]
- Gonzalez-Mieres, R.; Suppe, J. Relief and shortening in detachment folds. J. Struct. Geol. 2006, 28, 1785–1807. [Google Scholar] [CrossRef]
- Gonzalez-Mieres, R.; Suppe, J. Shortening Histories in Active Detachment Folds Based on Area-of-Relief Methods; American Association of Petroleum Geologists: Tulsa, OK, USA, 2011. [Google Scholar]
- Groshong, R.H., Jr.; Withjack, M.O.; Schlische, R.W.; Hidayah, T.N. Bed length does not remain constant during deformation: Recognition and why it matters. J. Struct. Geol. 2012, 41, 86–97. [Google Scholar] [CrossRef]
- Moretti, I.; Callot, J.P. Area, length and thickness conservation: Dogma or reality? J. Struct. Geol. 2012, 41, 64–75. [Google Scholar] [CrossRef]
- Schlische, R.W.; Groshong Jr, R.H.; Withjack, M.O.; Hidayah, T.N. Quantifying the geometry, displacements, and subresolution deformation in thrust-ramp anticlines with growth and erosion: From models to seismic-reflection profile. J. Struct. Geol. 2014, 69, 304–319. [Google Scholar] [CrossRef]
- Groshong, R.H., Jr. Quality control and risk assessment of seismic profiles using area-depth-strain analysis. Interpretation 2015, 3, SAA1–SAA15. [Google Scholar] [CrossRef]
- Eichelberger, N.W.; Hughes, A.N.; Nunns, A.G. Combining multiple quantitative structural analysis techniques to create robust structural interpretations. Interpretation 2015, 3, SAA89–SAA104. [Google Scholar] [CrossRef]
- Wang, W.; Yin, H.; Jia, D.; Wu, Z.; Wu, C.; Zhou, P. Calculating detachment depth and dip angle in sedimentary wedges using the area–depth graph. J. Struct. Geol. 2018, 107, 1–11. [Google Scholar] [CrossRef]
- Qiu, J.; Rao, G.; Wang, X.; Yang, D.; Xiao, L. Effects of fault slip distribution on the geometry and kinematics of the southern Junggar fold-and-thrust belt, northern Tian Shan. Tectonophysics 2019, 772, 228209. [Google Scholar] [CrossRef]
- Gao, L.; Rao, G.; Tang, P.; Qiu, J.; Peng, Z.; Pei, Y.; Yu, Y.; Zhao, B.; Wang, R. Structural development at the leading edge of the salt-bearing Kuqa fold-and-thrust belt, southern Tian Shan, NW China. J. Struct. Geol. 2020, 140, 104184. [Google Scholar] [CrossRef]
- Epard, J.-L.; Groshong, R.H., Jr. Excess area and depth to detachment. AAPG Bull. 1993, 77, 1291–1302. [Google Scholar]
- Groshong, R.H., Jr.; Epard, J.-L. The role of strain in area-constant detachment folding. J. Struct. Geol. 1994, 16, 613–618. [Google Scholar] [CrossRef]
- Erslev, E.A. Trishear fault-propagation folding. Geology 1991, 19, 617–620. [Google Scholar] [CrossRef]
- Zehnder, A.T.; Allmendinger, R.W. Velocity field for the trishear model. J. Struct. Geol. 2000, 22, 1009–1014. [Google Scholar] [CrossRef]
- Allmendinger, R.W. Inverse and forward numerical modeling of trishear fault-propagation folds. Tectonics 1998, 17, 640–656. [Google Scholar] [CrossRef]
- Allmendinger, R.W.; Zapata, T.; Manceda, R.; Dzelalija, F. Trishear Kinematic Modeling of Structures, with Examples from the Neuqun Basin, Argentina. AAPG Mem. 2004, 82, 356–371. [Google Scholar]
- MathWorks, T. Global Optimization Toolbox User’s Guide; The MathWorks Inc.: Natick, MA, USA, 2013. [Google Scholar]
- Suppe, J. Geometry and kinematics of fault-bend folding. Am. J. Sci. 1983, 283, 684–721. [Google Scholar]
- Suppe, J.; Medwedeff, D.A. Geometry and kinematics of fault-propagation folding. Eclogae Geol. Helv. 1990, 83, 409–454. [Google Scholar]
- Hardy, S.; Poblet, J. Geometric and numerical model of progressive limb rotation in detachment folds. Geology 1994, 22, 371–374. [Google Scholar]
- Suppe, J.; Connors, C.D.; Zhang, Y. Shear Fault-Bend Folding; American Association of Petroleum Geologists: Tulsa, OK, USA, 2004. [Google Scholar]
- Suppe, J.; Sàbat, F.; Munoz, J.A.; Poblet, J.; Roca, E.; Vergés, J. Bed-by-bed fold growth by kink-band migration: Sant Llorenç de Morunys, eastern Pyrenees. J. Struct. Geol. 1997, 19, 443–461. [Google Scholar]
- Seeber, L.; Sorlien, C.C. Listric thrusts in the western Transverse Ranges, California. Geol. Soc. Am. Bull. 2000, 112, 1067–1079. [Google Scholar]
- Mooney, C.Z. Monte Carlo Simulation; Sage: Thousand Oaks, CA, USA, 1997. [Google Scholar]
- Etris, E.L.; Crabtree, N.J.; Dewar, J.; Pickford, S. True depth conversion: More than a pretty picture. CSEG Rec. 2001, 26, 11–22. [Google Scholar]
- Torvela, T.; Bond, C.E. Do experts use idealised structural models? Insights from a deepwater fold–thrust belt. J. Struct. Geol. 2011, 33, 51–58. [Google Scholar] [CrossRef]
- Totake, Y.; Butler, R.W.; Bond, C.E. Structural validation as an input into seismic depth conversion to decrease assigned structural uncertainty. J. Struct. Geol. 2017, 95, 32–47. [Google Scholar] [CrossRef] [Green Version]
- Mohadjer, S.; Ehlers, T.A.; Bendick, R.; Mutz, S.G. Review of GPS and Quaternary fault slip rates in the Himalaya-Tibet orogen. Earth-Sci. Rev. 2017, 174, 39–52. [Google Scholar] [CrossRef]
- Willett, S.D.; Brandon, M.T. On steady states in mountain belts. Geology 2002, 30, 175–178. [Google Scholar] [CrossRef]
- Li, Z.; Liu-Zeng, J.; Jia, D.; Sun, C.; Wang, W.; Yuan, Z.; Liu, B. Quaternary activity of the range front thrust system in the Longmen Shan piedmont, China, revealed by seismic imaging and growth strata. Tectonics 2016, 35, 2807–2827. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Yang, X.; Huang, W.; Yiliyaer, Y. Quaternary deformation of the Hejing thrust-fold belt on northern margin of the Yanqi Basin, southern Tianshan. Seismol. Geol. 2012, 3, 240–253. [Google Scholar]
- Li, Y.; Zhou, R.-J.; Densmore, A.; Ellis, M.; Li, B. Sedimentary responses to Late Cenozoic thrusting and strike-slipping of Longmen Shan along eastern margin of Tibetan Plateau. Acta Sedimentol. Sin. 2006, 24, 153. [Google Scholar]
- Zhao, Z.; Qiao, Y.; Wang, Y.; Fu, J.; Wang, S.; Li, C.; Yao, H.; Jiang, F. Magnetostratigraphic and paleoclimatic studies on the red earth formation from the Chengdu Plain in Sichuan province, China. Sci. China Ser. D Earth Sci. 2007, 50, 927–935. [Google Scholar] [CrossRef]
- Kong, P.; Zheng, Y.; Fu, B. Cosmogenic nuclide burial ages and provenance of Late Cenozoic deposits in the Sichuan Basin: Implications for Early Quaternary glaciations in east Tibet. Quat. Geochronol. 2011, 6, 304–312. [Google Scholar] [CrossRef]
- Johnson, G.D.; Raynolds, R.G.; Burbank, D.W. Late Cenozoic Tectonics and Sedimentation in the North-Western Himalayan Foredeep: I. Thrust Ramping and Associated Deformation in the Potwar Region. In Foreland Basins; Blackwell Publishing: Oxford, UK, 1986; Volume 8, pp. 273–291. [Google Scholar]
- Baker, D.M.; Lillie, R.J.; Yeats, R.S.; Johnson, G.D.; Yousuf, M.; Zamin, A.S.H. Development of the Himalayan frontal thrust zone: Salt Range, Pakistan. Geology 1988, 16, 3–7. [Google Scholar] [CrossRef]
- Wang, P.; Scherler, D.; Liu-Zeng, J.; Mey, J.; Avouac, J.-P.; Zhang, Y.; Shi, D. Tectonic control of Yarlung Tsangpo Gorge revealed by a buried canyon in Southern Tibet. Science 2014, 346, 978–981. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Powell, C.M.; An, Z.; Zhou, J.; Dong, G. Pliocene uplift of the northern Tibetan Plateau. Geology 2000, 28, 715–718. [Google Scholar] [CrossRef]
- Tapponnier, P.; Meyer, B.; Avouac, J.P.; Peltzer, G.; Gaudemer, Y.; Guo, S.; Xiang, H.; Yin, K.; Chen, Z.; Cai, S. Active thrusting and folding in the Qilian Shan, and decoupling between upper crust and mantle in northeastern Tibet. Earth Planet. Sci. Lett. 1990, 97, 382–403. [Google Scholar] [CrossRef]
- Métivier, F.; Gaudemer, Y.; Tapponnier, P.; Meyer, B. Northeastward growth of the Tibet plateau deduced from balanced reconstruction of two depositional areas: The Qaidam and Hexi Corridor basins, China. Tectonics 1998, 17, 823–842. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.J.; Zhang, P.Z.; Ge, W.P.; Molnar, P.; Zhang, H.P.; Yuan, D.Y.; Liu, J.H. Late Quaternary slip rate of the South Heli Shan Fault (northern Hexi Corridor, NW China) and its implications for northeastward growth of the Tibetan Plateau. Tectonics 2013, 32, 271–293. [Google Scholar] [CrossRef]
Terrace | Deformed Height (1σ) | Undeformed Height (1σ) | Surface Uplift (1σ) | Horizontal Shortening (1σ) | Age of Terrace (1σ) | Horizontal Shortening Rate (1σ) |
---|---|---|---|---|---|---|
T4 | 93.5 ± 1.2 m | 40.9 ± 0.9 m | 56 ± 1.5 m | 81.7 ± 2.3 m | 51.7 ± 5.1 ka | 1.6 ± 0.2 mm/a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Li, Z.; Wang, W.; Zhang, P.; Wu, C.; Chen, G.; Duan, L.; Wu, X.; Liu, K. Quaternary Crustal Shortening of the Houyanshan Structure in the Eastern Chinese Tian Shan: Constrained from Geological and Geomorphological Analyses. Remote Sens. 2023, 15, 1603. https://doi.org/10.3390/rs15061603
Yang X, Li Z, Wang W, Zhang P, Wu C, Chen G, Duan L, Wu X, Liu K. Quaternary Crustal Shortening of the Houyanshan Structure in the Eastern Chinese Tian Shan: Constrained from Geological and Geomorphological Analyses. Remote Sensing. 2023; 15(6):1603. https://doi.org/10.3390/rs15061603
Chicago/Turabian StyleYang, Xue, Zhigang Li, Weitao Wang, Peizhen Zhang, Chuanyong Wu, Gan Chen, Lei Duan, Xiancan Wu, and Kang Liu. 2023. "Quaternary Crustal Shortening of the Houyanshan Structure in the Eastern Chinese Tian Shan: Constrained from Geological and Geomorphological Analyses" Remote Sensing 15, no. 6: 1603. https://doi.org/10.3390/rs15061603
APA StyleYang, X., Li, Z., Wang, W., Zhang, P., Wu, C., Chen, G., Duan, L., Wu, X., & Liu, K. (2023). Quaternary Crustal Shortening of the Houyanshan Structure in the Eastern Chinese Tian Shan: Constrained from Geological and Geomorphological Analyses. Remote Sensing, 15(6), 1603. https://doi.org/10.3390/rs15061603