Mesoscale Eddy Chain Structures in the Black Sea and Their Interaction with River Plumes: Numerical Modeling and Satellite Observations
Abstract
:1. Introduction
1.1. Mesoscale Eddies in the Black Sea
1.2. Manifestation of Eddy Chains and Their Behavior in the Black Sea
2. Study Area
3. Data and Methods
3.1. Hydrodynamic and Lagrangian Particle-Tracking Models
3.2. Spectral Methods
4. Results
4.1. Phenomenon and Origing of Eddy Chain Structures
4.2. Eddy Chain Formation and Eddy Merging
4.3. Spectral Analysis of Eddy Chains
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hayward, T.L.; Mantyla, A.W. Physical, chemical and biological structure of a coastal eddy near Cape Mendocino. J. Mar. Res. 1990, 48, 825–850. [Google Scholar] [CrossRef]
- Doglioli, A.M.; Griffa, A.; Magaldi, M.G. Numerical study of a coastal current on a steep slope in presence of a cape: The case of the Promontorio di Portofino. J. Geophys. Res. Oceans 2004, 109, C12033. [Google Scholar] [CrossRef] [Green Version]
- Korotenko, K.A. Effects of mesoscale eddies on behavior of an oil spill resulting from an accidental deepwater blowout in the Black Sea: An assessment of the environmental impacts. PeerJ 2018, 6, e5448. [Google Scholar] [CrossRef] [Green Version]
- Lobel, P.S.; Robinson, A.R. Transport and entrapment of fish larvae by ocean mesoscale eddies and currents in Hawaiian waters. Deep Sea Res. Part A 1986, 33, 483–500. [Google Scholar] [CrossRef]
- Murdoch, R.C. The effects of a headland eddy on surface macro-zooplankton assemblages north of Otago Peninsula, New Zealand. Estuar. Coast. Shelf Sci. 1989, 29, 361–383. [Google Scholar] [CrossRef]
- Chiswell, S.M.; Roemmich, D. The East Cape Current and two eddies: A mechanism for larval retention? N. Z. J. Mar. Freshwater Res. 1998, 32, 385–397. [Google Scholar] [CrossRef]
- Roughan, M.; Mace, A.J.; Largier, J.L.; Morgan, S.G.; Fisher, J.L.; Carter, M.L. Subsurface recirculation and larval retention in the lee of a small headland: A variation on the upwelling shadow theme. J. Geophys. Res. Oceans 2005, 110, C10027. [Google Scholar] [CrossRef] [Green Version]
- Sentchev, A.; Korotenko, K. Modelling distribution of flounder larvae in the eastern English Channel: Sensitivity to physical forcing and biological behavior. Mar. Ecol.-Prog. Ser. 2007, 347, 233–245. [Google Scholar] [CrossRef] [Green Version]
- John, M.A.; Pond, S. Tidal plume generation around a promontory: Effects on nutrient concentrations and primary productivity. Cont. Shelf Res. 1992, 12, 339–354. [Google Scholar] [CrossRef]
- Mityagina, M.I.; Lavrova, O.Y.; Karimova, S.S. Multi-sensor survey of seasonal variability in coastal eddy and internal wave signatures in the north-eastern Black Sea. Int. J. Remote Sens. 2010, 31, 4779–4790. [Google Scholar] [CrossRef]
- Karimova, S. Eddy statistics for the Black Sea by visible and infrared remote sensing. In Remote Sensing of the Changing Oceans; Danling, T., Ed.; Springer: Berlin, Germany, 2011; pp. 61–75. [Google Scholar]
- Karimova, S. Non-stationary eddies in the Black Sea as seen by satellite infrared and visible imagery. Int. J. Remote Sens. 2013, 34, 8503–8517. [Google Scholar] [CrossRef]
- Ovchinnikov, I.M.; Titov, V.B. Anticyclonic vorticity of currents in the offshore zone of the Black Sea. Dokl. Akad. Nauk. SSSR 1990, 314, 1236–1239. [Google Scholar]
- Oguz, T.; Malanotte-Rizzoli, P.; Aubrey, D. Wind and thermohaline circulation of the Black Sea driven by yearly mean climatological forcing. J. Geophys. Res. Oceans 1995, 100, 6845–6863. [Google Scholar] [CrossRef]
- Demyshev, S.G.; Dymova, O.A. Analyzing intra-annual variations in the energy characteristics of circulation in the Black Sea. Izv. Atmos. Ocean. Phys. 2016, 52, 386–393. [Google Scholar] [CrossRef]
- Sur, H.I.; Ozsoy, E.; Ilyin, Y.P.; Unluata, U. Coastal-deep ocean interactions in the Black Sea and their ecological/environmental impacts. J. Mar. Syst. 1996, 7, 293–320. [Google Scholar] [CrossRef]
- Oguz, T.; Besiktepe, S. Observations on the Rim Current structure, CIW formation and transport in the western Black Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 1999, 46, 1733–1753. [Google Scholar] [CrossRef]
- Stanev, E.V.; Rachev, N.H. Numerical study on the planetary Rossby modes in the Black Sea. J. Mar. Syst. 1999, 21, 283–306. [Google Scholar] [CrossRef]
- Staneva, J.V.; Dietrich, D.E.; Stanev, E.V.; Bowman, M.J. Rim current and coastal eddy mechanisms in an eddy-resolving Black Sea general circulation model. J. Mar. Syst. 2001, 31, 137–157. [Google Scholar] [CrossRef] [Green Version]
- Demyshev, S.G. A numerical model of online forecasting Black Sea currents. Izv. Atmos. Ocean. Phys. 2012, 48, 120–132. [Google Scholar] [CrossRef]
- Ginzburg, A.I.; Kostianoy, A.G.; Soloviev, D.M.; Stanichny, S.V. Remotely sensed coastal/deep-basin water exchange processes in the Black Sea surface layer. Elsevier Oceanogr. Ser. 2000, 63, 273–287. [Google Scholar]
- Zatsepin, A.G.; Ginzburg, A.I.; Kostianoy, A.G.; Kremenetskiy, V.V.; Krivosheya, V.G.; Stanichny, S.V.; Poulain, P.M. Observations of Black Sea mesoscale eddies and associated horizontal mixing. J. Geophys. Res. Oceans 2003, 108, 3246. [Google Scholar] [CrossRef]
- Korotaev, G.; Oguz, T.; Nikiforov, A.; Koblinsky, C. Seasonal, interannual, and mesoscale variability of the Black Sea upper layer circulation derived from altimeter data. J. Geophys. Res. Oceans 2003, 108, 3122. [Google Scholar] [CrossRef]
- Sur, H.I.; Ilyin, Y.P. Evolution of satellite derived mesoscale thermal patterns in the Black Sea. Prog. Oceanogr. 1997, 39, 109–151. [Google Scholar] [CrossRef]
- Oguz, T.; Deshpande, A.G.; Malanotte-Rizzoli, P. The role of mesoscale processes controlling biological variability in the Black Sea coastal waters: Inferences from SeaWIFS-derived surface chlorophyll field. Cont. Shelf Res. 2002, 22, 1477–1492. [Google Scholar] [CrossRef]
- Korotenko, K.A. Modeling processes of the protrusion of near-coastal anticyclonic eddies through the Rim Current in the Black Sea. Oceanology 2017, 57, 394–401. [Google Scholar] [CrossRef]
- Kubryakov, A.A.; Stanichny, S.V. Mesoscale eddies in the Black Sea from satellite altimetry data. Oceanology 2015, 55, 56–67. [Google Scholar] [CrossRef]
- Sadighrad, E.; Fach, B.A.; Arkin, S.S.; Salihoglu, B.; Husrevoglu, Y.S. Mesoscale eddies in the Black Sea: Characteristics and kinematic properties in a high-resolution ocean model. J. Mar. Syst. 2021, 223, 103613. [Google Scholar] [CrossRef]
- Pattiaratchi, C.B.; Hammond, T.M.; Collins, M.B. Mapping of tidal currents in the vicinity of an offshore sandbank, using remotely sensed imagery. Int. J. Remote Sens. 1986, 7, 1015–1029. [Google Scholar] [CrossRef]
- Farmer, D.; Pawlowicz, R.; Jiang, R. Tilting separation flows: A mechanism for intense vertical mixing in the coastal ocean. Dyn. Atmos. Oceans 2002, 36, 43–58. [Google Scholar] [CrossRef]
- McCabe, R.M.; MacCready, P.; Pawlak, G. Form drag due to flow separation at a headland. J. Phys. Oceanogr. 2006, 36, 2136–2152. [Google Scholar] [CrossRef]
- Cushman-Roisin, B. Introduction to Geophysical Fluid Dynamics; Prentice Hall: Hoboken, NJ, USA, 1994. [Google Scholar]
- Boyer, D.L.; Davies, P.A.; Holland, W.R.; Biolley, F.; Honji, H. Stratified rotating flow over and around isolated three-dimensional topography. Philos. Trans. R. Soc. A 1987, 322, 213–241. [Google Scholar]
- Davies, P.A.; Besley, P.; Boyer, D.L. An experimental study of flow past a triangular cape in a linearly stratified fluid. Dyn. Atmos. Oceans 1990, 14, 497–528. [Google Scholar] [CrossRef]
- Cenedese, C.L.; Whitehead, J.A. Eddy shedding from a boundary current around a cape over a sloping bottom. J. Phys. Oceanogr. 2000, 30, 1514–1531. [Google Scholar] [CrossRef]
- Shchepetkin, A.F.; McWilliams, J.C. The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography following-coordinate oceanic model. Ocean Model. 2005, 9, 347–404. [Google Scholar] [CrossRef]
- Wang, J.; Bethel, B.J.; Dong, C.; Li, C.; Cao, Y. Numerical Simulation and Observational Data Analysis of Mesoscale Eddy Effects on Surface Waves in the South China Sea. Remote Sens. 2022, 14, 1463. [Google Scholar] [CrossRef]
- Magaldi, M.G.; Ozgokmen, T.M.; Griffa, A.; Chassignet, E.P.; Iskandarani, M.; Peters, H. Turbulent flow regimes behind a coastal cape in a stratified and rotating environment. Ocean Model. 2008, 25, 65–82. [Google Scholar] [CrossRef]
- Korotenko, K.; Osadchiev, A.; Melnikov, V. Mesoscale Eddies in the Black Sea and Their Impact on River Plumes: Numerical Modeling and Satellite Observations. Remote Sens. 2022, 14, 4149. [Google Scholar] [CrossRef]
- Besiktepe, S.; Lozano, C.J.; Robinson, A.R. On the summer mesoscale variability of the Black Sea. J. Mar. Res. 2001, 59, 475–515. [Google Scholar] [CrossRef]
- Zatsepin, A.G.; Baranov, V.I.; Kondrashov, A.A.; Korzh, A.O.; Kremenetskiy, V.V.; Ostrovskii, A.G.; Soloviev, D.M. Submesoscale eddies at the Caucasus Black Sea shelf and the mechanisms of their generation. Oceanology 2011, 51, 554–567. [Google Scholar] [CrossRef]
- Korotkina, O.A.; Zavialov, P.O.; Osadchiev, A.A. Synoptic variability of currents in the coastal waters of Sochi. Oceanology 2014, 54, 545–556. [Google Scholar] [CrossRef]
- Zavialov, I.B.; Osadchiev, A.A.; Sedakov, R.O.; Barnier, B.; Molines, J.-M.; Belokopytov, V.N. Water exchange between the Sea of Azov and the Black Sea through the Kerch Strait. Ocean Sci. 2020, 16, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Osadchiev, A.; Gordey, A.; Barymova, A.; Sedakov, R.; Rogozhin, V.; Zhiba, R.; Dbar, R. Lateral border of a small river plume: Salinity structure, instabilities and mass transport. Remote Sens. 2022, 14, 3818. [Google Scholar] [CrossRef]
- Sedakov, R.; Osadchiev, A.; Barnier, B.; Molines, J.-M.; Colombo, P. Large chocked lagoon as a barrier for river–sea flux of dissolved pollutants: Case study of the Azov Sea and the Black Sea. Mar. Pollut. Bull. 2023, 187, 114496. [Google Scholar] [CrossRef] [PubMed]
- Korshenko, E.; Panasenkova, I.; Osadchiev, A.; Belyakova, P.; Fomin, V. Synoptic and seasonal variability of small river plumes in the northeastern part of the Black Sea. Water 2023, 15, 721. [Google Scholar] [CrossRef]
- Osadchiev, A.; Barymova, A.; Sedakov, R.; Zhiba, R.; Dbar, R. Spatial structure, short-temporal variability, and dynamical features of small river plumes as observed by aerial drones: Case study of the Kodor and Bzyp river plumes. Remote Sens. 2020, 12, 3079. [Google Scholar] [CrossRef]
- Korshenko, E.A.; Zhurbas, V.M.; Osadchiev, A.A.; Belyakova, P.A. Fate of river-borne floating litter during the flooding event in the northeastern part of the Black Sea in October 2018. Mar. Pollut. Bull. 2020, 160, 111678. [Google Scholar] [CrossRef]
- Liu, F.; Liu, Y.; Tang, S.; Li, Q. Oceanic Kármán Vortex Streets in the Luzon Strait in the Lee of Didicas Island from Multiple Satellite Missions. Remote Sens. 2022, 14, 4136. [Google Scholar] [CrossRef]
- Bowman, M.J.; Dietrich, D.E.; Lin, C.A. Observations and Modeling of Mesoscale Ocean Circulation Near a Small Island. In Small Islands Marine Science and Sustainable Development; Maul, G.A., Ed.; American Geophysical Union: Berlin, Germany, 1996; pp. 18–37. [Google Scholar]
- Dong, C.; McWilliams, J.C.; Shchepetkin, A.F. Island Wakes in Deep Water. J. Phys. Oceanogr. 2007, 37, 962–981. [Google Scholar] [CrossRef]
- Chang, M.-H.; Jan, S.; Liu, C.-L.; Cheng, Y.-H.; Mensah, V. Observations of island wakes at high Rossby numbers: Evolution of submesoscale vortices and free shear layers. J. Phys. Oceanogr. 2019, 49, 2997–3016. [Google Scholar] [CrossRef]
- Kostianoy, A.G.; Ginzburg, A.I.; Sheremet, N.A.; Lavrova, O.Y.; Mityagina, M.I. Small-scale eddies in the Black Sea. Sovr. Probl. Dist. Zond. Zemli Kosm. 2021, 7, 248–259. [Google Scholar]
- Dietrich, D.E.; Lin, C.A.; Mestas-Nunez, A.; Ko, D.S. A high resolution numerical study of Gulf of Mexico fronts and eddies. Meteorol. Atmos. Phys. 1997, 64, 187–201. [Google Scholar] [CrossRef]
- Korotenko, K.A. Predicting the behavior of an oil spill in the Black Sea resulting from accidental offshore deepwater blowout. J. Sustain. Energy Eng. 2018, 6, 48–83. [Google Scholar] [CrossRef]
- Korotenko, K.A.; Bowman, M.J.; Dietrich, D.E. High-resolution numerical model for predicting the transport and dispersal of oil spilled in the Black Sea. Terr. Atmos. Ocean. Sci. 2010, 21, 123–136. [Google Scholar] [CrossRef] [Green Version]
- Korotenko, K.A. Modeling mesoscale circulation of the Black Sea. Oceanology 2015, 55, 820–826. [Google Scholar] [CrossRef]
- Jaoshvili, S. The Rivers of the Black Sea; Khomeriki, I., Gigineishvili, G., Kordzadze, A., Eds.; Technical Report No. 71; European Environmental Agency: Copenhagen, Denmark, 2002. [Google Scholar]
- Gibson, M.M.; Launder, B.E. Ground effects on pressure fluctuations in the atmospheric boundary layer. J. Fluid Mech. 1978, 86, 491–511. [Google Scholar] [CrossRef]
- Korotenko, K.A. Modeling turbulent transport of matter in the ocean surface layer. Oceanology 1992, 32, 5–13. [Google Scholar]
- Tseng, Y.-H.; Dietrich, D.E.; Ferziger, J.H. Regional circulation of the Monterey Bay region: Hydrostatic versus nonhydrostatic modeling. J. Geophys. Res. Oceans 2005, 110, C09015. [Google Scholar] [CrossRef] [Green Version]
- Ozsoy, E.; Unluata, U. Oceanography of the Black Sea: A review of some recent results. Earth Sci. Rev. 1997, 42, 231–272. [Google Scholar] [CrossRef]
- Zatsepin, A.; Kubryakov, A.; Aleskerova, A.; Elkin, D.; Kukleva, O. Physical mechanisms of submesoscale eddies generation: Evidences from laboratory modeling and satellite data in the Black Sea. Ocean Dyn. 2019, 69, 253–266. [Google Scholar] [CrossRef]
- Kubryakov, A.A.; Mizyuk, A.I.; Puzina, O.S.; Senderov, M.V. Three-dimensional identification of the Black Sea mesoscale eddies based on the numerical model NEMO calculations. Prog. Oceanogr. 2018, 34, 20–28. [Google Scholar]
- Oguz, T.; La Violette, P.E.; Unluata, U. The upper layer circulation of the Black Sea: Its variability as inferred from hydrographic and satellite observations. J. Geophys. Res. Oceans 1992, 97, 12569–12584. [Google Scholar] [CrossRef]
- Chenillat, F.; Franks, P.J.; Capet, X.; Riviere, P.; Grima, N.; Blanke, B.; Combes, V. Eddy properties in the Southern California current system. Ocean Dyn. 2018, 68, 761–777. [Google Scholar] [CrossRef] [Green Version]
- Lihan, T.; Saitoh, S.-I.; Iida, T.; Hirawake, T.; Iida, K. Satellite-measured temporal and spatial variability of the Tokachi River plume. Estuar. Coast. Shelf Sci. 2008, 78, 237–249. [Google Scholar] [CrossRef]
- Korotenko, K.A.; Osadchiev, A.A.; Zavialov, P.O.; Kao, R.-C.; Ding, C.-F. Effects of bottom topography on dynamics of river discharges in tidal regions: Case study of twin plumes in Taiwan Strait. Ocean Sci. 2014, 10, 865–879. [Google Scholar] [CrossRef] [Green Version]
- Osadchiev, A.A.; Korotenko, K.A.; Zavialov, P.O.; Chiang, W.-S.; Liu, C.-C. Transport and bottom accumulation of fine river sediments under typhoon conditions and associated submarine landslides: Case study of the Peinan River, Taiwan. Nat. Hazards Earth Syst. Sci. 2016, 16, 41–54. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Xu, D.; Bai, Y.; Pan, D.; Chen, C.-T.A.; Chen, X.; Gong, F. Eddy-entrained Pearl River plume into the oligotrophic basin 1180 of the South China Sea. Cont. Shelf Res. 2016, 124, 117–124. [Google Scholar] [CrossRef]
- Osadchiev, A.A. Spreading of the Amur river plume in the Amur Liman, the Sakhalin Gulf, and the Strait of Tartary. Oceanology 2017, 57, 376–382. [Google Scholar] [CrossRef]
- Osadchiev, A.A.; Medvedev, I.P.; Shchuka, S.A.; Kulikov, M.E.; Spivak, E.A.; Pisareva, M.A.; Semiletov, I.P. Influence of estuarine tidal mixing on structure and spatial scales of large river plumes. Ocean Sci. 2020, 16, 781–798. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korotenko, K.; Osadchiev, A.; Melnikov, V. Mesoscale Eddy Chain Structures in the Black Sea and Their Interaction with River Plumes: Numerical Modeling and Satellite Observations. Remote Sens. 2023, 15, 1606. https://doi.org/10.3390/rs15061606
Korotenko K, Osadchiev A, Melnikov V. Mesoscale Eddy Chain Structures in the Black Sea and Their Interaction with River Plumes: Numerical Modeling and Satellite Observations. Remote Sensing. 2023; 15(6):1606. https://doi.org/10.3390/rs15061606
Chicago/Turabian StyleKorotenko, Konstantin, Alexander Osadchiev, and Vasiliy Melnikov. 2023. "Mesoscale Eddy Chain Structures in the Black Sea and Their Interaction with River Plumes: Numerical Modeling and Satellite Observations" Remote Sensing 15, no. 6: 1606. https://doi.org/10.3390/rs15061606
APA StyleKorotenko, K., Osadchiev, A., & Melnikov, V. (2023). Mesoscale Eddy Chain Structures in the Black Sea and Their Interaction with River Plumes: Numerical Modeling and Satellite Observations. Remote Sensing, 15(6), 1606. https://doi.org/10.3390/rs15061606