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Abstract: Albeit hyperspectral image (HSI) classification methods based on deep learning have
presented high accuracy in supervised classification, these traditional methods required quite a few
labeled samples for parameter optimization. When processing HSIs, however, artificially labeled sam-
ples are always insufficient, and class imbalance in limited samples is inevitable. This study proposed
a Transformer-based framework of spatial–spectral–associative contrastive learning classification
methods to extract both spatial and spectral features of HSIs by the self-supervised method. Firstly,
the label information required for contrastive learning is generated by a spatial–spectral augmentation
transform and image entropy. Then, the spatial and spectral Transformer modules are used to learn
the high-level semantic features of the spatial domain and the spectral domain, respectively, from
which the cross-domain features are fused by associative optimization. Finally, we design a classifier
based on the Transformer. The invariant features distinguished from spatial–spectral properties
are used in the classification of satellite HSIs to further extract the discriminant features between
different pixels, and the class intersection over union is imported into the loss function to avoid
the classification collapse caused by class imbalance. Conducting experiments on two satellite HSI
datasets, this study verified the classification performance of the model. The results showed that the
self-supervised contrastive learning model can extract effective features for classification, and the
classification generated from this model is more accurate compared with that of the supervised deep
learning model, especially in the average accuracy of the various classifications.

Keywords: hyperspectral image classification; contrastive learning; Transformer; class imbalance

1. Introduction

After decades of rapid development, applications of HSIs have made remarkable
progress, especially in the field of satellite hyperspectral remote sensing [1]. Various satellites,
such as Earth Observing 1 (EO-1) [2], Huanjing-1A (HJ-1A) [3], Gaofen-5 (GF-5) [4], DLR
Earth Sensing Imaging Spectrometer (DESIS) [5], preferred reporting items for systematic
reviews and meta-analyses (PRISMA) [6], and Gaofen-14 (GF-14) [7] have been launched in
recent decades, of which the spatial and spectral resolution have experienced significant
improvement [7]. Compared with airborne HSIs, satellite HSIs have obvious advantages in
ground applications at large scale, such as mineral exploration [4], precise agriculture [8],
ecological monitoring [5], and land cover classification [9]. HSI classification is one of the
core processing techniques for various applications, aiming to assign each pixel of HSI an
accurate class label. However, the complex spatial–spectral structure and high-dimensional
information of hyperspectral data [10] make it difficult to obtain optimal classification results
by original satellite hyperspectral data without pre-processing.

In the initial stage of the HSI classification, the traditional methods mainly focused
on the use of spectral features, such as spectral angle mapper (SAM) [11] and maximum-
likelihood (ML) [12]. With the improvement of spatial resolution, the intra-class hetero-
geneity also increases [13], and it is quite difficult for the algorithms to classify accurately
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only by spectral features. The spatial characteristics of pixel neighborhoods can provide
extra information to fix the problem. Methods such as morphological attribute profiles
(MAPs) [14], extend morphological attribute profiles (EMAPs) [15], and Markov random
field (MRF) [16] have been used for associative extraction of both spatial and spectral fea-
tures. However, these methods are highly dependent on professional prior knowledge and
the classification performance is greatly affected by hand-crafted spectral–spatial features,
making the model generalization ability relatively weak [17].

With the continuous development of deep learning, it has also received extensive atten-
tion in hyperspectral image classification tasks. This is attributed to its obvious advantages
in mining feature representations that are conducive to HSI classification from the data itself,
and thus, deep learning seldom relies on data prior information or professional knowledge.
As a typical data-driven method, deep learning, such as stacked autoencoder (SAE) [18] and
deep belief network (DBN) [19], usually uses principal component analysis (PCA) to reduce
the dimension of HSI data to several bands. Hence, researchers have begun to develop more
flexible deep models for HSI classifications. Among them, convolutional neural networks
(CNN) have achieved state-of-the-art performance [20,21]; the one-dimensional convolu-
tional neural network (1D-CNN) [22] inputs each pixel as a vector in the spectral domain
into the model to extract effective spectral features for hyperspectral image classification,
while lacking the full use of spatial information. The classification method based on a two-
dimensional convolutional neural network (2D-CNN) [23] performs better with a smoother
visual effect compared with that from the 1D-CNN method. However, there are still defects
of 2D-CNN in retaining the spatial–spectral structure information of HSIs, and the ability to
capture context information is weak. The classification method based on a three-dimensional
convolutional neural network (3D-CNN) [22] combines 1D-CNN and 2D-CNN to extract the
spatial–spectral features of HSIs in a unified framework. Not only is the network structure
simpler and more flexible, but also the classification effect is more obvious.

However, the performance of convolutional neural networks is determined by the size
of the convolution kernel and the number of convolution channels, which results in a great
limitation on the receptive field of the CNN model and the large difficulty in capturing
long-range dependencies similar to spectral sequences [24]. The Transformer [25], which is
developed in the field of natural language processing (NLP), has attracted rising attention
due to its superior performance compared with convolutional neural networks [26]. The
application effect of the Transformer in the hyperspectral image classification task is also
encouraging. Previously published research used the Transformer module for hyperspectral
image classification, and some combined CNN for hyperspectral image classification. He
et al. [27] combined CNN with Transformer and used CNN and Transformer to extract
spatial and spectral features, respectively. Qing et al. [28] designed different Transformers
for spatial and spectral features, and captured the long-range dependencies information
through a self-attention mechanism. Yang et al. [29] embedded CNN into the Transformer
to extract detailed spectral features and local spatial information using CNN. Zou et al. [30]
proposed a local-enhanced spectral–spatial transformer (LESSFormer), which extracts the
underlying features through CNN and forms feature patches, and further extracts local and
global spatial-spectral features through Transformer, significantly improving classification
performance. Tu et al. [31] improved the way the original HSI features are embedded,
allowing the Transformer module to more efficiently capture long-range dependencies
between multi-scale features through local semantic feature aggregation.

The above deep learning methods are all trained in a supervised manner, and the
classification performance is determined by the number and quality of labeled samples [32].
For satellite hyperspectral images, the cost of obtaining large amounts of labeled samples
is too high to afford. Moreover, there are usually problems involved in class imbalance
in the limited labeled samples, which greatly limits the practical application in satellite
hyperspectral image classification. Self-supervised learning [33,34] has been widely used
in the field of computer vision, with an obvious advantage that the training hardly relies
on labeled samples. Therefore, studies on self-supervised learning have been well docu-
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mented in HSI classification. Wang et al. [35] conducted concatenate contrastive learning at
sub-pixel, pixel, and super-pixel levels based on multi-scale features in the spatial domain.
Zhu et al. [36] also used multi-scale patches in the spatial domain as learning objects and
put efficient asymmetric dilated convolution (EADC) into the contrastive learning frame-
work to realize the learning of consistent features in the neighborhood of the target pixel.
While ensuring accuracy, the computational efficiency has been improved. Some works
constructed multi-views of the same scene through PCA [37,38]. After a certain augmented
transformation, they used a contrastive learning framework for consistent feature learning.
It can be seen that the self-supervised learning strategy based on contrastive learning has
achieved good research results in hyperspectral image classification tasks. Guan et al. [39]
considered both spectral and spatial information and found shared information between
the spatial domain and spectral domain through a contrastive learning framework to extract
high-level semantic information that is helpful for classification. Hu et al. [40] introduced
Transformer into the bootstrap your own latent (BYOL) framework to replace 2D-CNN
for feature extraction, but the model reshaped the original data into a one-dimensional
sequence, which destroyed the spatial dependence in the two-dimensional space.

The self-supervised learning strategy based on contrastive learning has achieved good
research results in hyperspectral image classification tasks. However, under practical
application scenarios such as satellite hyperspectral image classification, there are still the
following problems to be solved. First of all, although the use of PCA to generate spatial
multi-views can reduce the redundant information between various bands [37], the spatial
contrastive learning on the same principal component has difficulty in augmenting the
diversity of samples. More importantly, there is an obvious lack of mining of spectral
feature similarity of hyperspectral data, which will reduce the robustness of the model [41].
Secondly, the previous algorithms have shown that classifiers using only spatial features or
spectral features will limit the improvement of classification performance. The combination
of spatial and spectral features is the mainstream practice of feature extraction in supervised
hyperspectral image classification. However, under the self-supervised framework, it is
difficult to process cross-domain information. Finally, in satellite hyperspectral images, the
distribution of ground objects is often uneven, leading to the widespread problem of class
imbalance. Classifiers need to adapt the characteristics of satellite hyperspectral images.

To solve the above problems, we propose a satellite hyperspectral image classifica-
tion method based on spatial–spectral associative contrastive learning (SSACT), which is
completely based on the Transformer network. The biggest highlight of SSACT is that it
can capture the long-range dependence of temporal sequence data, which significantly
enhances the ability in extracting spectral detail features and spatial dependence of hyper-
spectral data. SSACT performs both spatial and spectral invariant features of hyperspectral
data in a self-supervised manner under a unified contrastive learning framework, and
further realizes feature fusion by associative training. SSACT develops a classifier based on
the contrastive learning Transformer framework to learn the fusion features and complete
the hyperspectral image classification. Our main contributions are as follows:

1. The study innovatively builds the Transformer-based associative contrastive learning
framework for satellite hyperspectral image classification, which helps to learn the
unique features of the spatial domain and spectral domain simultaneously, and improves
the feature representation ability and classification performance of the model;

2. We introduce the image entropy module to extract certain bands with rich spatial
information and increase the diversity of spatial domain samples, which improves
the robustness of spatial contrastive learning;

3. The pixels in the spatial domain and the blocks in the spectral domain are added
as the learning embedding units of the Transformer, respectively. The multi-head
attention mechanism of the Transformer is used to extract the spatial dependence and
spectral detail features of the target pixel, which is beneficial to the fusion expression
of spatial–spectral features;
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4. We introduce the class intersection over union into the classification loss function,
which effectively diminishes the inter-class classification difference caused by the class
imbalance of samples. The effectiveness of the algorithm is proved by the satellite
hyperspectral image classification experiments.

The remaining part of the paper proceeds as follows. Section 2 introduces the experi-
mental datasets, which include two real satellite HSI datasets, and describes the proposed
spatial–spectral–associative contrastive learning with Transformers for satellite hyperspec-
tral image classification. Section 3 analyzes the experimental results of the proposed method
and the compared methods. Conclusions are summarized in Section 4.

2. Materials and Methods
2.1. Datasets

To verify the effectiveness of the algorithm model, we selected two satellite hyperspec-
tral image datasets, including HyRANK Loukia, and GF14 hyperspectral image datasets.
The ground truth object classes of the two datasets, as well as the resolution and spectral
range, are different, which is conducive to evaluating the generalization performance of
the classification algorithm. In the contrastive learning stage, only the original data is
input, without any labeled sample information. In the classification process, to restore the
problem of class imbalance as much as possible, 10% of the labeled samples are selected for
training in equal proportion for each class. From the number of training samples of the two
data sets, as shown in Tables 1 and 2, the ratio between the maximum number of samples
and the minimum number of samples is 56.61 and 316.04, respectively. The class imbalance
is very serious, especially in GF14 hyperspectral image datasets, which reflects the messy
distribution of ground truth. The data value was normalized to the range from 0 to 1. The
datasets are described as follows:

Table 1. Land cover classes with samples number for the HL dataset.

Class Land Cover Types Train Number Test Number

1 Dense Urban Fabric 29 288
2 Mineral Extraction Sites 7 67
3 Non-Irrigated Arable Land 54 542
4 Fruit Trees 8 79
5 Olive Groves 140 1401
6 Broad-Leaved Forest 22 223
7 Coniferous Forest 50 500
8 Mixed Forest 107 1072
9 Dense Sclerophyllous Vegetation 379 3793
10 Sparce Sclerophyllous Vegetation 280 2803
11 Sparsely Vegetated Areas 40 404
11 Rocks and Sand 49 487
13 Water 139 1393
14 Coastal Water 45 451

Total 1349 13,503

Table 2. Land cover classes with samples number for the GF14 dataset.

Class Land Cover Types Train Number Test Number

1 Cabbage 130 1300
2 Potato 1270 12,695
3 Green Chinese Onion 67 673
4 Wheat 4583 45,826
5 Cole Flowers 40 403
6 Corn 251 2506
7 Chinese Cabbage 171 1708
8 Peanut 2126 21,258
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Table 2. Cont.

Class Land Cover Types Train Number Test Number

9 Broad Bean 15 145
10 Pepper 180 1796
11 Pit Pond 298 2981
11 Greenhouse 650 6500
13 Poplar Tree 216 2157
14 Peach 272 2719
15 Privet Tree 506 5064
16 Maple 100 1001
17 Pear Tree 278 2776
18 Cherry Plum 200 1997

Total 11,353 113,505

The first dataset was the HyRANK Loukia satellite hyperspectral dataset (HL) [42],
photographed by the Hyperion sensor. The number of original image bands is 242, the
spatial resolution is 30 m, and the spatial size is 250 × 1376. However, due to the same
reasons as IP dataset, this dataset contains only 176 bands. The sample information
provided by the dataset indicates that the image mainly contains 16 land cover types. The
class information and the number of training and test samples are shown in Table 1, and
the false color image and sample distribution are shown in Figure 1.
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Figure 1. HL dataset false color images and ground truth. (a) three-band composite false color images
(23, 11, 7); (b) ground truth.

The second dataset was the GF-14 satellite hyperspectral dataset (GF14) [7], pho-
tographed by the GF-14 satellite in Hubei, China, in May 2022. The number of original
image bands is 70, the spatial resolution is 5 m, and the spatial size is 1240 × 1240, with
18 land cover types. The class information and the number of training and test samples are
shown in Table 2, and the false color image and sample distribution are shown in Figure 2.
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2.2. Workflow of the Proposed Method

In this article, we innovatively propose a spatial–spectral associative contrastive
learning hyperspectral image classification framework SSACT based on Transformer, which
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learns the characteristics of hyperspectral data in a self-supervised way. At the same
time, we introduce the class intersection over union (Class-IoU) into the classification loss
function, which effectively diminishes the inter-class classification difference caused by the
class imbalance of samples. The overall flow chart of the framework is shown in Figure 3.
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Before using SSACT to process the data, we cut the original hyperspectral image data
into a fixed-size hyperspectral data cube. Each cube is centered on the target pixel to ensure
that the data cube contains the spatial context required for classification. Then the cube
is divided into visible light range and non-visible light range, and the top three bands
of image information entropy are extracted respectively as the input data of the spatial
contrastive learning module, and common data augmentation operations such as random
crop and random flip are applied. At the same time, the spectral curve of the target pixel
is extracted and data augmentation operations such as random crop, random dropout,
and reverse are applied as input data for the spectral contrastive learning module. In the
self-supervised contrastive learning stage, we regard a single pixel and a spectral block as a
word vector and input the sequence data into the Transformer through linear projection and
position coding to obtain the spatial and spectral invariant features of the target pixel at the
same time. We regard the invariant features obtained by associative contrastive learning
as the reconstructed pixel spectral features, so the new features are still preprocessed by
spectral partitioning and input into the Transformer classifier to achieve high-precision
classification of satellite hyperspectral images. Next, we will introduce the details of the
algorithm implementation.

2.3. Transformer

The wide application of Transformer began in the field of NLP [25] and then showed
great potential in the field of computer vision [26]. In the field of remote sensing, it also
reached or even exceeded the deep learning model based on CNN [43–47]. As already
mentioned, Transformer is more suitable for processing sequence data than CNN. Firstly,
Transformer can accurately capture the long-range dependencies in sequential data. We can
add position coding to the sequential data. The position-encoded feature will be used as an
independent patch to participate in the subsequent processing of the self-attention module,
and the self-attention module finds the dependencies between different patches through
the multi-head attention mechanism. Such a process is very conducive to capturing the de-
pendencies between spectral detail features, which is of great significance for characterizing
the diagnostic spectral features of ground objects. Secondly, the Transformer architecture
can still capture the interaction between them when dealing with unordered data. Note that
this ability is difficult for deep learning architectures based on CNN. When extracting the
spatial context of the target pixel, the neighborhood pixels do not belong to the sequence
data like the spectral features. However, after position coding, the neighborhood spatial
information is processed in the self-attention module in the form of a patch, while other
processing is based on the position. This ability is beneficial to the capture of spatial context.

2.4. Image Entropy for HSI

Entropy is a basic concept in the field of thermodynamics and information theory. As
an index, entropy can represent the order or disorder in the physical sense and also represent
the predictability or uncertainty of information. In all entropy, Shannon entropy [48] is one
of the most common entropies, whose expression is as follows:

E = −∑
i

pilog2 pi, (1)

where pi is the probability of an event. As a metric, entropy can also be used to measure the
randomness or disorder of images [49]. For gray images, pi represents the probability of a
certain gray level. When pi ∈ [0, 1], entropy is a positive interval metric. Therefore, the larger
the entropy value, the higher the complexity of the image, and the richer the information
contained in the image. For hyperspectral images, due to the different ground reflectance,
the scene information obtained by different bands is also different. For the bands with larger
entropy, the scene information contained is more abundant, as shown in Figure 4.
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In self-supervised learning strategies, invariant features are often learned from differ-
ent augmentation views of the same image, which limits the diversity of learning repre-
sentations [41]. For hyperspectral images, different bands correspond to the same view
scene and should have the same spatial relationship. To increase the diversity of spatial
contrastive learning sample sampling and learn more general spatial invariant features, we
divide the hyperspectral data into visible light range and non-visible light range from the
perspective of human vision. The first three bands with largest entropy values in the two
ranges are obtained as the input of spatial contrastive learning, respectively. Obviously,
the spatial contrastive learning module learning has a more general spatial dependence, as
shown in Figure 3b.

2.5. Spatial-Spectral Associative Contrastive Learning

Hyperspectral data contain the rich spatial and spectral information, being widely
used in various fields. In the classification task, previous algorithms have shown that
classifiers using only spatial features or spectral features will limit the improvement of
classification performance. Therefore, the combination of spatial and spectral features is
the mainstream practice of feature extraction in hyperspectral image classification. In this
paper, the expression forms of spatial and spectral features in the process of self-supervised
contrastive learning are fully analyzed. The spatial and spectral features are fused and
extracted using associative contrastive learning. The invariant features contained in the
target pixels are learned from the spatial and spectral dimensions through the spatial
contrastive learning module and the spectral contrastive learning module, respectively, as
shown in Figure 3c,d.

2.5.1. Data Augmentation

Before conducting contrastive learning, data augmentation is an important part of
improving the generalization performance of the model. In this paper, we use two types of
data augmentation operations: spatial augmentation and spectral augmentation. Spatial
augmentation operations include random cropping, random flip (horizontal or vertical),
random color jitter, random grayscale, and normalization. The spectral augmentation
object is the spectral sequence of the target pixel; augmentation operations include random
cropping, random block discarding, reverse, and Gaussian noise.

2.5.2. Spatial Contrastive Learning Module

In the spatial contrastive learning module, we use the band combination selected by
image entropy as input data. In this way, we avoid augmenting the spatial neighborhood
of the same distribution but the spatial neighborhood of different distributions, which
can not only learn more useful spatial neighborhood information but also improve the
generalization performance of the model. For how to extract the spatial dependence of
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the target pixel, the previous practice is to flatten the image block in one dimension as the
input of the Transformer. Under the circumstance, the spatial structure of the image will
be destroyed and is not conducive to the extraction of spatial dependence. We compare
one-dimensional image blocks to sentence vectors in NLP. Each pixel is regarded as a word
vector. Each pixel contains the radiation values of three bands. After linear projection and
position coding, the model is guided to explore the spatial dependence between the target
pixel and other pixels in the neighborhood by using the excellent ability of the Transformer
in capturing the long-range dependence of sequence data, as shown in Figure 3c.

2.5.3. Spectral Contrastive Learning Module

In the spectral contrastive learning module, similar to the spatial contrastive learning
module, we divide the original spectral data into a series of spectral blocks. In order to
better integrate, we have unified the input size of the contrastive learning module, that is,
the spectral block size is also 3, and each spectral block contains three bands. Each spectral
block can be regarded as a spectral patch, and each patch contains certain local detail
spectral features. After position encoding, a spectral encoder consisting of multiple multi-
head attention layers is used to extract spectral features to obtain a feature representation
that describes the spectral features, as shown in Figure 3c.

2.5.4. Associative Contrastive Learning Loss

From the perspective of information acquisition, hyperspectral data contain the spa-
tial and spectral information of the object. The spectral information contains the spectral
reflection attribute of the object, and the spatial information contains the geometry, texture,
and spatial neighborhood information of the object. Therefore, in the hyperspectral image
data cube, the spatial features and spectral features of hyperspectral images are a pair of
‘orthogonal’ features, which present different attributes of the same scene [39]. In other
words, spatial and spectral features are complementary to each other. In the process of
feature learning, the complementary relationship between them can be used for feature
learning. In addition, spatial context provides high-level semantic representation of target
pixels, and spectral features provide a refined local representation of target pixels. Through
spatial–spectral associative contrastive learning, we provide both high-level semantic infor-
mation of spatial context and fine-grained information of spectral context to learn features
more efficiently. Back to contrastive learning itself, the purpose is to make the positive
samples closer and the negative samples further away. This process can be constrained by
the noise contrastive estimation (InfoNCE) loss function [33]:

L = −log
sim

(
zi, zj

)
/τ

∑2N
k=1 l[k 6=i]sim(zi, zk)

, (2)

In the formula, N represents the number of samples, and 2N samples are formed
after data augmentation. sim

(
zi, zj

)
= zT

i zj/‖zi‖
∥∥zj

∥∥, represents the similarity measure
between two samples. From the denominator calculation form of the loss function, it can
be seen that the purpose is to close the distance between positive samples and expand
the distance between positive and negative samples. τ is the temperature coefficient that
adjusts the attention of the loss function to distinguish difficult sample pairs. In the spatial
and spectral contrastive learning of SSACT, we use the InfoNCE loss function. In the spatial–
spectral associative contrastive learning process, to dynamically adjust the complementary
relationship between spatial context features and spectral detail features, we fuse the loss
function:

L = αLspatial + βLspetral , (3)

where α and β are learnable parameters. Lspatial and Lspetral are calculated according to the
format of L.
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2.6. HSI Classification with Transformer

Multilayer perceptron (MLP) is a kind of neural network with a forward structure.
Through MLP, a set of input vectors can be mapped into a set of output vectors. MLP has
been successfully applied in image classification [50,51]. In the contrastive learning stage of
SSACT, we only use the Transformer architecture for spatial–spectral feature extraction. In
the classification stage, we add the MLP layer to the Transformer architecture to construct a
Transformer-based classifier, as shown in Figure 3e. As mentioned earlier, in the labeled
samples of hyperspectral images, due to the uneven distribution of ground objects, the
number of samples in different classes will fluctuate significantly. For example, in the GF14
satellite image data, the number of samples of Wheat is 316 times that of Broad Bean. Due
to the existence of class imbalance, the classification performance will decline sharply when
the classifier classifies the classes with fewer samples. In the deep model, Cross-Entropy is
a commonly used multi-class classifier loss function, but the weight of the Cross-Entropy
loss function is the same when dealing with all classes, and it cannot solve the problem of
class imbalance.

In the field of computer vision, when we perform target detection when the target is
successfully detected, the bounding box is often used to describe the spatial position of
the target. Intersection over union (IoU) is a widely used measure when evaluating the
performance of object detection algorithms. Suppose that the label bounding box of the
target is A and the bounding box of the detection result output is B, then the IoU is defined
as follows:

IoU = (A∩ B)/(A∪ B), (4)

When the target detection algorithm can accurately detect the target, and the higher
the consistency of the bounding box and the label bounding box, the higher the value of
IoU and the better the performance of the target detection algorithm. We introduce the
concept of IoU into the classification task. The application object is the predicted value and
real value of the classifier for a certain class, such as Wheat, as shown in Figure 5.
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In the classification process, we are most concerned about the area where the two
circles intersect in the graph. The larger the TP, the higher the correct classification number
of the class, and the higher the classification accuracy of the class. Therefore, our class
intersection over union can be expressed as follows:

ClassIoU =
TP

TP + FP + FN
, (5)
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Through the analysis of Equation (10), we can find that when the number of labeled
samples in a certain class is small, the slight change of FP and FN has a large amplitude on
the value image of Class-IoU; that is, Class-IoU is sensitive to the class of small samples,
and for the class of large samples, the constraint imposed by Class-IoU will be much
smaller. Therefore, we use Class-IoU to augment the importance of the classifier to the
small sample class to alleviate the problem of small sample class classification collapse
caused by imbalanced samples. In the SSACT classification training process, we introduce
Class-IoU into the loss function and train it with the Cross-Entropy loss function so that
the model can better fit the class imbalance.

3. Results

In this part, firstly, the parameter settings involved in the experiment are described in
detail. Secondly, the comparison algorithm and its parameter setting are introduced, and
the experimental results under small sample conditions are quantitatively analyzed. Finally,
extra experiments were performed on the relevant modules to illustrate the effectiveness of
SSACT. During the experiment, the software environment is the following: Pytorch version
is 1.12, and the python version is 3.7. The hardware environment is the following: 12th Gen
Intel (R) Core (TM) i7-12700K 3.61GHz, 32GB memory, and GPU is RTX 2080Ti.

3.1. Experimental Setup

SSACT includes two stages. In the spatial–spectral associative contrastive learning
stage, assuming that the input hyperspectral data is RW×H×C, we slice it with a spatial
neighborhood size of 10 grids to obtain a hyperspectral image cube subset R21×21×C.
Then, the image entropy of HSI cube subset in different bands is calculated, and the
three bands with maximum entropy are selected to construct positive sample pairs. The
spatial and spectral data augmentation probability is 0.5. The training epoch of associative
contrastive learning is 100, the batch size of the model is 64, the initial learning rate is
0.001, the learning rate is attenuated according to the cosine annealing algorithm, and the
temperature coefficient is 0.5, respectively. The output dimensions of the spatial contrastive
learning and spectral contrastive learning models are both 128; hence, the feature output
after associative contrastive learning is 256 dimensions in total. In the classification stage,
the training epoch of hyperspectral image classification is 200, the batch size of the model
is 16, the initial learning rate is 0.0001, and the learning rate is attenuated according to the
cosine annealing algorithm. All models select the Adam optimizer to update the model
parameters. Albeit these models are all constructed based on Transformer, the structural
depth varies at different stages. Especially, in the former, the depth of the Transformer is 3
and the heads are set to 12, while in the latter, the depth of the Transformer is 1 and the
heads are set to 9.

3.2. Classification Results under Class Imbalance

To verify the classification performance of SSACT, we selected seven classification al-
gorithms with superior performance in spatial feature extraction and spectral feature extrac-
tion, including 2D-CNN [23], 3D-CNN [22], spectral–spatial residual network (SSRN) [17],
hybrid spectral CNN (HybridSN) [52], spectral–spatial attention network (SSAN) [53],
vision Transformer (ViT) [26], and deep multiview learning (DMVL) [37]. For maintaining a
homogeneous experimental condition between different algorithms, we refer to the practice
provided by Chen et al. [54]; the hyperspectral image to be classified is uniformly divided
into a subset of hyperspectral images with a patch size of 5, and the training epoch is set
to 200. The training and verification ratio is consistent with SSACT, both of which are
0.1. It should be noted that the samples are randomly selected according to the proportion
between different classes, and the situation of class imbalance is retained. The classification
result graphs are performed on all sample data.

We use overall accuracy (OA), average accuracy (AA), and the Kappa coefficient
(Kappa) to quantitatively evaluate the classification performance of various algorithms.
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Among them, AA is the average of the classification accuracy of the classifier in each
class, which is very effective for the evaluation of class imbalance classification tasks. This
paper explains the classification accuracy of each class based on AA in detail. For the
convenience of statistics, all the evaluation indexes are presented in the range of 0–100 after
normalization, and the best result is bold. The classification results of different classification
models on two datasets are shown in Tables 3 and 4, and mark the best results in bold.

Table 3. Classification results (%) by selecting 10% labeled samples of the HL dataset.

Criteria 2D-CNN 3D-CNN SSRN HybridSN SSAN ViT DMVL +
SVM SSACT

Class 1 0.00 10.30 28.33 5.58 77.68 66.24 74.21 69.37
Class 2 0.00 92.59 87.04 77.78 90.74 98.44 98.23 97.02
Class 3 3.65 85.39 93.38 88.13 78.77 80.21 86.39 88.52
Class 4 0.00 0.00 0.00 0.00 15.87 20.45 53.52 58.33
Class 5 94.97 95.33 95.06 98.50 96.03 78.89 82.91 83.93
Class 6 0.00 6.67 19.44 0.00 12.22 71.43 74.05 76.47
Class 7 0.00 38.02 45.43 50.86 64.69 68.76 81.82 84.77
Class 8 63.32 66.78 74.28 67.24 77.74 69.01 78.79 77.43
Class 9 82.45 86.26 85.61 87.4 91.72 78.05 76.39 80.26
Class 10 84.57 82.24 87.00 88.32 74.31 81.72 83.98 85.88
Class 11 0.00 61.04 67.48 71.78 86.50 62.52 75.97 76.33
Class 12 79.19 94.16 93.91 93.15 90.86 95.89 93.67 92.56
Class 13 100.00 100.00 100.00 100.00 100.00 99.57 100.00 100.00
Class 14 100.00 100.00 100.00 100.00 100.00 98.89 97.78 100.00

OA 77.27 81.01 83.73 83.54 84.69 80.10 83.08 84.74
AA 43.44 65.63 69.78 66.34 75.48 76.43 82.69 83.63

Kappa 66.12 77.07 80.42 80.21 81.62 76.36 80.16 81.78

Table 4. Classification results (%) by selecting 10% labeled samples of the GF14 dataset.

Criteria 2D-CNN 3D-CNN SSRN HybridSN SSAN ViT DMVL +
SVM SSACT

Class 1 0.00 6.17 39.79 35.90 60.40 65.78 82.97 78.17
Class 2 93.08 94.47 91.36 87.09 92.62 77.21 86.73 88.30
Class 3 0.00 13.97 61.03 65.26 80.51 66.43 76.38 76.98
Class 4 99.45 99.66 99.25 98.92 98.95 98.37 98.56 98.64
Class 5 0.00 0.00 28.92 39.69 40.92 69.30 73.66 77.56
Class 6 0.00 2.86 42.24 20.65 57.96 58.42 84.23 86.84
Class 7 0.00 17.86 46.57 45.84 75.20 65.85 76.08 77.73
Class 8 97.59 98.17 97.05 96.33 96.57 89.40 95.74 95.10
Class 9 0.00 0.00 5.13 13.68 17.09 44.90 76.92 78.76
Class 10 0.00 3.23 54.68 48.90 86.59 93.08 90.23 88.89
Class 11 99.75 99.42 98.67 99.30 99.71 99.83 98.21 99.32
Class 12 96.79 96.81 95.25 95.35 97.61 89.49 86.39 91.44
Class 13 6.01 69.70 62.08 60.88 75.89 83.96 88.19 80.61
Class 14 44.96 63.62 64.67 64.80 83.70 79.33 81.75 82.18
Class 15 81.64 83.78 85.93 76.91 88.66 73.80 82.13 86.35
Class 16 0.00 0.00 19.63 29.38 46.17 68.56 82.88 79.37
Class 17 1.02 63.12 86.88 58.23 81.98 69.02 83.66 84.48
Class 18 51.08 65.31 65.62 66.05 78.05 67.18 79.66 81.98

OA 82.77 87.16 89.95 87.65 92.91 88.41 92.62 93.21
AA 37.30 48.79 63.6 61.29 75.48 75.55 84.69 85.15

Kappa 77.49 83.3 87.04 84.06 90.89 85.08 91.08 91.27

By analyzing the results of quantitative experiments, we can draw some obvious
conclusions:
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1. Compared with other comparison algorithms, SSACT has the best overall performance
on OA, Kappa, and especially AA, which is significantly better than the CNN-based
supervised deep models;

2. When the training samples are particularly small, it is difficult for the CNN-based
classification model to extract useful features. For example, the training samples of
class 5 and class 9 of the GF14 dataset are only 40 and 15, respectively. The CNN-
based classification model cannot correctly identify the corresponding classes, thus
the classification accuracy rate is very poor, while with the support of Class-IoU, the
classification accuracy of SSACT can reach as high as 77.56% and 78.76%, respectively,
being a huge progress compared with the traditional model;

3. A simple combination of spatial–spectral features is difficult to achieve satisfying
classification performance, such as 2D-CNN, 3D-CNN, SSRN, HybridSN, and SSAN.
However, our models can effectively fuse spatial–spectral features and obtain the best
classification performance on the two datasets, which also shows the importance of
associative extraction of spatial–spectral features;

4. The DMVL based on contrastive learning can extract features without labeled samples,
while ViT has a certain competitiveness in comprehensive performance, which is
inseparable from the excellent performance of the Transformer. SSACT makes full
use of the excellent performance of contrastive learning and Transformer in feature
extraction without labeled samples, and obtains satisfactory results in the situation of
small sample classification.

Specifically, we observe the first three classes with the least number of samples in the
two datasets. SSACT achieves the best classification performance in five classes, and only
lower than ViT in one class. In terms of AA, the performance of SSACT on two datasets is
83.63% and 85.15%, respectively, which is 26.74% and 43.1% higher than other algorithms
on average. In addition, the OA values of SSAN are close to SSACT, but it is clear that
SSAN has a large gap with SSACT in AA values, which also shows that the Class-IoU plays
an important role in solving the problem of class imbalance.

In addition to OA, AA, Kappa, and other indicators, we can also intuitively view the
classification performance of the classification model from the classification result graph. The
classification results of several algorithms on the two datasets are shown in Figures 6 and 7.

Figure 6 shows that SSACT has relatively few noise points. In order to better illustrate
the classification effect, we have enlarged some areas. From the left enlarged region, it can
be seen that supervised classification algorithms such as SSRN have poor classification
results for class 1 and SSACT and SSAN have better classification results for class 1. From
the enlarged area on the right side, it can be seen that SSACT can better classify class 6 and
obtain a pleasing ‘Green’, while other algorithms have poor classification results. This is
because the number of training samples for class 6 is small, which also shows the role of
Class-IoU in solving the problem of class imbalance.

The GF14 satellite hyperspectral image dataset is the closest to the practical appli-
cation. The distribution of different objects is obtained by field mapping. The cost of
obtaining labeled samples is very high, but it gives us an important reference for satellite
hyperspectral image classification research. From the overall classification effect, the noise
and misclassification of SSACT are less than other algorithms, reflecting better classification
performance. We have enlarged some of the classification results for class 16. From the
left enlarged region, it can be seen that the classification effect of the seven comparison
algorithms on class 16 is not ideal. It is common to misclassify class 16 into category 15,
indicating that there are similar features between class 16 and class 15, and the classifier
is difficult to distinguish. Note that SSACT can better distinguish between class 16 and
class 15, which fully shows that the spatial–spectral–associative contrastive learning frame-
work proposed in this paper can better extract diagnostic features, thereby enhancing the
classification performance of the classifier.
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4. Discussion
4.1. Classification with Sufficient Samples

This paper focuses on achieving high-accuracy classification under small sample
conditions, but it does not mean that our algorithm will deviate from the processing of
sufficient samples. We randomly selected 90% of the samples from the two datasets of HL
and GF14 for training, and the classification results are shown in Table 5. The classification
performance on the two datasets exceeds 99%; especially, the overall classification accuracy
of the GF14 satellite hyperspectral image reaches 99.67%, which fully suggests that the
model has a powerful ability to learn data features in the associative contrastive learning
stage, and provides a feature representation with strong separability for the classifier. Ex-
cellent classification performance can be achieved under both sufficient and small samples.
Furthermore, the models can accurately classify two datasets with disparate spatial scales,
indicating that the model can classify not only small-scale hyperspectral images such as by
traditional classification algorithms but also large-scale satellite hyperspectral images.

Table 5. Classification results (%) by selecting 90% labeled samples.

Criteria HL GF14

OA 99.17 99.74
AA 99.19 99.50

Kappa 99.02 99.67

4.2. Classification without Class-IoU

It can be seen from the previous experimental results that the Class-IoU has signifi-
cantly improved the classification performance of the class with a small number of samples.
To further illustrate the effectiveness of in solving the class instability problem, we only
use the Cross-Entropy loss function to train the classifier, excluding the use of Class-IoU.
The classification results are shown in Table 6. From the experimental results of the two
datasets, it can be seen that the performance of classifiers using only the Cross-Entropy
loss function on AA becomes less satisfying than that of classifiers using the Class-IoU loss
function. It should be noted that when only using the Cross-Entropy loss function, the
classification performance is also superior to other algorithms, which also shows that the
spatial–spectral associate contrastive learning module proposed in this paper can obtain
diagnostic separability features for different classes.

Table 6. Average Accuracy results (%) by selecting 10% labeled samples.

Criteria HL GF14

Only Cross-Entropy 81.28 81.51
With Class-IoU 83.63 85.15

4.3. Classification with Spatial/Spectral Contrastive Learning Module

To illustrate the important role of the associative spatial–spectral contrastive learning
module, we compared the classification performance of only using the spatial or spectral
contrastive learning module. The experimental results are shown in Table 7. From the
experimental results, it can be seen that the classification effect on HL and GF14 datasets
are not ideal when only using the spatial or spectral contrastive learning module; especially,
the AA of classification is far lower than using the associative spatial–spectral contrastive
learning module. From the datasets, the spatial resolution of the HL dataset is lower than
GF14, resulting in the widespread existence of mixed pixels. Therefore, when only using
spatial or spectral information, the classification accuracy is poor on HL datasets. Similar
to the Adaboost strategy, the associative spatial–spectral contrastive learning module can
provide more separability features for downstream classification tasks based on spatial
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and spectral features. The experimental results also show that the classification accuracy is
significantly improved.

Table 7. Classification results (%) by 10% labeled samples with different modules.

Criteria

HL GF14

Spatial Spectral Spatial-
Spectral Spatial Spectral Spatial-

Spectral

OA 69.40 66.19 84.74 84.29 75.34 93.21
AA 68.71 64.95 83.63 73.37 40.84 85.15

Kappa 63.68 58.69 81.78 79.51 67.88 91.27

4.4. Disadvantages

First of all, we effectively improved the classification accuracy of the classes with
a small number of samples by adding the Class-IoU constraint to the classification loss
function, but the classification accuracy of the classes with a large number of samples is
decreased. This is also a difficult problem to balance in practical applications. In the future,
we will continue to study and improve this scheme. Secondly, in contrastive learning,
we consider the mutual constraints of spatial and spectral features, but the relationship
between cross-domain features is not fully explored. The spatial–spectral cross-contrastive
learning process can be increased to extract cross-domain invariant features, which will
be tested in subsequent studies. Finally, our algorithm has no advantage in running time.
Taking GF14 datasets as an example, the implementation takes around 118 min, which
includes self-supervised feature extraction and classification training.

5. Conclusions

In this paper, we propose a satellite hyperspectral image classification method based
on spatial–spectral associative contrastive learning, which can effectively extract the spatial
and spectral features from hyperspectral data. SSACT can solve the problem of class
imbalance, which significantly improves the classification accuracy of classes with a small
number of samples. Based on the Transformer architecture, we construct spatial and
spectral contrastive learning networks and downstream classifiers. The experimental
results also prove that the excellent feature extraction ability of the Transformer is helpful
to improve the classification performance. In terms of AA, the performance of SSACT on
the two datasets is 83.63% and 85.15%, respectively, which is 26.74% and 43.1% higher than
other algorithms on average.
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