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Abstract: Airborne scatterometer capability depends on not only the device’s technical characteristics
but also the scheme used for surface observations. Typically, a rotating-beam scatterometer uses a
circular scheme for sampling normalized radar cross-sections (NRCS) at wind measurements over the
sea. Here, we investigate wind retrieval using an updated semicircular scheme, providing the NRCS
sampling at various combinations of incidence angles within the range 30◦ to 60◦. The effectiveness
of the wind retrieval using our semicircular sampling scheme was evaluated using Monte Carlo
simulations, and we then developed corresponding wind algorithms that used a geophysical model
function (GMF). As a result of the study, we found that a semicircular sampling scheme is well suited
for wind retrieval over the sea using a rotating-beam scatterometer. We showed that a semicircular
scheme can provide wind retrieval accuracies similar to those achievable with a conventional circular
scheme, although the semicircular scheme requires approximately three times the number of NRCS
samples integrated in each azimuth sector. Most importantly, however, the semicircular scheme
enabled a maximum altitude for wind retrieval of twice the height possible with a circular scheme. In
this study, we also demonstrate that the wind speed accuracy tends to increase with an increase in
the incidence angle and similarly for the wind direction accuracy. Nonetheless, we then show that
the simultaneous use of the NRCS sampling scheme at several incidence angles can increase the wind
retrieval accuracy, especially when three or four incidence angles are used. The obtained results can
be used to enhance airborne scatterometers and multimode radars operated in a scatterometer mode,
including airborne high-altitude conical scanning radars, and can be applied to new remote sensing
systems’ development.

Keywords: sea wind retrieval; airborne scatterometer; radar; sea surface; radar backscatter

1. Introduction

Depending on the measurement geometry of airborne scatterometers and multimode
radars with a scatterometer mode, various NRCS sampling schemes can be applied to
measurements [1]. The radars can be equipped with a fixed-beam [2–6], scanning [7–9], or
rotating-beam antenna [10–17].

Radars using only a single fixed-beam antenna perform circular NRCS sampling in
circular flight [3–5,18], as exemplified, for instance, by Masuko et al.’s airborne microwave
scatterometer/radiometer system [3]. Radars equipped with a multiple fixed-beam antenna
provide NRCS sampling in rectilinear flight, from the constant azimuth directions relative
to the aircraft’s course [5,19,20], e.g., a Doppler navigation system operated in the scat-
terometer mode [21,22]. The measurements are all performed at the same incidence angle.

On the other hand, radars with a scanning antenna perform measurements in rec-
tilinear flight. Depending on their scanning geometry, they provide NRCS sampling by
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changing azimuth directions at properly varying incidence angles as the beam scans in
the same inclined plane (e.g., in the airborne precipitation radar APR-2 case [7,23] or the
airborne rain mapping radar ARMAR case [24]), as well as at the same incidence angle,
e.g., in the case of airborne weather radar when it is operated in a ground mapping mode
as a scatterometer [25,26].

Similarly, radars equipped with a rotating-beam antenna also perform measurements
in rectilinear flight. Depending on their single-beam or multibeam geometry, they can
perform NRCS circular sampling at a single incidence angle, e.g., in the C-band scatterom-
eter C-SCAT case [27], or the Doppler scatterometer DopplerScatt case [28], as well as
simultaneously at several constant incidence angles, e.g., in the imaging wind and rain
airborne profiler IWRAP case [12] or in the case of the high-altitude imaging wind and rain
airborne profiler HIWRAP [29].

Recently, we considered sea wind measurements in rectilinear flight with an airborne
scatterometer with a rotating-beam antenna mounted both under [17] and over [16] the
fuselage. A whole 360◦ azimuth circular scheme for NRCS sampling at single or several
constant incidence angles was evaluated for wind vector retrieval over the sea [17]. Our
study showed that simultaneous NRCS sampling at several neighboring incidence angles
provides a better accuracy for wind vector estimation compared to NRCS sampling at a
single incidence angle only. Unfortunately, wind retrieval using a circular scheme for NRCS
sampling at several incidence angles decreased the maximum altitude of the wind retrieval
method’s usability compared to sampling NRCS at a single incidence angle.

We also investigated the possibilities for increasing the maximum altitude of wind
retrieval by an airborne scatterometer that has a rotating-beam antenna and uses semicir-
cular NRCS sampling instead of the usual circular scheme [30]. A single incidence angle
was considered. The application of the semicircular NRCS sampling scheme allowed for
the maximum altitude of the wind estimation method to be doubled compared to the
circular scheme. However, to provide equivalent accuracies for wind retrieval using the
semicircular scheme, the number of NRCS samples integrated in each azimuth sector had
to be tripled compared to the circular scheme.

In this context, in this paper we combined both of these approaches and analyzed
the feasibility of simultaneous NRCS sampling at several neighboring incidence angles
using our semicircular scheme. The aim was to optimize NRCS sampling in order to
provide better wind retrieval accuracies and higher maximum altitudes for the method’s
applicability for an airborne scatterometer with a rotating-beam antenna.

2. Materials and Methods

Several neighboring incidence angles’ simultaneous sampling of NRCSs can be per-
formed using an airborne scatterometer equipped with a rotating antenna that has a
fan-beam or multibeam geometry [1,31]. These geometries allow for simultaneous NRCS
sampling from the same azimuth direction, as selected cells are located in the same vertical
plane [17]. For example, the geometry of a scatterometer with a rotating two-beam antenna
is presented in Figure 1.

The antenna’s rotation allows for NRCS sampling within an appropriate azimuth circle.
The resulting NRCS curve consists of N azimuth sectors observed with an appropriate
5◦ or 10◦ azimuth step, providing an appropriate width of the azimuth sector ∆αs, which
satisfies a narrow antenna beam’s conditions (in the azimuth plane), having an appropriate
angular width of each azimuth sector up to 15–20◦ [32,33]. Applying an appropriate
geophysical model function (GMF), the speed of wind and its direction are also retrieved
from the measured NRCS curve, as the GMF is an empirical or analytic relationship between
the NRCS and the wind speed and incidence and azimuth angles, as well as the radar
wavelength, transmit and receive polarization, and sometimes other parameters [31].
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Figure 1. Geometry of a scatterometer with a rotating two-beam antenna: V is the flight speed; H
is the altitude; θ1 and θ2 are the incidence angles of antenna beams 1 and 2; ψ is the aircraft’s flight
direction counted clockwise from the north.

GMFs are derived from temporally and spatially collocated airborne, spaceborne, ship,
tower, and buoy measurements of the NRCS and wind vector. One of the widely used
forms of GMFs at medium incidence angles is as follows [34]:

σ◦(U, θ, α) = A(U, θ) + B(U, θ) cos α + C(U, θ) cos(2α) (1)

where σ◦(U, θ, α) is the NRCS dependent from the wind speed U at a 10 m height
over water, the incidence angle θ, and azimuth angle α measured from the upwind
direction; A(U, θ), B(U, θ), and C(U, θ) are the Fourier terms dependent on the
wind speed and incidence angle, where A(U, θ) = a0(θ)Uγ0(θ), B(U, θ) = a1(θ)Uγ1(θ),
and C(U, θ) = a2(θ)Uγ2(θ); and a0(θ), a1(θ), a2(θ), γ0(θ), γ1(θ), and γ2(θ) are the coeffi-
cients dependent on the incidence angle. In fact, the term A(U, θ) equals the azimuthally
averaged NRCS, B(U, θ) describes the upwind–downwind asymmetry, and C(U, θ) rep-
resents the upwind–crosswind anisotropy. The detailed procedures to obtain these terms
from NRCS in the upwind, downwind, and crosswind directions have been presented
elsewhere [35]. For example, for the horizontal transmit and receive polarization, the GMF
coefficients at the Ku-band are as follows [36]:

a0(θ) = 102.47324−0.22478θ+0.001499θ2
, a1(θ) = 10−0.50593−0.11694θ+0.000484θ2

a2(θ) = 101.63685−0.2100488θ+0.001383θ2
, γ0(θ) = −0.15 + 0.071θ − 0.0004θ2

γ1(θ) = −0.02 + 0.061θ − 0.0003θ2, γ2(θ) = −0.16 + 0.074θ − 0.0004θ2
(2)

Examples of Ku-band GMF azimuthal curves for the horizontal transmit and receive
polarization for wind speeds of 2, 5, 10, 15, 20, 25, and 30 m/s at the incidence angles of
30◦, 45◦, and 60◦ are shown in Appendix A (Figure A1a–c, respectively).

From Equation (1) and Figure A1a–c, we can see that the NRCS azimuth curve has
two maxima and two minima. The principal maximum is located in the upwind direction.
The second maximum corresponds to the downwind direction, and the two minima are
in the crosswind directions displaced slightly towards the second maximum direction.
With an increase in the incidence angle, the difference between the two maxima and the
difference between the maxima and minima become so significant that this feature can
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be used for the retrieval of the wind direction over the water. The horizontal transmit
and receive polarization is used as it provides greater upwind/downwind differences
in the NRCS values of a GMF, especially at medium incidence angles, than the vertical
transmit and receive polarization [2,3], and so it allows for the more precise retrieval of the
wind direction.

Let a GMF be presented in the form of Equation (1). Then, in the case of circular NRCS
sampling using an airborne scatterometer with a rotating antenna at a single incidence angle,
wind vector retrieval is performed by solving the following system of N equations [16,37]:

σ◦(U, θ, α + ψ1) = A(U, θ) + B(U, θ) cos(α + ψ1) + C(U, θ) cos(2(α + ψ1)),
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
σ◦(U, θ, α + ψi) = A(U, θ) + B(U, θ) cos(α + ψi) + C(U, θ) cos(2(α + ψi)),
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
σ◦(U, θ, α + ψN) = A(U, θ) + B(U, θ) cos(α + ψN) + C(U, θ) cos(2(α + ψN)),

(3)

where i =
→

1, N, and N = 360◦/∆αs; σ◦(U, θ, α + ψi) is the measured NRCS sample corre-
sponding to i-th azimuth sector, and ψi is the direction of the i-th azimuth sector counted
from the aircraft’s course ψ (measured clockwise from the north).

Consequently, for wind vector estimation in the case of circular NRCS sampling simul-
taneously at several incidence angles, the following system of equations was presented in
previous research [17]:

σ◦(U, θ1, α + ψ1) = A(U, θ1) + B(U, θ1) cos(α + ψ1) + C(U, θ1) cos(2(α + ψ1)),
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
σ◦(U, θ1, α + ψi) = A(U, θ1) + B(U, θ1) cos(α + ψi) + C(U, θ1) cos(2(α + ψi)),
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
σ◦(U, θ1, α + ψN) = A(U, θ1) + B(U, θ1) cos(α + ψN) + C(U, θ1) cos(2(α + ψN)),
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
σ◦(U, θj, α + ψ1) = A(U, θj) + B(U, θj) cos(α + ψ1) + C(U, θj) cos(2(α + ψ1)),
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
σ◦(U, θj, α + ψi) = A(U, θj) + B(U, θj) cos(α + ψi) + C(U, θj) cos(2(α + ψi)),
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
σ◦(U, θj, α + ψN) = A(U, θj) + B(U, θj) cos(α + ψN) + C(U, θj) cos(2(α + ψN)),
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
σ◦(U, θK , α + ψ1) = A(U, θK) + B(U, θK) cos(α + ψ1) + C(U, θK) cos(2(α + ψ1)),
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
σ◦(U, θK , α + ψi) = A(U, θK) + B(U, θK) cos(α + ψi) + C(U, θK) cos(2(α + ψi)),
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
σ◦(U, θK , α + ψN) = A(U, θK) + B(U, θK) cos(α + ψN) + C(U, θK) cos(2(α + ψN)),

(4)

where j =
→

1, K, and K is the number of observed incidence angles; σ◦(U, θj, α + ψi) is the
measured NRCS sample at the respective incidence angle number j and azimuth sector
number i.

Equations (3) and (4) provide the upwind direction, so the result needs to be converted
to the measured wind direction ψw. The conversion is performed as follows [38]:

ψw = ψ− α± 180◦ (5)

Our previous evaluation of sea wind measurements with a circular NRCS sampling
scheme, in the cases of single and several incidence angles, proved that wind retrieval
accuracies can be increased if several incidence angles are used simultaneously [17]. The
NRCS sampling scheme also predetermines the wind retrieval method’s maximum altitude.
The circular scheme of NRCS sampling needs a whole 360◦ azimuth observation of the
water surface. The wind and wave conditions in the observed area need to be identical
in all of its parts to perform the wind retrieval algorithm based on Equations (3) or (4).
Typically, the wind and wave conditions are assumed to be effectively identical in an
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area with dimensions not exceeding 15–20 km. For example, the method’s applicable
maximum altitudes for wind retrieval with a circular NRCS sampling scheme at a single
incidence angle are approximately 17.3 km and 5.77 km at 30◦ and 60◦ incidence angles,
respectively [17].

Recently, we suggested using another NRCS sampling scheme based on semicircular
observations to increase the maximum altitude suitable for the wind retrieval method [30].
The whole 360◦ azimuth observation swath is divided into left and right halves (left-
side and right-side semicircular schemes) relative to the aircraft’s course (ground track).
This previous investigation was performed for the case of a single incidence angle and
demonstrated that the semicircular scheme for NRCS sampling is also feasible for sea wind
vector measurements. It allows for doubling the wind retrieval method’s maximum altitude
while still achieving wind measurement accuracies similar to the accuracies provided by
the circular NRCS sampling scheme, but this requires integrating triple the number of
NRCS samples for each azimuth sector [30].

The gain of the semicircular NRCS sampling scheme in comparison with the circular
NRCS sampling scheme in providing the maximum altitude of the wind retrieval method’s
applicability can be seen in Figure 2.
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As the ground strip of the semicircular NRCS sampling scheme is half as wide as
the ground strip of the circular NRCS sampling scheme, the maximum altitude of the
method’s applicability is doubled in the semicircular NRCS sampling scheme compared to
the circular NRCS sampling scheme.

Here, we explore the idea that a further improvement in wind retrieval accuracies
with semicircular NRCS sampling can be achieved by using NRCS samples obtained in
the same vertical plane simultaneously at several incidence angles, instead of the single
incidence angle used previously [30]. In this new approach, the system of equations for
wind retrieval with the right-side semicircular scheme, simultaneously at several incidence
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angles, can be written as follows, halving the number of azimuth sectors from Equation set
(4) for circular sampling:

σ◦(U, θ1, α + ψ1) = A(U, θ1) + B(U, θ1) cos(α + ψ1) + C(U, θ1) cos(2(α + ψ1)),
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
σ◦(U, θ1, α + ψi) = A(U, θ1) + B(U, θ1) cos(α + ψi) + C(U, θ1) cos(2(α + ψi)),
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
σ◦(U, θ1, α + ψN/2+1) = A(U, θ1) + B(U, θ1) cos(α + ψN/2+1) + C(U, θ1) cos(2(α + ψN/2+1)),
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
σ◦(U, θj, α + ψ1) = A(U, θj) + B(U, θj) cos(α + ψ1) + C(U, θj) cos(2(α + ψ1)),
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
σ◦(U, θj, α + ψi) = A(U, θj) + B(U, θj) cos(α + ψi) + C(U, θj) cos(2(α + ψi)),
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
σ◦(U, θj, α + ψN/2+1) = A(U, θj) + B(U, θj) cos(α + ψN/2+1) + C(U, θj) cos(2(α + ψN/2+1)),
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
σ◦(U, θK, α + ψ1) = A(U, θK) + B(U, θK) cos(α + ψ1) + C(U, θK) cos(2(α + ψ1)),
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
σ◦(U, θK, α + ψi) = A(U, θK) + B(U, θK) cos(α + ψi) + C(U, θK) cos(2(α + ψi)),
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
σ◦(U, θK, α + ψN/2+1) = A(U, θK) + B(U, θK) cos(α + ψN/2+1) + C(U, θK) cos(2(α + ψN/2+1)).

(6)

Thus, in the case of an airborne rotating-antenna scatterometer, the use of the semi-
circular NRCS sampling scheme along with NRCS sampling simultaneously at several
incidence angles can be applied to wind vector recovery during a flight over the sea.

3. Results and Discussion

To evaluate the potential of wind retrieval with a semicircular NRCS sampling scheme
in the case of simultaneous observation at several incidence angles, we conducted Monte
Carlo simulations. The simulations of the wind retrieval were performed using Equation
set (6) above, a Rayleigh power (exponential) distribution, and a GMF, as per Equation (1),
with the Ku-band GMF coefficients for the horizontal transmit and receive polarization
using Equation (2).

For the considered semicircular NRCS sampling scheme, the procedure for wind
retrieval from the measured azimuth NRCS consisted of solving Equation set (6) using
a searching procedure within the ranges of the values of possible solutions to find the
wind speed and upwind direction, which was then converted into the (navigational) wind
direction using Equation (5).

To compare the wind retrieval results obtained for the semicircular NRCS sampling
scheme with several incidence angles to our earlier results for a circular scheme [17], we
considered the same incidence angles of interest, 30◦, 35◦, 40◦, 45◦, 50◦, 55◦, and 60◦, and
the same 2–30 m/s range of wind speeds. Schematically, the semicircular observation with
the considered incidence angle combinations’ geometries within the right-side semicircular
scheme are presented in Figure 3.

An azimuth sectors’ width of 5◦ was assumed for the azimuth NRCS curves, and
so the semicircular right-side NRCS curve (azimuths from 0◦ to 180◦) was divided for
N = 37 azimuth sectors. In the earlier experiments, the circular NRCS curve (azimuths from
0◦ to 355◦) was divided for N = 72 azimuth sectors [17].

For each azimuth sector, 261 “measured” NRCSs were generated for the semicircular
NRCS sampling scheme using the Equation (1) GMF with the coefficients from Equation
set (2) and taking into account the random NRCS variations and instrument noise. This
number of integrated samples was chosen for the simulations to reach wind retrieval
accuracies similar to the case of the circular NRCS sampling scheme when only 87 samples
were integrated in the azimuth sector. This is needed since the semicircular NRCS sam-
pling scheme uses only half the number of azimuth sectors than the circular one, which
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could consequently lead to an increase in wind recovery errors and even wind direction
ambiguities.
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(d) case of 4 neighboring incidence angles; (e) case of 7 neighboring incidence angles; (f) particular
case of 3 incidence angles of 30◦, 45◦, and 60◦.

The retrieval of the wind direction using a scatterometer, especially a satellite scat-
terometer providing NRCS sampling from several azimuth directions, and also at different
incidence angles, can produce ambiguous results [39,40]. As it is desirable to avoid am-
biguities, or at least reduce the possibility of their appearance, we mainly analyzed the
maximum errors to demonstrate that the wind retrieval method also provides an unam-
biguous estimation of the wind direction.

The simulations were completed assuming 0.2 dB instrument noise. Thirty indepen-
dent trials were performed for each combination of the wind speed and azimuth angle for
each given incidence angle. The semicircular NRCS sampling scheme’s simulation results
appear in full in the appendixes, and the results are summarized in Figure 4. They show
that the maximum wind speed error tends to decrease when the incidence angle increases,
as does the maximum error in the wind direction.
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The simulation results with the semicircular NRCS sampling scheme at a single
incidence angle are presented in Appendix B (Figures A2–A8, respectively, at incidence
angles from 30◦ to 60◦ with a 5◦ step). The maximum errors of the wind recovery were
0.74 m/s and 5.2◦ at the 30◦ incidence angle, 0.78 m/s and 4.8◦ at the 35◦ incidence angle,
0.7 m/s and 5◦ at the 40◦ incidence angle, 0.67 m/s and 5.3◦ at the 45◦ incidence angle,
0.73 m/s and 4.7◦ at the 50◦ incidence angle, 0.7 m/s and 4.2◦ at the 55◦ incidence angle,
and 0.65 m/s and 4.2◦ at the 60◦ incidence angle.

The semicircular NRCS sampling scheme simulation results at two neighboring in-
cidence angles are shown in Appendix C (Figures A9–A14, respectively, at the following
incidence angle combinations: (30◦, 35◦); (35◦, 40◦); (40◦, 45◦); (45◦, 50◦); (50◦, 55◦); and
(55◦, 60◦)). The wind estimation maximum errors were 0.6 m/s and 4.4◦ at the (30◦, 35◦) in-
cidence angle combination, 0.62 m/s and 4.6◦ at the (35◦, 40◦) incidence angle combination,
0.49 m/s and 4.6◦ at the (40◦, 45◦) incidence angle combination, 0.51 m/s and 3.9◦ at the
(45◦, 50◦) incidence angle combination, 0.5 m/s and 4.6◦ at the (50◦, 55◦) incidence angle
combination, and 0.42 m/s and 3.5◦ at the (55◦, 60◦) incidence angle combination.

The results for the semicircular NRCS sampling scheme at three neighboring incidence
angles are shown in Appendix D (Figures A15–A19, respectively, at the following incidence
angle combinations: (30◦, 35◦, 40◦); (35◦, 40◦, 45◦); (40◦, 45◦, 50◦); (45◦, 50◦, 55◦); and (50◦,
55◦, 60◦)). The maximum errors were 0.56 m/s and 4.3◦ at the (30◦, 35◦, 40◦) incidence
angle combination, 0.59 m/s and 4.5◦ at the (35◦, 40◦, 45◦) incidence angle combination,
0.44 m/s and 4.5◦ at the (40◦, 45◦, 50◦) incidence angle combination, 0.47 m/s and 3.7◦ at
the (45◦, 50◦, 55◦) incidence angle combination, and 0.43 m/s and 4.5◦ at the (50◦, 55◦, 60◦)
incidence angle combination.

The results for the semicircular NRCS sampling scheme simulation at four neighbor-
ing incidence angles are depicted in Appendix E (Figures A20–A23, respectively, at the
following incidence angle combinations: (30◦, 35◦, 40◦, 45◦); (35◦, 40◦, 45◦, 50◦); (40◦, 45◦,
50◦, 55◦); and (45◦, 50◦, 55◦, 60◦)). The wind recovery maximum errors were 0.55 m/s and
4.3◦ at the (30◦, 35◦, 40◦, 45◦) incidence angle combination, 0.57 m/s and 4.5◦ at the (35◦,
40◦, 45◦, 50◦) incidence angle combination, 0.42 m/s and 4.5◦ at the (40◦, 45◦, 50◦, 55◦)
incidence angle combination, and 0.41 m/s and 3.6◦ at the (45◦, 50◦, 55◦, 60◦) incidence
angle combination.

The results for the semicircular NRCS sampling scheme at seven neighboring incidence
angles for wind estimation are shown in Appendix F (Figure A24, at the following incidence
angle combination: (30◦, 35◦, 40◦, 45◦, 50◦, 55◦, 60◦)). The maximum errors were 0.53 m/s
and 4.2◦ at this incidence angle combination.

In addition, the wind retrieval maximum errors were evaluated for the semicircular
NRCS sampling scheme in the particular case of three incidence angles when the highest
difference in the incidence angle between the neighboring incidence angles in the given
incidence angle ranged from 30◦ to 60◦, which was 15◦, took place. The results of the simu-
lation are shown in Appendix G (Figure A25, for the following combination of incidence
angles: (30◦, 45◦, and 60◦)). The maximum errors in this particular case were 0.71 m/s
and 5.1◦.

The simulation results presented in Appendices B–G also display the horizontal strips
with the higher and lower wind retrieval errors. Their presence was due to the semicircular
NRCS sampling scheme, because in this specific sampling scheme only a half of the full
azimuth (circular) NRCS curve is obtained, so three of four extremes of the full azimuth
NRCS curve (corresponding to the GMF main maximum, second maximum, and two
minima) do not always fall into an observed semicircular sector. This leads to an increase in
the wind retrieval errors under certain azimuth angles, which can be seen as the horizontal
strips in Appendices B–G. Therefore, we had to take this effect into account, mainly by
analyzing the maximum errors.

The simulation results obtained with the semicircular NRCS sampling scheme, shown
in Figure 4, clearly show that NRCS sampling simultaneously from several neighboring
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incidence angles increases the wind speed and direction retrieval accuracy in comparison
with the single incidence angle case.

From Figure 4, we can see that wind recovery simultaneously using all the given
incidence angles (i.e., 30◦, 35◦, 40◦, 45◦, 50◦, 55◦, and 60◦) produced better wind speed
retrieval accuracy than with a single incidence angle. Its improvement was 0.18 m/s on
average in the range of the considered incidence angles. Such an improvement is significant
for the wind scatterometer. However, we can also see that the combination of seven
incidence angles had little impact on the accuracy of the wind direction retrieval, as the
improvement was on average 0.6◦ only. Thus, we can conclude that the simultaneous use
of these seven incidence angles for wind retrieval is not the best way to improve the overall
wind retrieval accuracies with the semicircular NRCS sampling scheme.

In addition, from Figure 4 we can see that the two, three, and four incidence angle
combinations provided increased wind measurement accuracies, especially for the wind
speed retrieval, with an increasing number of simultaneously used incidence angles in the
semicircular NRCS sampling scheme. Predominantly, the simultaneous use of three and
four incidence angles provided the lowest values of the maximum errors for wind speed
and direction recovery in the incidence angles’ range of interest, with four incidence angles
generally performing best of all. Compared to the single incidence angle case, the accuracy
improvement in the case of three incidence angles was 0.21 m/s on average for wind speed
retrieval and 0.5◦ on average for recovery of the wind direction. At the same time, the
accuracy improvement in the case of four incidence angles on average was 0.22 m/s for
wind speed retrieval and 0.7◦ for wind direction recovery.

However, the combination of two incidence angles produced slightly higher wind
recovery errors compared with the combinations of three and four incidence angles but
significantly fewer wind retrieval errors than occurred for a single incidence angle. The
accuracy improvement was 0.17 m/s on average for the wind speed retrieval and 0.3◦ on
average for the wind direction recovery in the case of two incidence angles compared to
the single incidence angle case. Therefore, the combination of two incidence angles can be
considered a simpler alternative to the simultaneous use of three or four incidence angles
for the improvement of wind retrieval accuracies.

Regrettably, the black, dashed line in Figure 4 also shows that the semicircular NRCS
sampling scheme at three incidence angles, possessing the highest 15◦ difference in the
incidence angle between the neighboring incidence angles in the given incidence angles’
range from 30◦ to 60◦ (i.e., 30◦, 45◦, 60◦) actually did not improve the wind retrieval
accuracies even in comparison with the worst single incidence angle case.

Despite some shortcomings in improving the accuracy of the wind measurements at
some combinations of the incidence angles, all of the simulated cases demonstrated that
the wind retrieval accuracies were better than their typical values of ±2 m/s and ±20◦ for
scatterometers [41].

This outcome, of course, was expected by analogy to our previously obtained results
with circular NRCS sampling schemes using multiple incidence angles [17]. For a direct
comparison with our new semicircular results, the previous circular NRCS sampling
scheme’s results [17] are reproduced here in Figure 5.

Comparing the simulation results for the semicircular NRCS sampling scheme
(Figure 4) with the wind retrieval results with a circular NRCS sampling scheme
(Figure 5), we can see that the semicircular scheme provides wind retrieval accuracies
similar to those achievable with the circular scheme when increased approximately three
times the number of the NRCS samples integrated in each azimuth sector compared to
the circular scheme used. There is a tendency for the wind retrieval accuracy to increase
when increasing the incidence angle in the semicircular scheme, but this is not as strongly
pronounced as in the circular case. Thus, these results also prove the feasibility of the semi-
circular scheme for wind measurements over the sea in the considered 30◦–60◦ incidence
angle range.



Remote Sens. 2023, 15, 1613 11 of 28

Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 41 
 

 

circular scheme for wind measurements over the sea in the considered 30°–60° incidence 
angle range. 

 
(a) 

 
(b) 

Figure 5. Circular NRCS sampling scheme results: (a) wind speed maximum error; (b) wind direc-
tion maximum error. The black asterisks are for the case of a single incidence angle; the blue lines 
are for the case of 2 incidence angles; the purple lines are for the case of 3 incidence angles; the 
green lines are for the case of 4 incidence angles; the red line is for the case of 7 incidence angles; 
and the black, dashed line with dots is for the particular case of the 3 incidence angles of 30°, 45°, 
and 60° [17]. 

In spite of the need for a higher number of integrated NRCS samples, approximately 
three times higher, the semicircular NRCS sampling scheme has an undeniable ad-

Figure 5. Circular NRCS sampling scheme results: (a) wind speed maximum error; (b) wind direction
maximum error. The black asterisks are for the case of a single incidence angle; the blue lines are for
the case of 2 incidence angles; the purple lines are for the case of 3 incidence angles; the green lines
are for the case of 4 incidence angles; the red line is for the case of 7 incidence angles; and the black,
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In spite of the need for a higher number of integrated NRCS samples, approximately
three times higher, the semicircular NRCS sampling scheme has an undeniable advantage
in enabling twice the maximum altitude for wind recovery compared to the circular scheme
of NRCS sampling [30]. This is especially important for wind measurements over the
sea’s surface by airborne high-altitude conical scanning radars with a scatterometer mode,
e.g., HIWRAP.

While keeping similar wind retrieval accuracies, the semicircular NRCS sampling
scheme provides maximum altitudes for wind measurement for the combinations of 1, 2, 3,
and 4 neighboring incidence angles, beginning with the incidence angle of 30◦, as 34.6, 28.4,
23.8, and 20 km, respectively. These values were obtained taking into account that the wave
and wind conditions are identical in all the parts of the area observed, with typical sizes
of approximately 15–20 km. By comparison, the circular NRCS sampling scheme enables
wind measurement maximum altitudes of only 17.3, 14.2, 11.9, and 10 km, respectively.

Therefore, with regard to high-altitude conical scanning radar, this allows not only for
increasing the maximum altitude for wind retrieval but also improves the accuracy of wind
measurements by the several incidence angles used simultaneously in the semicircular
NRCS sampling scheme. The simplest combination that allows for approximately the
highest altitude and increased wind retrieval accuracies is the use of the (30◦, 35◦) incidence
angle combination (similar to that shown in Figure 1), allowing for a maximum altitude for
wind retrieval of approximately 28.4 km.

At the other extreme, the lowest maximum altitudes for wind measurement are for
a combination of seven neighboring incidence angles and for a three incidence angle
combination having the highest 15◦ incidence angle difference between the neighboring
incidence angles in the given 30◦–60◦ incidence angle range. This lowest wind measurement
maximum altitude is 11.54 km at the semicircular NRCS sampling scheme and 5.77 km at
the circular NRCS sampling scheme.

Thus, we have again confirmed that the semicircular NRCS sampling scheme can also
be used for wind measurements over the sea as effectively as a conventional circular scheme,
given the appropriate choices for the numbers and angles of the antenna beams. Wind
retrieval using a semicircular scheme allows for doubling the wind measurement maximum
altitude compared to the circular scheme and can provide wind retrieval accuracies similar
to those of the circular NRCS sampling scheme, although it requires approximately three
times the number of NRCS samples integrated in each observed azimuth sector. The largest
incidence angle in the incidence angle combination determines the maximum altitude of the
wind retrieval method applicable in accordance with the azimuth NRCS sampling scheme.
As the semicircular NRCS sampling scheme requires approximately a three times higher
number of integrated NRCS samples compared to the typical semicircular NRCS sampling
scheme, it may also need several antenna turns to gather the required (i.e., increased)
number of NRCS samples, which could lead to increasing the time of the wind retrieval.

As with other wind scatterometers, in the considered azimuth NRCS sampling schemes,
to provide a more accurate measurement of the wind direction, it is desirable to use a GMF
of the band that provides the largest difference between the two maxima and the largest
difference between the maxima and minima. For example, from that point of view, the
considered Ku-band GMF is better than the X-band GMF and even more preferred than the
C-band GMF. Moreover, the horizontal transmit and receive polarization is preferable to
the vertical transmit and receive polarization, as it provides greater upwind/downwind
differences in the NRCS values of a GMF, and so it allows for better retrieval of the
wind direction.

4. Conclusions

We studied the applicability of a semicircular NRCS sampling scheme when both
single and multiple incidence angles are applied for wind recovery over the sea’s surface
by airborne scatterometers or multimode radars operated in scatterometer mode and
having a rotating-beam antenna. The importance of this study lies in improving the wind
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measurement accuracy of airborne scatterometers, as well as in increasing the maximum
altitude of the wind retrieval method’s applicability. Such an outcome opens up the
possibility of the approach’s use on high-altitude aircraft or UAVs.

This study extends our previous results and further proves the feasibility of the
semicircular NRCS sampling scheme, allowing wind retrieval accuracies similar to those
achievable with a circular NRCS sampling scheme, although it requires increasing by a
factor of three the number of NRCS samples integrated in each azimuth sector compared
to the circular NRCS sampling scheme. Nevertheless, our semicircular NRCS sampling
scheme allows for maximum altitudes for wind retrieval twice as high as those possible
with a circular scheme.

Our simulations have demonstrated that the accuracy of wind speed measurements
tends to increase with the increase in the incidence angle in the considered 30◦–60◦ inci-
dence angle range. A similar trend is also shown for wind direction retrieval. It is also
important that all various combinations of incidence angles in the simulated cases consid-
ered demonstrated that the wind retrieval accuracies are better than the typical ±2 m/s
and ±20◦ scatterometer accuracy [41].

The new NRCS semicircular sampling results in this paper showed that the simultane-
ous application of several incidence angles increases wind retrieval accuracy, especially
when three or four incidence angles are used. However, an increase in the incidence angle
number leads to a maximum altitude decrease in the wind recovery method, as the largest
incidence angle in the incidence angle combination determines the maximum altitude of
the wind retrieval method’s applicability accordingly with the azimuth NRCS sampling
scheme. The highest maximum altitudes of the method for wind estimation over the sea
are achieved with a single incidence angle.

In the semicircular NRCS sampling scheme, the wind estimation method’s maximum
altitudes allowed for the considered combinations of one, two, three, and four neighbor-
ing incidence angles, beginning with an incidence angle of 30◦, are 34.6, 28.4, 23.8, and
20 km, respectively. By contrast, a circular NRCS sampling scheme supports only half the
maximum altitudes at 17.3, 14.2, 11.9, and 10 km [17].

The maximum altitude, the lowest for wind measurements, is 11.54 km in the semicir-
cular NRCS sampling scheme, and 5.77 km in the circular scheme. These correspond to the
seven neighboring incidence angle combination, with the combination of three incidence
angles having the highest 15◦ incidence angle difference between the neighboring incidence
angles in the given 30◦–60◦ incidence angle range.

With regard to high-altitude conical scanning radar, our semicircular NRCS sampling
scheme allows not only for increasing the maximum altitude for wind recovery but also
improves the accuracy of wind measurements by the several incidence angles simulta-
neously used. The simplest solution in this way allowing for almost the highest altitude
and increased wind retrieval accuracies was the simultaneous use of two neighboring
incidence angles. The best combination encountered in our experiments in this case was
the simultaneous use of two neighboring incidence angles. Namely, the (30◦, 35◦) inci-
dence angle combination provides a maximum altitude for wind retrieval of approximately
28.4 km, which is not much lower than the highest maximum altitude of 34.6 km of the
wind estimation method achievable at observations with a single 30◦ incidence angle.

The obtained results are important for optimizing the NRCS sampling procedure for
wind measurements over the sea with airborne rotating-beam scatterometers or multi-
mode radars with a scatterometer mode, including airborne high-altitude conical scanning
radars, as well as for new remote sensing systems’ development, extending their applica-
bility for joint and standalone measurements in the interest of operational oceanography,
meteorology, and navigation.
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Appendix A

These are the examples of the Ku-band GMF azimuthal curves using Equation (1)
with coefficients for the horizontal transmit and receive polarization from Equation set (2).
The NRCS azimuthal curves for the wind speeds of 2, 5, 10, 15, 20, 25, and 30 m/s at the
incidence angles of 30◦, 45◦, and 60◦ are shown in Figure A1a–c, respectively.
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wind speeds of 2, 5, 10, 15, 20, 25, and 30 m/s at an incidence angle of (a) 30◦; (b) 45◦; (c) 60◦.

Appendix B

Here, we present the wind retrieval simulation results, when a single incidence angle
is used along with the system of Equation set (6). The simulation as performed using
the following conditions. The observed semicircular azimuth NRCS curve comprised
N = 37 azimuth sectors. Each azimuth sector was of the 5◦ azimuth width and located at the
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directions from 0◦ to 180◦ relative to the flight direction (i.e., ground track) of aircraft with a
5◦ azimuth step. The simulation was completed with the assumption of 0.2 dB instrument
noise and 261 NRCS samples integrated for each azimuth sector. The wind speed varied
from 2 m/s to 30 m/s. The results obtained at the incidence angles from 30◦ to 60◦ with a
5◦ step are shown in Figures A2–A8.
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Appendix C

These are the wind retrieval simulation results when two neighboring incidence angles
are simultaneously used along with the system of Equation set (6). The simulation was
performed with the following conditions. The observed semicircular azimuth NRCS curve
comprised N = 37 azimuth sectors. Each azimuth sector was of a 5◦ azimuth width and
located at the directions from 0◦ to 180◦ relative to the flight direction (i.e., ground track)
of aircraft with a 5◦ azimuth step. The simulation was completed with the assumption
of 0.2 dB instrument noise and 261 NRCS samples integrated for each azimuth sector.
The wind speed varied from 2 m/s to 30 m/s. The results obtained at the following two
incidence angle combinations (30◦, 35◦); (35◦, 40◦); (40◦, 45◦); (45◦, 50◦); (50◦, 55◦); and (55◦,
60◦) are shown in Figures A9–A14.
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Appendix D

These are the wind retrieval simulation results when three neighboring incidence
angles are simultaneously used along with the system of Equation set (6). The simulation
was performed at the following conditions. The observed semicircular azimuth NRCS
curve comprised N = 37 azimuth sectors. Each azimuth sector was of a 5◦ azimuth width
and located at the directions from 0◦ to 180◦ relative to the flight direction (i.e., ground track)
of aircraft with a 5◦ azimuth step. The simulation was completed with the assumption of
0.2 dB instrument noise and 261 NRCS samples integrated for each azimuth sector. The
wind speed varied from 2 m/s to 30 m/s. The results obtained at the following three
incidence angle combinations (30◦, 35◦, 40◦); (35◦, 40◦, 45◦); (40◦, 45◦, 50◦); (45◦, 50◦, 55◦);
and (50◦, 55◦, 60◦) are shown in Figures A15–A19.
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Figure A18. Semicircular wind retrieval results at the (45°, 50°, 55°) incidence angle combination. 
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comprised N = 37 azimuth sectors. Each azimuth sector was of a 5◦ azimuth width and
located at the directions from 0◦ to 180◦ relative to the flight direction (i.e., ground track)
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incidence angle combinations (30◦, 35◦, 40◦, 45◦); (35◦, 40◦, 45◦, 50◦); (40◦, 45◦, 50◦, 55◦);
and (45◦, 50◦, 55◦, 60◦) are shown in Figures A20–A23.
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Appendix F

These are the wind retrieval simulation results when seven neighboring incidence
angles are simultaneously used along with the system of Equation set (6). The simulation
was performed with the following conditions. The observed semicircular azimuth NRCS
curve comprised N = 37 azimuth sectors. Each azimuth sector was of a 5◦ azimuth width
and located at the directions from 0◦ to 180◦ relative to the flight direction (i.e., ground track)
of aircraft with a 5◦ azimuth step. The simulation was completed with the assumption of
0.2 dB instrument noise and 261 NRCS samples integrated for each azimuth sector. The
wind speed varied from 2 m/s to 30 m/s. The results obtained at the seven incidence angle
combination (30◦, 35◦, 40◦, 45◦, 50◦, 55◦, 60◦) are shown in Figure A24.
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Appendix G

These are the wind retrieval simulation results with three neighboring incidence
angles when the highest 15◦ difference of the incidence angle between the neighboring
incidence angles in the given incidence angles’ range from 30◦ to 60◦ takes place and the
system of Equation set (6) is used. The simulation was performed with the following
conditions. The observed semicircular azimuth NRCS curve comprised N = 37 azimuth
sectors. Each azimuth sector was of a 5◦ azimuth width and located at the directions from
0◦ to 180◦ relative to the flight direction (i.e., ground track) of aircraft with a 5◦ azimuth
step. The simulation was completed with the assumption of 0.2 dB instrument noise and
261 NRCS samples integrated for each azimuth sector. The wind speed varied from 2 m/s
to 30 m/s. The results obtained at the three incidence angles of 30◦, 45◦, and 60◦ are shown
in Figure A25.
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