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Abstract: This study aims to explore the joint usage of multisource scatterometer measurements in
polar sea water and ice discrimination. All radar backscatter measurements from current operating
satellite scatterometers are considered, including the C-band ASCAT scatterometer on board the
MetOp series satellites, the Ku-band scatterometer on board the HY-2B satellite (HSCAT), and the
Ku-band scatterometer on board the CFOSAT satellite (CSCAT). By performing seven experiments
that use the same support vector machine (SVM) classifier method but with different input data, we
find that the SVM model with all available HSCAT, CSCAT, and ASCAT scatterometer data as inputs
gives the best performance. In addition to the SVM outputs, we employ the image erosion/dilation
techniques and area growth method to reduce misclassifications of sea water and ice. The sea ice
extent obtained in this study shows a good agreement with the National Snow and Ice Data Center
(NSIDC) sea ice concentration data from the years 2019 to 2021. More specifically, the sea ice areas are
closer to the sea ice areas calculated using 15% as the threshold for NSIDC sea ice concentration data
in both Arctic and Antarctic. The sea ice edges acquired by the multisource scatterometer show a
close correlation with sea ice edges from the Sentinel-1 Synthetic Aperture Radar (SAR) images. In
addition, we found that the coverage of multisource scatterometer data in a half-day is usually above
97%, and more importantly, the sea ice areas obtained on the basis of half-day and daily multisource
scatterometer data are very close to each other. The presented work can serve as guidance on the
usage of all available scatterometer measurements in sea ice monitoring.

Keywords: multisource scatterometer; radar backscatter measurements; sea ice extent; support vector
machine; classification

1. Introduction

Polar sea ice is a sensitive indicator and an important driver of global climate change [1].
For instance, the presence of sea ice affects sea surface albedo and reduces the amount of
solar radiation absorbed by the Earth’s surface [2]. The spatial and temporal distributions
of polar sea ice derived from remote sensing data are important for monitoring global
climate change, weather forecasting, and marine transportation [3]. Studies have shown
that the sea ice extent is declining in the Arctic, while the trend in the Antarctic is not so
clear [4]. In recent years, the study of polar sea ice based on spaceborne active/passive
microwave measurements has been receiving increasing attention.

Sea ice extent is a parameter used to describe sea ice conditions and is usually de-
termined on the basis of data from two types of sensors, namely passive microwave
radiometers [5] and active microwave scatterometers [6]. Compared to optical remote
sensing, microwave sensors are an important means, because they are not seriously affected
by sunlight and the atmosphere. The radiometers observe the natural emission from the
surface in the range of microwave frequencies, while the scatterometers observe the energy
reflected from a transmitted pulse. Microwave scatterometer backscattering characteris-
tics are closely related to the structural properties and composition of sea ice, including
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dielectric constant, sea ice thickness, temperature, snow thickness, humidity, and salinity,
etc. These parameters are related to the type and age of sea ice and external climate change,
and also to the type of incident electromagnetic waves (polarization, wavelength, angle of
incidence, and azimuth), and these differences are used to distinguish sea ice from open
seawater to obtain sea ice coverage and sea ice boundaries. To date, several sources of
sea ice product (e.g., sea ice extent, sea ice type) have been developed that are based on
space-borne microwave scatterometer data [7–10].

In 1997, Yueh et al. found that the scattering characteristics at the Ku-band could
be used to distinguish sea ice from open seawater [11]. Shortly afterward, Remund and
Long developed an algorithm for the automatic identification of sea ice and open water
using Ku-band NSCAT (NASA Scatterometer) backscatter measurements [12,13]. This
technique is widely known as the Remund/Long-NSCAT (RL-N) algorithm, and it utilizes
the backscatter differences in polarization, azimuth, and temporal variation to detect and
classify sea ice [14]. However, the accuracy of the RL-N algorithm may be affected by
strong winds and summer sea ice melt [15]. In 2014, Remund and Long imporved the
RL-N algorithm for Ku-band QuikSCAT/SeaWinds scatterometer data for the classification
of sea ice and water. The adapted RL-N algorithm uses an iterative maximum-likelihood
classifier with fixed thresholds, and the residual misclassifications are corrected using an
image processing technique with the consideration of the patterns of sea ice growth and
melting [7].

The radar backscatter data from C-band scatterometers (e.g., scatterometer on board
the European Remote Sensing (ERS) satellites or MetOp series satellites) are also widely
used in the detection of sea ice extent. For instance, researchers from the French Research
Institute for Exploitation of the Sea (IFREMER) used the ERS scatterometer measurements
for sea ice detection [16,17]; they proposed two characteristic parameters, which are based
on the fact that the scattering anisotropy of sea ice is stronger than that of open seawater,
and sea ice backscattering varies less with the incidence angle than does open seawater
backscattering. For ice/water discrimination, Breivik et al. proposed a new characteristic
parameter utilizing the MetOp-A/ASCAT antenna configuration, which provides three
different look angles for the same surface spot [18]. Combing this ASCAT parameter
and passive microwave (SSM/I) data, a Bayesian multi-sensor approach was proposed
by the Exploitation of Meteorological Satellites (EUMETSAT) Ocean and Sea Ice Satellite
Application Facility (OSI SAF) to operationally produce global sea ice edge products [19].
The Royal Netherlands Meteorological Institute (KNMI) developed a Bayesian approach for
sea ice detection using radar backscatter measurements from the C-band scatterometers on
board the ERS or MetOp satellites [20]; this approach employs geophysical model functions
(GMFs) of sea surface wind and sea ice [21,22]. Belmonte Rivas et al. extended the Bayesian
sea ice detection algorithm to QuikSCAT data [23], and the new results provided valuable
information for the characterization of sea ice during the melting season. By comparison,
the RL-N algorithm uses a 4-D hyperspace of measurement vectors, while the KNMI
algorithm uses geophysical model functions of the sea ice and open seawater in the original
space (i.e., the radar backscatter measurements at different polarization and azimuths).

In addition, there have been increasing studies applying various machine learning
algorithms to polar sea ice monitoring in recent years [24–26]. Corresponding algorithms
are trained based on multi-parameter vectors and models are built for distinguishing sea
ice from open seawater. The results all validate that machine learning has a promising
ability to detect sea ice.

To date, the space-borne scatterometers operate at either the C-band or the Ku-band.
The viewing geometry (e.g., incidence angle, looking azimuth) of the scatterometer is
also a major consideration in the application of sea ice monitoring. The C- and Ku-band
scatterometers have their own advantages and shortcomings in monitoring polar sea ice.
However, previous studies have used either C-band or Ku-band space-borne scatterometer
measurements. The performance of sea ice and water discrimination carried out using mul-
tiple sources of active microwave measurements remains unexplored. Our study combines
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a diversity of active microwave measurements in terms of radar frequency (both C and
Ku), polarization, azimuth, and incidence angle. It is worth mentioning that the Multidisci-
plinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition provided
the unique opportunity to acquire a benchmark data set of multifrequency Ka-, Ku-, X-, C-
and L-band in situ microwave scatterometer data (https://www.eumetsat.int/MOSAiC,
accessed on 10 March 2023). The MOSAiC expedition aims to characterize the physical
properties of the snow and ice cover comprehensively in the central Arctic over an entire
annual cycle. In this study, the radar backscatter measurements from multisource satel-
lite scatterometers, including the C-band ASCAT scatterometer on board the MetOp-A,
MetOp-B, and MetOp-C satellites, the Ku-band scatterometer on board the HY-2B satellite
(HSCAT), and the Ku-band scatterometer on board the CFOSAT satellite (CSCAT) will
be jointly used in the detection of polar sea ice extent. This manuscript is structured as
follows: In Section 2, the multisource scatterometer data and preprocessing are introduced.
In Section 3, the selection and calculation of the characteristic parameters based on the mul-
tisource scatterometer data are presented. Then, the sea ice extent mapping and validation
are presented in Section 4. Lastly, conclusions are drawn in Section 5.

2. Data Sources and Preprocessing

In this study, radar backscatter measurements from the current operating Ku-band
HY-2B/HSCAT and CFOSAT/CSCAT, and C-band ASCAT on board the MetOp-A, MetOp-
B, and C satellites are used. More relevant information about the scatterometer data is
presented in Table 1.

Table 1. Information regarding the three scatterometers used in this study.

Scatterometer HSCAT CSCAT ASCAT

Frequency (GHz) 13.4 (Ku-Band) 13.256 (Ku-Band) 5.3 (C-Band)

Polarization HH, VV HH, VV VV

Incidence Angle (◦) 41.5, 48.5 28–51 25–65

Swath Width (km) 1400, 1800 1000 500 × 2 (on each side)

Spatial Resolution of σ0 (km) 25 × 32 25 × 25 12.5 × 12.5

2.1. Data Sources
2.1.1. Scatterometer data

The HSCAT scatterometer uses two rotating pencil beams, and the normalized radar
cross-section (σ0) is alternately measured using the horizontally polarized (HH) inner
beam and the vertically polarized (VV) outer beam at incidence angles of 41.5◦ and 48.5◦,
respectively. Notably, the swath width on the ground of the VV-beam (1800 km) is larger
than that of the HH-beam (1400 km). The HSCAT radar backscatter data contained in
the level 1B (L1B) data products are used for the period of 1 January 2019–31 December
2021. The resolution of the σ0 data is equal to the size of the “footprint” on the ground, i.e.,
approximately 25 km × 32 km.

The China–France Oceanography Satellite (CFOSAT), carrying the Ku-band scatterom-
eter (CSCAT), was launched in October 2018. The CSCAT scatterometer uses rotating
fan-beams. The σ0 data are alternately measured by the HH inner beam and the VV outer
beam at incidence angles ranging from 28◦ to 51◦ [27]. In this study, the Level 2A (L2A)
data products, containing the σ0 data corresponding to each wind vector cell, with a grid
size of 25 km × 25 km, were used in the period of 1 January 2019–31 December 2021.

The MetOp-A, MetOp-B, and MetOp-C satellites, carrying the C-band ASCAT scat-
terometer, were successfully launched in 2006, 2012, and 2018, respectively. The ASCAT
scatterometer is equipped with three antennas on each side (corresponding to a 500 km
swath width on the ground), all of which use VV polarization at incidence angles ranging
from 25◦ to 65◦. In addition, the σ0 measurements are performed by antennas pointing

https://www.eumetsat.int/MOSAiC
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towards azimuth angles of 45◦, 90◦, and 135◦ with respect to the satellite track. The ASCAT
data are taken from the L2B products in BUFR (Binary Universal Form for the Representa-
tion) format, with resolutions of 12.5 km. In addition, since the differences in σ0 among
ASCAT-A, ASCAT-B, and ASCAT-C are negligible (i.e., within 0.2 dB), all ASCAT data will
be treated as a single data source hereafter.

2.1.2. Sea Ice Concentration Data from NSIDC

The National Oceanic and Atmospheric Administration/National Snow and Ice Data
Center (NOAA/NSIDC) climate data record (CDR) of passive microwave sea ice concen-
tration (SIC) dataset from the NSIDC will be used to train our algorithm and validate
the results [28]. The CDR SIC is based on two well-established algorithms for sea ice
concentration estimation: the NASA Team (NT) algorithm and the NASA Bootstrap (BT)
algorithm. The CDR algorithm mixes the NT and BT outputs by selecting higher SIC values
for each grid cell. The NSIDC SIC data are provided in a polar stereographic projection at a
grid cell size of 25 km × 25 km for the northern and southern hemispheres separately.

2.1.3. SAR Imagery

SAR images provide geographic information on sea ice with high spatial resolution
and will be used to verify the results of the sea ice edges in localized areas [29,30]. The polar
view website (www.polarview.aq, accessed on 10 March 2023) provides full-resolution
SAR image data observed by Sentinel-1 and RADARSAT-2 over the previous 30 days. In
addition, the SAR images are used as a polar stereographic projection, which is consistent
with the projection of sea ice maps. The Sentinel-1 SAR images with 5 m resolution will be
used to verify the boundary of open seawater and ice.

2.2. Data Preprocessing

In this study, the radar backscatter (σ0) measurements from the HSCAT, ASCAT, and
CSCAT scatterometers are first projected onto polar ice maps with a resolution of 25 km.
The sizes of the Arctic and Antarctic ice maps are 448 × 304 and 332 × 316, respectively.
Figure 1 shows the number of ASCAT σ0 data in each pixel of the (a) Antarctic and (b) Arctic
ice maps on 4 January 2020. The overlying black lines are the land boundary. We can clearly
see that the number of observations is relatively lower at lower latitudes.

In addition, radar backscatters from ASCAT and CSCAT scatterometers are measured
at various incidence angles (as shown in Table 1). The backscattering characteristics of sea
water and ice have different responses to incidence angle. Thus, the dependence of σ0 data
on incidence angle can also be used as a characteristic parameter in the classification of sea
water and ice. In practice, a linear function of incidence angle (θ) is usually used to express
the incidence angle dependence [12]:

σ0(θ) = σ0
40 + K ∗ (θ − 40◦) (1)

where σ0 is in decibels; σ0
40 denotes the backscatter coefficients at an incidence angle of 40◦;

and K is the slope of the linear function and gives the dependence of the backscattering
coefficients on the incidence angle.

www.polarview.aq
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Figure 1. A number of ASCAT measurements in (a) Antarctic and (b) Arctic areas on 4 January 2020.
The coastlines are overlaid in black, while the color bar represents the count of measurements in each
pixel. The image sizes of the Arctic and Antarctic ice maps are 448 × 304 and 332 × 316, respectively.

3. Characteristic Parameters for Sea Ice Monitoring

In this study, we aim to explore the merits of combing C-band and Ku-band scatterom-
eter measurements in the application of sea water and ice classification. However, the
HSCAT, CSCAT, and ASCAT scatterometers operate at different viewing geometries, in
terms of incidence angle and antenna looking direction. Thus, we could not extract the
same characteristic parameters from every scatterometer. Nevertheless, we propose using
seven characteristic parameters, including horizontal and vertical polarization backscatter
measurements (σ0

HH and σ0
VV), standard deviations of horizontal and vertical polariza-

tion measurements (∆σ0
HH and ∆σ0

VV), polarization ratio (PR), the dependence of σ0 on
incidence angle (K, as defined in Equation (1)), and the ratio of backscatter measure-
ments between C-band and Ku-band (named band ratio (BR)). The availability of these
parameters from the scatterometers is listed in Table 2. Figure 2 shows the normalized
distribution of sea ice and open seawater in the Antarctic region for each parameter. These
distributions are counted from December 2019 to February 2020 based on multisource
scatterometer measurements.

Table 2. Information on the characteristic parameters of multisource scatterometer.

Scatterometers
Characteristic Parameters

σ0
HH σ0

VV ∆σ0
HH ∆σ0

VV PR KVV BR

HSCAT
√ √ √ √ √

— —

CSCAT
√ √ √ √ √ √

√
ASCAT —

√
—

√
—

√

Note: PR is the polarization ratio of VV and HH; BR is the band ratio of C-band and Ku-band; KVV is the slope
defined in Equation (1) for VV polarization.
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HH (dB), (b) σ0
VV (dB), (c) standard deviations of HH measurements, ∆σ0
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VV (dB), (e) polarization ratio of backscatter measure-
ments PR, (f) backscatter dependence on incidence angle KVV , and (g) band ratio of VV backscatter
measurements, BR.

Comparing the horizontal and vertical polarized backscatter measurements of sea ice
and sea water, different scattering mechanisms play a role [3,7]. Over sea water, backscatter
coefficients are primarily dependent on wind speed. The backscatter coefficients are usually
quite different between sea water under low wind speed (<5 m/s) conditions and sea ice.
For a given measuring geometry (e.g., HSCAT), the backscatter coefficients of sea ice are
usually stronger than those of water; see the yellow and purple curves shown in Figure 2a.

In contrast to other active radar systems (e.g., SAR), scatterometers can measure the
same ground area at multiple azimuth angles; this was originally required by the sea surface
wind retrieval mission. It has been demonstrated that the azimuthal modulation is much
smaller over polar sea ice than over open seawater [31,32]. The daily standard deviations
of horizontal and vertical polarization backscatter (∆σ0

HH and ∆σ0
VV) can represent the

azimuthal and temporal dependences of surface backscatter, as shown in Figure 2c,d.
In previous studies, polarization ratios obtained on the basis of dual-polarization radar

measurements from the SEASAT scatterometer, the QuikSCAT/SeaWinds scatterometer,
and the HY-2A scatterometer have been used for the identification of sea ice and open
seawater [3,11–14]. In this study, the PR is defined as the ratio of σ0

VV and σ0
HH , i.e.,

PR = σ0
VV/σ0

HH . PR is sensitive to surface-scattering mechanisms. For example, on a calm
seawater surface, σ0

VV is larger than σ0
HH . For rough surface dielectric layers with randomly

oriented scatterers such as ice or snow, multiple reflections of the incident radiation tend
to depolarize it. Therefore, σ0

VV and σ0
HH are closer. As shown in Figure 2e, PR is usually

higher over sea ice than that over sea water. However, the increased surface roughness of
sea water caused by high sea surface winds may lead to a higher PR.

Since the ASCAT and CSCAT scatterometers are able to measure the same pixel of the
sea ice map at various incidence angles, the dependence of measurements on incidence
angle can be represented by the slope (denoted as KVV) of a linear fitting function. In
general, the backscattering amplitude of sea water decreases more rapidly with increasing
incidence angle than that of sea ice [13]. This is in line with the plots shown in Figure 2f,
i.e., most slope values are negative, and the slopes of sea water are relatively steeper than
those of sea ice.

In this study, we propose a new parameter named band ratio (BR). BR is defined as
the ratio of vertically polarized backscatter measurements from the Ku-band to that from
C-band. More specifically, BR is the ratio of the CSCAT σ0

VV measurement to the ASCAT



Remote Sens. 2023, 15, 1630 8 of 21

σ0
VV measurement. As shown in Figure 2g, the BR of open water is mostly larger than that

of sea ice.

4. Sea Ice Extent Mapping and Validation
4.1. SVM Sea Ice and Water Discrimination Algorithm

In this study, the support vector machine (SVM) classifier will be used to discriminate
between sea ice and water. The SVM classifier is a supervised learning algorithm that
converts the input parameter vector into a high-dimensional space and finds the optimal
linear classification surface in this new high-dimensional space to solve nonlinear problems.
An increasing number of studies are being published using the SVM method to solve
problems relating to remote sensing image classification [30,33,34].

In order to train the SVM classifier, the NSIDC SIC data from NSIDC are used as
a priori knowledge of sea water and ice. If the SIC is greater than or equal to 15%, the
corresponding pixels of ice maps are identified as sea ice, while if the SIC is less than 15%,
the corresponding pixels of ice maps are identified as sea water. The training dataset was
collected during the year 2020, and we randomly picked 20,000 samples for both water and
ice per month. A set of characteristic parameters were derived from multiple scatterometer
data containing a priori information on sea ice and open water (as shown in Table 2), where
the sample dataset D can be expressed as follows:

D = {(x1, y1), (x2, y2), . . . , (xi, yi)}, xi ∈ Rn, yi ∈ {−1, 1} (2)

where xi represents the input samples, which consist of features for classification, and yi
is the class label of xi. In this study, there are only two categories of sea ice and seawater,
i.e., yi is set to +1 and −1. SVM is used to find an optimal classification hyperplane in
high-dimensional space, denoted by Equation (3):

ωT ∗ x + b = 0 (3)

At this point, the maximum classification interval algorithm can be formulated as
Equation (4): {

min 1
2‖ω‖

2

yi
(
ωT ∗ xi + b

)
≥ 1

(4)

Equation (4) can be solved using the Lagrange multiplier method. That is, by first
adding Lagrange multipliers αi ≥ 0 to each constraint, the Lagrange function for this
problem can be rewritten as Equation (5):

L(ω, b, α) =
1
2
‖ω‖2 +

n

∑
i=1

αi

(
1− yi

(
ωT ∗ xi + b

))
(5)

The optimal solution ω∗ for ω and the optimal solution b∗ for b are obtained using
the sequential minimum optimization algorithm once, for any sample, the output of the
classification has been determined by the decision function. The nonlinear change in
the transformation from a low-dimensional vector to a high-latitude space is achieved
by defining appropriate inner product functions, i.e., kernel functions. In this study, the
Gaussian kernel function is chosen. Figure 3 shows the flowchart of sea ice monitoring
using the SVM classifier with multisource scatterometer measurements used in this study.
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4.2. SVM Model Experiments

In order to identify the best scheme for combining HSCAT, CSCAT, and ASCAT data,
we performed seven SVM model experiments (as shown in Table 3). The experiments used
the same SVM classifier method, but with different input data, and the experiments were
divided into three categories for the sake of comparison. To evaluate the performance of the
experiments, 100,000 samples were randomly picked as the test dataset for each experiment.

Category 1 compares the results from HSCAT, ASCAT, and joint usage of HSCAT and
ASCAT. For HSCAT data, four parameters (the same as the well-known QuikSCAT RL-N
algorithm) are used. For ASCAT data, three parameters are used. In addition, to make the
results more comparable, we only work on the pixels for which both HSCAT and ASCAT
data are available.

In category 2, the results from CSCAT, ASCAT, and joint usage of CSCAT and ASCAT
are compared. Both CSCAT and ASCAT are able to provide incidence-angle-dependent
backscatter measurements, thus making available the parameters of KVV and BR.

Category 3 assembles all of the parameters from the HSCAT, CSCAT, and ASCAT
measurements. In categories 1 and 2, the same pixels of daily sea ice maps were used
for different experiments. Thus, we are solving the same problem (sea water and ice
discrimination) using the same SVM method, but with different model inputs.
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Table 3. Categories of SVM model experiments.

Category ID Parameters from Scatterometer Data

1

I HSCAT: PR, σ0
HH , ∆σ0

HH , ∆σ0
VV

II ASCAT: σ0
VV , ∆σ0

VV KVV

III HSCAT + ASCAT

2

IV CSCAT: PR, σ0
HH , ∆σ0

HH , ∆σ0
VV , KVV

V ASCAT: σ0
VV , ∆σ0

VV , KVV

VI CSCAT + ASCAT + BR

3 VII HSCAT + ASCAT + CSCAT + BR

Figure 4a,b show the overall accuracy (OA) of the SVM model derived from the test
set in the Arctic for Antarctic, respectively. It can be observed that the OA of the SVM
model with only ASCAT as inputs (i.e., experiments II and V) is clearly lower than that of
the other models. The OA of the models with data from a single Ku-band (experiments I
and IV) scatterometer as inputs is higher than the models with data from a single C-band
scatterometer as inputs. The model with only CSCAT data as inputs (experiment IV)
performs slightly better than the model with only HSCAT data as inputs (experiment I). For
model experiments with joint usage of scatterometer data (experiments III, VI, and VII), the
OAs of models with both Ku-band and C-band scatterometer data are higher than those of
models using Ku-band or C-band scatterometer data alone. It is noted that, with sufficient
training samples, the SVM model with all available scatterometer data as inputs show the
best performance among all seven model experiments.

In summary, the SVM model (i.e., experiment VII) in which all available characteristic
parameters from HSCAT, CSCAT, and ASCAT measurements were used as inputs demon-
strated the best performance and will be used hereafter for sea water and ice discrimination.
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4.3. Evaluation of Sea Ice Distribution Model Precision

A more detailed evaluation of the selected SVM model (i.e., experiment VII), which
inputs all available characteristic parameters from HSCAT, CSCAT, and ASCAT measure-
ments, is performed. Again, we use NSIDC SIC data as reference data. The evaluation
indicators include accuracy, precision, recall, and F1 score. The accuracy gives the overall
prediction accuracy of the model. The precision is defined as the proportion of correctly pre-
dicted samples to total samples. The recall represents the probability of the samples being
correctly predicted. The F1 score is an index used to measure the accuracy of a classification
model that takes into account both the precision and recall of the classification model.

It should be noted that, in the confusion matrix, the true positive (TP), true nega-
tive (TN), false positive (FP) and false negative (FN) is defined differently for each type.
Therefore, the values of any precision, recall and F1 scores can be defined as follows:

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 score =
2 ∗ Precision ∗ Recall

Precision + Recall
(8)

Figures 5 and 6 show the time series of sea ice monitoring model evaluation indicators
for the Arctic and Antarctic for the years 2019 to 2021, respectively. Table 4 presents the
average classification accuracy, where an overall accuracy of 98.41% was obtained for the
Antarctic and 97.15% for the Arctic; the accuracy of the model in the Antarctic region is
higher than in the Arctic. In the Arctic, the precision for sea ice was slightly lower in
summer and early autumn than in the other seasons. Similarly, the precision for open water
in summer was significantly lower than that in other seasons in the Antarctic. This may be
due to the fact that melting sea ice in summer increases the content of seawater in sea ice
and increases its dielectric constant [6,13], causing the backscattering coefficient of sea ice
to be similar to that of seawater, meaning that the model has a lower sea ice identification
rate in summer.
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Table 4. Summary of averaged classification accuracies obtained using an SVM classifier in the Arctic
and Antarctic from 2019 to 2021.

Region Classification
(%)

Precision
(%)

Recall
(%)

F1 Score
(%)

Overall Accuracy
(%)

Arctic
Open water 98.79 97.31 98.04

97.15
Ice 91.89 95.77 93.76

Antarctic
Open water 99.09 98.66 98.97

98.41
Ice 93.21 96.69 94.82

Figure 7a shows an example of the sea water and ice discrimination results (26 Septem-
ber 2020) using the trained SVM model with multisource scatterometer data as inputs. The
NSIDC SIC data on the same date are shown in Figure 7c. Overall, the sea water and ice are
well distinguished. However, some pixels in the open sea, closed ice, or near the ice edge
are misclassified. Therefore, a residual classification error correction processing is needed
to improve the outputs of the SVM model.
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4.4. Reduction of Residual Classification Errors

Because of the presence of strong winds or other physical mechanisms, the SVM model
outputs can contain some misclassifications. For instance, some of the open seawater pixels
are misclassified as sea ice, and sea ice pixels are misclassified as open seawater, as shown
in Figure 7a. In this study, we employ the area growth technique (see [13]) to reduce the
number of misclassifications. The area growth technique starts with a small region known
to be within the ice area and expands this region until it reaches the outer edge of the
ice region and cannot be expanded further. This eliminates pixels in the sea ice region
misclassified as open seawater. Conversely, growth can be performed from the outer edge
towards the inner region until the sea ice edge is reached. This eliminates pixels within
the open seawater region that are misclassified as sea ice. Once area growth is complete,
there may be some residual noise at the sea ice edge, which is where the “indentation”
or “squeeze” observation error needs to be resolved using image erosion and dilation
techniques [35]. In this study, 100 km per day was used as the maximum sea ice growth or
ablation rate threshold between two consecutive days and produced good results in terms
of eliminating misclassification for sea ice growth and ablation. The SVM model outputs
following misclassification correction are shown in Figure 7b. It is clear that most of the
misclassified pixels in the closed sea ice and the open sea have been corrected.

4.5. Sea Ice Mapping and Validation

Using the sea water and ice discrimination method presented above, we processed
the daily Arctic and Antarctic daily ice maps from 1 January 2019 to 31 December 2021.
Figure 8 shows the geographical distribution of sea ice results derived from a multisource
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scatterometer for some days in the year 2020. In Figure 8a–d, the Antarctic Sea ice im-
ages for minimum sea ice extent (20 Feb), expansion (10 Jun), maximum sea ice extent
(26 Sep), and melt phase (09 Dec) demonstrate the seasonal variation in the ice pack. In
Figure 8e–h, the Arctic Sea ice images for the maximum sea ice extent (01 Mar), retreat
(13 May), minimum sea ice extent (13 Sep), and growth (10 Nov) are presented. In addition,
the polynyas off the Antarctic coast can also be clearly detected, as shown in Figure 8d for
the date of 9 Dec 2020.
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Figure 8. Example daily polar sea ice extent obtained on the basis of multisource scatterometer data.
Gray pixels represent land; white pixels represent water; blue pixels represent sea ice; and the black
hole in the Arctic is due to there being no coverage by scatterometers.

4.5.1. Comparison with NSIDC SIC

In this study, sea ice extent data retrieved using our SVM-based algorithm are com-
pared with the NSIDC SIC operational products. As described in Section 2, we are working
on the same polar projection and spatial resolution as the NSIDC SIC products. The daily
polar sea ice extents from the SVM model and the NSIDC CDR ice extents (with SIC
thresholds of 15% and 30%) from January 2019 to December 2022 are shown in Figures 9
and 10, respectively. The seasonal variations in ice extent can be clearly observed in the
multisource scatterometer data, which show synchronous changes with NSIDC CDR ice
extent. Furthermore, we calculated the mean absolute differences (MAD) and standard
deviation (SD) of the sea ice extent for this comparison, and some quantitative details are
given in Table 5. In Table 5, JFM represents January, February, and March; AMJ represents
April, May, and June; JAS represents July, August, and September; OND represents October,
November, and December. Sea ice extents from the multisource scatterometer data are
closer to the NSIDC SIC 30% sea ice extent during OND in the Arctic, and closer to the
NSIDC SIC 15% ice extent during the other phases. In the Antarctic, the sea ice extents
determined on the basis of the multisource scatterometer data are closer to the NSIDC
SIC 30% sea ice extent during the AMJ and JAS periods, while the MAD and SD results
during the JFM and OND periods show good agreement with the NSIDC SIC 15% sea ice
extent. We find that in the Antarctic or Arctic, the sea ice extent obtained by the multisource
scatterometer is overestimate the NSIDC SIC 15% and 30% sea ice extent from the late
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stages of sea-ice ablation to the beginning of the sea-ice growth phase. Our results may
detect more low-concentration sea ice.
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Figure 9. The validation results of the Arctic from 2019 to 2021; (a) daily sea ice area for NSIDC SIC
15% ice extent (blue line), NSIDC SIC 30% ice extent (red line), and multisource scatterometer (yellow
line), respectively, and (b) sea ice area difference between multisource scatterometer and NSIDC SIC
15% (blue line), and between multisource scatterometer and NSIDC SIC 30% (red line).
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Figure 10. The validation results for the Antarctic from 2019 to 2021: (a) daily sea ice area for NSIDC
SIC 15% ice extent (blue line), NSIDC SIC 30% ice extent (red line), and multisource scatterometer
(yellow line), respectively, and (b) sea ice area difference between multisource scatterometer and
NSIDC SIC 15% (blue line), and between multisource scatterometer and NSIDC SIC 30% (red line).
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Table 5. Statistics of the comparisons between multisource scatterometer and NSIDC SIC 15% and
30% sea ice extents for different periods: All refers to all data; JFM is for the months January, February,
and March; AMJ is for months April, May, and June; JAS is for months July, August, and September;
and OND is for months October, November, and December.

Region Comparisons
All JFM AMJ JAS OND

MAD SD MAD SD MAD SD MAD SD MAD SD

Arctic
×106 km2

Compared to
NSIDC SIC 15% 0.121 0.119 0.122 0.085 0.109 0.115 0.128 0.108 0.126 0.097

Compared to
NSIDC SIC 30% 0.149 0.132 0.141 0.129 0.161 0.127 0.194 0.136 0.109 0.088

Antarctic
×106 km2

Compared to
NSIDC SIC 15% 0.166 0.146 0.159 0.126 0.153 0.066 0.217 0.096 0.133 0.176

Compared to
NSIDC SIC 30% 0.347 0.251 0.488 0.201 0.145 0.047 0.208 0.094 0.567 0.276

Notes: MAD is short for mean absolute differences; the units of statistics are ×106 km2; the smallest number in
each category is in bold font.

As listed in Table 5, our results are closer to the NSIDC SIC data with a threshold of
15% in most seasons. Overall, the differences in sea ice extent between our results and the
NSIDC SIC 15% are smaller in both the Arctic and Antarctic. The MAD and SD are 0.121 and
0.119 million km2, respectively, in the Arctic, while these are 0.166 and 0.146 million km2,
respectively, in the Antarctic.

4.5.2. Comparison with SAR

Sentinel-1 SAR images have a high spatial resolution (5 m), and open seawater and ice
can be easily distinguished visually. SAR images are usually used for evaluating the edge of
open water and closed ice. In this study, four Sentinel-1 SAR images (horizontally polarized
at C-band) were used, and the results are shown in Figure 11. To facilitate comparison, the
sea ice edge lines from the multisource scatterometer data and the NSIDC SIC 15% sea ice
overlapped. In the SAR images, the backscattering amplitude of the sea ice is generally
stronger than that of the sea water, and, as a result, the pixels of sea ice are brighter than
those of water.

Figure 11a,b show the distribution of sea ice in the local region in the Arctic on
4 December and 24 December 2021. Figure 11c,d show the local surface types in the
Antarctic region on 29 November and 18 December 2021. It should be noted that SAR
images give a view of sea water and ice at a single point in time, while our results and
NSIDC SIC products are determined on the basis of satellite passes over the course of a
single day. From Figure 11a,b, it can be seen that the multisource scatterometer sea ice
boundary fits more closely to the SAR image sea ice boundary than the NSIDC SIC 15% sea
ice boundary, while Figure 11c,d show that the SAR image sea ice boundary lies between
the multisource scatterometer sea ice boundary and the NSIDC SIC 15% sea ice boundary,
and the vast majority of the sea ice boundaries in Figure 11 are overlapping. Despite the
lower-resolution conditions, it can be seen that the sea ice edges from the multisource
scatterometer data are in good agreement with the SAR images.
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Figure 11. Sentinel-1 SAR images showing sea water and ice distributions. Sea ice edge lines from the
multisource scatterometer data (red lines) and NSIDC SIC 15% sea ice (yellow lines) are overlapped,
with the blue line being the common overlay sea ice edge line. The image acquisition dates were:
(a) 4 December 2021, (b) 24 December 2021, (c) 29 November 2021, and (d) 18 December 2021.

4.5.3. Test for Half-Day Retrievals

Since the multi-source scatterometer offers more complete coverage of observations
compared to the single-source scatterometer, thus resulting in a larger number of observa-
tions being acquired in the projected grid of the Arctic and Antarctic, it would therefore be
possible to shorten the time interval to 12 h (separation at noon) in an attempt to retrieve
half-day sea ice extents on the basis of multisource scatterometer data.

We selected the multisource scatterometer data for October 2020 to try this out. In
this section, we exclude polar regions over land and the polar hole (no scatterometer data
coverage). In Figures 12a and 13a, it can be seen that the data coverages of multisource
scatterometer data (i.e., containing at least one scatterometer measurement within the grid
cell) as a percentage are above 97% at both half-day and one-day time intervals in both
the Antarctic and the Arctic. In Figures 12b and 13b, it can be observed that the half-day
sea ice area is in good agreement with the daily sea ice area. The MAD of differences
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between daily and half-day sea ice areas are 0.088 and 0.131 million km2 for the Arctic and
Antarctic, respectively.
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5. Conclusions

In this study, we performed sea ice and water discrimination based on multisource scat-
terometer measurements using an SVM model. In contrast to previous studies, multisource
scatterometer measurements from the C-band MetOp/ASCAT, Ku-band HY-2B/SCAT, and
CFOSAT/CSCAT were used in combination. The scatterometer measurements were used
to determine characteristic parameters, including polarization ratio (σ0

VV/σ0
HH), horizontal

and vertical polarization backscatter measurements (σ0
HH and σ0

VV), the standard deviations
of horizontal and vertical polarization measurements (∆σ0

HH and ∆σ0
VV), the dependence

of σ0
VV on incidence angle (KVV), and the newly proposed band ratio (σ0

VV−Ku/σ0
VV−C).

SVM is a supervised classification method that can handle linear, nonlinear, and high-
dimensional samples and produce good generalizability. Therefore, the SVM classifier was
selected for sea ice monitoring in this study. In order to determine the best scheme for the
use of these multisource scatterometer data, seven SVM model experiments (see Table 3)
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were performed. We found that the SVM model using all available scatterometer data
as inputs performed best among the seven model experiments. In addition to the SVM
outputs, we employed image erosion/dilation techniques and the area growth method to
reduce the number of misclassifications of sea water and ice. Using our sea water and ice
discrimination algorithm, we produced sea ice products for the years from 2019 to 2021;
and the results obtained for sea ice extent and edges were verified against NSIDC SIC and
Sentinel-1 SAR images. The verification results show that the multisource scatterometer
sea ice extent lay between the NSIDC SIC 15% and 30% sea ice extent, and there was good
agreement with the NSIDC SIC 15% sea ice extent while showing similar seasonal trends to
the sea ice area of the NSIDC SIC data. The multisource scatterometer sea ice edge showed
a good correlation with the sea ice edge determined on the basis of the SAR images. We also
tested the possibility of providing shorter-time-interval (i.e., half-day) sea ice products on
the basis of multi-source scatterometer data, and we found that the half-day coverage was
above 97%, while half-day sea ice area was in good agreement with the daily sea ice area.

In conclusion, this study verified the capability of multisource scatterometer measure-
ments for the monitoring of polar sea ice. In the near future, the ability of scatterometer
measurements for the monitoring of polar sea ice will be enhanced, as a result of the en-
hanced configurations of recently launched (FY-3E/WindRAD) and planned scatterometers
in terms of radar frequency, polarization, incidence angle, and spatial resolution. Studies on
sea ice type classification in polar areas using multisource scatterometers will be introduced
in our future work.
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