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Abstract: Detection, classification, and localization (DCL) techniques are being developed around the
use of a phase-measuring sidescan sonar (PMSS) in very shallow waters. The instrument simultane-
ously collects co-located sidescan imagery and bathymetry in extreme shallow water environments
(<1 m water depth). In addition to the bathymetry, an uncalibrated backscatter data set, referred
to in this study as phase-measured, bathymetry-mode backscatter (BMB), is also collected. This
BMB has been minimally addressed in the literature. This work aims to use the BMB to detect and
differentiate between various objects on the seafloor, including unexploded ordnance (UXO), and
placed marine debris, or ‘clutter’, such as lobster pots, boat propellers, and car tires. The differenti-
ation from multiple seafloor types including mud, sand, and gravel and different types of objects
occurred through various statistical analysis methods including binomial and multinomial logistic
regression. These methods have been applied to create statistical regression models for several vari-
ables including phase-measured, bathymetry-mode backscatter amplitude, sounding distance from
nadir, per-ping vessel roll, orientation offset between per-ping vessel heading and object orientation,
and all combinations of these variables. These statistical tests produced maximum likelihood odds
ratios of individual soundings being associated with the various seafloor and object types. Results
from these analyses shows that DCL could be possible with phase-measured, bathymetry-mode
backscatter from this PMSS system, though these results may not be representative for all bed types
and phase-measuring systems.

Keywords: nearshore; acoustic; DCL; UXO

1. Introduction

Acoustic instruments have long been used for both seafloor mapping as well as object
detection on both the seafloor and in the water column [1–4]. These shallow water coastal
systems are often difficult to map with acoustic techniques due to the inaccessibility of
large survey vessels and persistent presence of hazards [5–8]. Despite the difficulty of
access for traditional survey vessels, the importance of coastal systems to both humans and
global ecological health is critical. Acoustic seafloor mapping is becoming an increasingly
important part of our understanding and interaction with these coastal systems [9–13].

Of particular importance is unexploded ordnance (UXO) in shallow waters [14]. Rem-
nants of past wars and military training exercises, these UXOs are a concern in about
4.0 × 106 ha (1.0 × 107 ac) in United States waters [15,16]. This poses not only a risk to
human life but to the environment as well due to leaching chemicals from the UXO [17].
The ability to quickly and accurately detect, classify, and locate these UXO using varying
types of acoustic data would aid in their safe and effective removal and disposal [14].
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With the recognition of the importance of coastal areas and the risk that UXOs pose, the
United States Department of Defense (DoD) has funded Woods Hole Oceanographic Insti-
tution (WHOI), the Center for Coastal Studies (CCS), and the University of Massachusetts,
Boston, to work on an Environmental Security Technology Certification Program (ESTCP)
grant (MR19-5079) to improve methods for the detection, classification, and localization
(DCL) of UXO using phase-measuring sidescan sonars. From this larger study, additional
analyses of the collected acoustic data have ensued. One example of these analyses using
phase-measured, bathymetry-mode backscatter to model sounding characteristics for the
purpose of DCL are presented here.

The goal of this study is to determine the efficacy of phase-measured, bathymetry-
mode backscatter (BMB) from a phase-measuring sidescan sonar (PMSS) system for the
DCL of UXO in different bottom types. Although DCL of UXO has been attempted through
various other types of acoustic methods [14], the use of BMB from PMSS systems has not
been addressed in the peer-reviewed literature.

2. Methods
2.1. Phase-Measuring Sidescan Sonar

Phase-measuring sidescan sonars (PMSS), sometimes referred to as ‘interferometric’
sonar, phase-measuring bathymetric sonar, or multi-phase echo sounders, use a single
transducer element with multiple receiver elements on independent port and starboard
arrays [5,18–21]. This technique allows for the collection of both true sidescan imagery,
swath bathymetry, and BMB derived from the bathymetric data set, referred to herein as
sidescan backscatter, bathymetry, and BMB, respectively (Figure 1). Borrelli et al. (2021) [5]
discussed examples of the first two data sets with the instrument used here. This paper
discusses the third data set as it is applied to the DCL of UXO for the ongoing project
discussed above.

Figure 1. Comparison of sonar data types from an EdgeTech 6205 PMSS. (Top left): bathymetry.
(Top right): phase-measured, bathymetry-mode backscatter (BMB). (Bottom left): sidescan backscat-
ter (550 kHz). (Bottom right): sidescan backscatter (1600 kHz).

The BMB amplitude used in this study is not the amplitude of a singular returning
waveform but a combined intensity value processed through the manufacturer’s propri-
etary algorithm. The amplitude used in this study is a relative data set, similar to that of
sidescan backscatter. The intensity of the returning sound is not calibrated to a known refer-
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ence or constant across bottom types and will be scaled dynamically throughout the range
of intensities received during a specific survey. This is due to the estimation of the angle
of arrival from the backscattering acoustic energy inherent with the transducer/receiver
array, rather than, for example, the known angle of calibrated multibeam echo sounders
(MBES) or single beam echo sounders (SBES) backscatter [22].

The instrument used in this study was an EdgeTech 6205 dual-frequency, phase-
measuring sidescan sonar (PMSS). This sonar operates simultaneously collecting two fre-
quencies of sidescan backscatter (550 kHz, 1600 kHz) and one frequency of bathymetry and
BMB (550 kHz). Due to the simultaneous collection of these data, they are co-located on the
seafloor and allow for increased survey efficiency negating the need for two independent
systems and the challenges of combining data from two separate systems [5].

The EdgeTech 6205 is a hard-mounted setup which allows for easier shallow water
surveying in water depths less than 5 m when compared to traditionally towed systems.
There is a sound velocity sensor within the housing that allows for the correction for the
speed of sound in water at the surface during the time of the survey with a stated resolution
and accuracy of 0.001 m/s and ± 0.025 m/s, respectively (EdgeTech, 2021, West Wareham,
MA, USA). Attached to the lower housing, there are independent port and starboard
sonar arrays. Each of these sonar arrays are constructed with 11 piezoelectric elements,
of which a single element is used for the transmission of the sound energy (EdgeTech,
2019, West Wareham, MA, USA). For sidescan data, a single transmit element and single
receive element are used, allowing for the collection of traditional sidescan backscatter. For
bathymetric and BMB data, a single transmit element with 10 separate receive elements
for phase differentiation and angle estimation are used. All eleven elements are equally
spaced at approximately one half-wavelength of the transmit frequency (EdgeTech, 2019,
West Wareham, MA, USA). For this study, the single channel range was set at 20 m (40 m
swath), generating a ping frequency of 69.8 Hz yielding a 14.3 ms interval.

2.2. Vessel and Ancillary Equipment

All surveys were conducted using the R/V Marindin, a modified Eastern. The vessel
has an overall length of 8.2 m, with a beam of 2.5 m and typical draft of 0.6 m. This vessel
is equipped with a custom mounting setup located at the bow of the vessel to allow for the
deployment of the sonar, along with a Trimble R10 Real-Time-Kinematic GPS (RTK-GPS),
Teledyne DMS05 motion reference unit (MRU), and HemisphereGPS VS100 vector sensors.
All of the data streams are time-stamped and recorded through Discover Bathymetric,
EdgeTech’s sonar data acquisition software. All electronics are powered via a 2 kW gasoline
generator that provides a pure sine wave. Sound velocity profiles (SVP) are created to
properly georeference the soundings with the specific speed of sound in water for the time
of the survey. This is done with the internal sound velocity sensor within the EdgeTech
6205 for the surface water, as well as with a SonTek CastAway CTD, which is used to collect
conductivity, temperature, and depth measurements by conducting a cast of the device
through the entirety of the water column.

The objects used for DCL in this study include 60 and 81 mm mortar shells and 105
and 155 mm projectile shells, various clutter objects including, but not limited to, lobster
pots, metal cylinders, cinder blocks and tires, and acoustic calibration spheres. The length
and width at the widest point of all UXOs, as well as a relative size comparison can be
seen in Figure 2. All UXOs in this study were provided by the DoD as inert dummies
which have been deactivated with the removal of the explosive ordnance and filled with
wax. The calibration spheres used are a solid aluminum alloy sphere roughly 0.09 m in
diameter. These spheres can act as highly effective scatterers of sound when ensonified
during surveys [3]. This is due in part to some portion of the spherical reflection surface
always being perpendicular to the transducer array.



Remote Sens. 2023, 15, 1685 4 of 20

Remote Sens. 2023, 15, x FOR PEER REVIEW 4 of 21 
 

 

during surveys [3]. This is due in part to some portion of the spherical reflection surface 
always being perpendicular to the transducer array. 

 
Figure 2. Comparative sizes of UXO used throughout the study. 

2.3. Study Site 
This study focuses on the data collected during three trials from the larger study 

(MR19-5079)—trials 4, 5, and 6. All three trial sites for this study are on Cape Cod, MA, 
USA (Figure 3). Trials 4 and 5 take place in Wellfleet, MA, and trial 6 in Provincetown, 
MA. Cape Cod Bay is ideal for these types of investigations due to the variability of inter-
tidal bottom types (mud, sand, and gravel), as well as the mesotidal range (3.07 m) and 
semidiurnal tidal cycles that occur (NOAA, 2022). The tidal range and cycle allow for the 
intertidal deployment and surveying during an early morning low tide, a mid-day, high-
tide vessel-based survey, and an end-of-day, low tide, re-survey and retrieval of objects 
within a single day. 

Figure 2. Comparative sizes of UXO used throughout the study.

2.3. Study Site

This study focuses on the data collected during three trials from the larger study
(MR19-5079)—trials 4, 5, and 6. All three trial sites for this study are on Cape Cod, MA,
USA (Figure 3). Trials 4 and 5 take place in Wellfleet, MA, USA and trial 6 in Provincetown,
MA, USA. Cape Cod Bay is ideal for these types of investigations due to the variability of
intertidal bottom types (mud, sand, and gravel), as well as the mesotidal range (3.07 m)
and semidiurnal tidal cycles that occur (NOAA, 2022). The tidal range and cycle allow
for the intertidal deployment and surveying during an early morning low tide, a mid-day,
high-tide vessel-based survey, and an end-of-day, low tide, re-survey and retrieval of objects
within a single day.

Trial 4 at site 1 took place at Chipman’s Cove in Wellfleet Harbor, Wellfleet, MA,
USA. Chipman’s Cove is a well-protected, low-energy cove within the harbor. Due to the
protected nature of this area, it is able to maintain a layer sediment that behaves cohesively
(Figure 4). This fine-grained material is classified here as mud, since that is the predominant
bed type that the sonar will interact with. The seafloor in this location also contains many
articulate shells and shell fragments, which contrast the softer, fine-grained sediments.

Trial 5 at site 2 took place at Duck Harbor beach in Wellfleet, MA, USA. Duck Harbor
beach has a roughly north-to-south orientation and is fully exposed, though fetch-limited,
to Cape Cod Bay to the west. This beach is a dynamic system that sees seasonal changes in
its bed type, with higher energy waves removing finer-grained sediment to expose gravel
beds in the intertidal region of the beachface. The prevalence of cobble-sized material was
ideal for testing this method in a mixed sand and gravel setting.

Trial 6 at site 3 took place within Provincetown Harbor in Provincetown, MA, USA.
The shoreline of Provincetown Harbor utilized for this study has a roughly east–west
orientation. It is protected by the Provincetown Hook but is open to Cape Cod Bay to the
south. This area has extensive sandy flats, which were used for this study.
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2.4. Data Collection
2.4.1. Site 1, Chipman’s Cove, Wellfleet, MA, USA

Eight UXO objects were used, two of each caliber (60, 82, 105, 155 mm). The mud at
the study site prevented safe access on foot; as a result, the UXOs were not precisely placed
as at other sites with better access. Four UXOs, one of each size was tied together using
the paracord line, with a small buoy on either end of the line for deployment and retrieval,
creating two sets of four UXOs. These two lines of UXOs were deployed from the vessel
onto the seafloor within the survey area.
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Due to the nature of the study site, an RTK-GPS survey was not conducted. An aerial
survey was conducted by a Federal Aviation Administration (FAA) licensed pilot using a
DJI Phantom 4 Pro to create a high-resolution, georectified aerial mosaic and digital surface
model (DSM) of the study site through structure-from-motion photogrammetry techniques.
This allowed the locating of the nose and tail of each UXO from the mosaic to allow further
analysis; see Borrelli et al. (this volume) for details of UAS survey methods.

Once in place, the acoustic survey team prepared track lines in a grid pattern at 5 m
spacing around the study site. The close survey line spacing was designed to ensure an
excessively high rate of overlap in the sidescan backscatter and a sufficient overlap for
100% coverage of bathymetric and BMB data.

2.4.2. Site 2, Duck Harbor, Wellfleet, MA, USA

Forty UXOs and nine clutter objects were used at site 2. The 40 UXOs were placed in a
single north-to-south line along the gravel bed with each size class of UXO being grouped.
The UXOs were aligned north to south as follows: 155 mm, 81 mm, 105 mm, 60 mm and
were spaced roughly 3 m apart with varying orientations. This was done as the survey
vessel could only safely travel in north-to-south directions, parallel to shore, and thus, the
only way to effectively change the angle of ensonification was to change the orientation of
the targets. No changes to orientations were made for the nine clutter objects. They were
placed shoreward and parallel to the UXO. These clutter objects included two types of
lobster pot, two metal cylinders of differing size, a cinder block, an anchor, a car tire, a boat
propeller, and a set of diving weights.

Once all the objects were in place, an RTK-GPS survey was conducted using the
Trimble R10. A GPS point at the nose and tail of each individual UXO, as well as points
for the clutter objects were collected. This site is within the boundaries of the Cape Cod
National Seashore and as such no aerial surveys were conducted at this site due to the
proximity of nesting piping plovers (Charadrius melodus).

After seeding of the intertidal seafloor was completed, the acoustic surveying team
planned survey lines at 5 m spacing over the study site. These survey lines ran roughly
north to south along the study site. As stated above, no east-to-west lines were conducted
at this site as the slope of the made it unsafe for the vessel to travel in this direction.

Once the tide was sufficiently low, the field team returned to the survey site for object
retrieval. This included a repeat RTK-GPS survey of all objects to account for any movement
that may have occurred throughout the tidal cycle. Once these data were collected, all
objects were removed from the study site.

2.4.3. Site 3, Provincetown Harbor, Provincetown, MA, USA

Forty UXOs, fourteen calibration spheres, and eleven clutter objects were used at
site 3. These objects were placed in five separate lines approximately 5 m apart in roughly
a shore-parallel orientation. From north to south, 10 individual UXOs of similar caliber (60,
105, 81, and 155 mm) were placed in single lines with different orientations. In between the
second and third lines of UXO were 11 clutter objects and 14 calibration spheres, the latter
of which were placed in distinct patterned groups of 7 spheres each. The clutter objects
used for this site include two cinder blocks, two lobster pots, a bundle of nylon line, two
metal cylinders of differing sizes, a car tire, diving weights, a boat propeller, and a metal
tube attached to a chain.

At site 2, once all the objects were in place, an RTK-GPS survey was conducted using
the Trimble R10. In addition, an aerial survey similar to that conducted at site 1, but with
many ground control points collected using the R10 helped to produce a high-resolution,
geo-rectified, aerial mosaic and digital surface model (DSM) of site 3.

Once deployment data collection was complete, the acoustic survey team prepared
the vessel platform and planned survey lines based on the placement of the UXO. Survey
lines were prepared in a grid pattern at 5 m spacing running parallel and perpendicular to
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the object lines. Once the tide was sufficiently low, the field team returned to the survey
site for retrieval and re-survey in the same manner as site 2.

2.5. Data Processing

The acoustic data were collected using EdgeTech’s Discover Bathymetric ver. 10.x in
the JSF (.jsf) format. Data processing occurred through EdgeTech’s Discover Bathymetric
ver. 10.x, Chesapeake Technology’s SonarWiz v.7 (SW7), Microsoft Excel, ESRI’s ArcMap
ver. 10.8, R ver. 4.2.0, and RStudio ver. 2022.02.2. All packages in RStudio were downloaded
through the Comprehensive R Archive Network (CRAN) and include mosaic, nnet, sjPlot,
and readr.

Six lines of collected data from each site were used to conduct statistical analyses
discussed below. The JSF data from all sites were collected in stave, or raw, format, which
records the backscattering acoustic energy that return to the sonar within the given swath
width for the survey, regardless of quality or filtering parameters. This allows for the
reprocessing of the JSF data with variations in binning type and resolution, as well as
filtering parameters within EdgeTech’s Discover Bathymetric software. Data processing
methodology was first developed using site 3 data, then similar processing methods were
implemented for data from sites 1 and 2 for analysis. For the purposes of this study, JSF
stave data were reprocessed at the same swath range used for collection during the time
of survey, 20 m for a 40 m full swath. No binning of the soundings was used to produce
data representative of the native resolution of the sonar during the survey. This option
allows for the representation of soundings without influence from nearby soundings in the
binning process that may be more abundant or weighted more heavily in the bathymetric
processing algorithms. Water column and automatic echo strength filtering was applied
during the reprocessing of the data to eliminate soundings that are not representative
of the seafloor or objects as this study does not aim to examine data within the water
column. The signal-to-noise (SNR) filter was set to 20 dB to allow for the filtering of weak
soundings. This value was selected due to the suggestion in EdgeTech’s JSF File and
message description manual which states, “SNR values greater than 20 dB are excellent in
terms of angle estimation quality . . . ” (EdgeTech, 2021, West Wareham, MA, USA). The
quality filter was set to 90%, which allows for the filtering of soundings that are not within
the highest possible quality bin according to EdgeTech’s bathymetric processing algorithm
(EdgeTech, 2021, West Wareham, MA, USA). The Outlier filter was also applied to allow for
the removal of points that are deemed as outliers in EdgeTech’s bathymetric processing
algorithm. This combination of processing parameters was selected so the soundings used
further in the analysis were of the highest possible data quality.

Once the stave data were reprocessed in Discover Bathymetric, the individual JSF
line files were imported into SW7. This software package allows for the processing of
geolocated soundings and the visualization of these data through a bathymetric engine
while accounting for vessel and instrument parameters and the speed of sound throughout
the water column during a survey period through a process called merging. The vessel
parameters for the R/V Marindin, as well as down-cast sound velocity profiles, attributed
to individual survey lines based on the nearest in time, from the survey were used.

Once merged, the BMB data were processed in SW7 with no filtering or manipulation
applied to the data to allow for the least altered data set possible. The data in the immediate
vicinity of the objects were then exported from SW7 using the Export Bathymetry XYZ
function. This function exports a csv file that contains the X, Y, Z, the amplitude of the
BMB sounding in dB, the time and date of collection, and the distance from nadir for each
sounding within the specified survey area, separated by the collection line number.

These individual line files were imported into ESRI ArcMap where they were con-
solidated into a single data set. This data set was then exported as a csv and imported
into RStudio. Using the favstats function [23] for the amplitude of the six-line subset, the
third quartile value of the amplitude was calculated. It was visually observed that the
returning amplitude from the BMB was typically higher than the surrounding seafloor
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for objects. Because of this high amplitude characteristic of the soundings that fall upon
objects, soundings with an amplitude lower than the third quartile value for each survey
were discarded.

Navigation data from the JSF files were exported from SW7 on a per-ping basis. These
navigation data include the ping date, ping time, vessel heading, and vessel attitude (pitch,
roll, and heave). These navigation data were linked to the individual soundings based on
the data that was nearest in time using the VLOOKUP function in Excel. This yielded a csv
file for each survey line with individual soundings with attributed X, Y, Z, amplitude, date,
time, distance to nadir, survey line number, vessel heading, pitch, roll, and heave values.

The csv file was reimported into ESRI ArcMap where they were classified based on
their relative location to objects. For each UXO at sites 2 and 3, the deployment RTK-GPS
points from the nose and tail were used to create a line shapefile representing the UXO.
From this line shapefile, a 25 cm buffer was created to represent the area in which soundings
would be attributed for each UXO. For calibration spheres in site 3, a 25 cm buffer was
created around the deployment RTK-GPS point. Deployment RTK-GPS points for clutter
objects were also connected with line shapefiles, from which a 25 cm buffer was created.
For site 1, because there were no RTK-GPS points for the objects, the georectified aerial
mosaic was used to select points that best represent the nose and tail of the UXO. From these
selections, a 25 cm buffer was created to select points that represent the UXO. The buffer size
was set at 25 cm as this value visually encompassed soundings that appeared to differ from
the surrounding seafloor while also allowing for inaccuracy in the sounding’s geolocation.
An analysis of sidescan backscatter data from the same data set showed a geolocation
accuracy of 52 to 185 mm, with a mean of 90 mm when comparing calculated target
centroids with RTK-GPS centroids [24], confirming the appropriate scale of this buffer.

Once 25 cm buffers were created for all objects, the Select by Location tool was
used to select all soundings that fell within the buffers to classify them. There were three
classifications used for these points: type, class, and object. This was done for all relevant
objects at each site. The type classification indicated whether a point was associated with an
object, regardless of what the object was or the surrounding seafloor. The class classification
indicated whether a point was a UXO (inclusive of all sizes), calibration sphere, clutter
object (inclusive of all clutter), or seafloor. The object classification indicated whether a
point was a calibration sphere, clutter object, 155 mm UXO, 105 mm UXO, 81 mm UXO,
60 mm UXO, or the surrounding seafloor. Seafloor classifications were labeled as mud,
gravel, and sand for sites 1, 2, and 3, respectively.

For all UXOs throughout the three sites, the line shapefiles from RTK-GPS points
were used to calculate the heading of the UXO from nose to tail. This was done using the
COGO toolkit in ArcMap. This UXO orientation was attributed to the respective soundings
within the 25 cm buffer based on the individual classification. For soundings that were
associated with calibration spheres, the heading was set to match that of the vessel heading
taken from the navigational data. All clutter object and seafloor soundings were given an
object heading of 0 as a place holder. An orientation offset between the vessel heading and
orientation of objects was then calculated by subtracting the value of the object orientation
from the vessel heading.

The final product of this data processing is a csv file for each survey containing BMB
soundings from six lines of acoustic data, which have been filtered to just the third quartile
value of the amplitude and higher. Each sounding has an associated X, Y, Z, the amplitude
of the BMB sounding in dB, the time and date of collection, the distance from nadir in
meters, collection line number, the per-ping vessel heading in degrees, pitch in degrees, roll
in degrees, heave in meters, the type, class, and object classifications, an object orientation
in degrees, and finally an object orientation offset from the vessel heading in degrees. From
these data, the localization of objects can occur from the X, Y, and Z data. The detection
and classification of objects will be attempted using statistical methods.
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2.6. Statistical Analysis

Binomial logistic regression (BLR) and multinomial logistic regressions (MLR) were
used for statistical differentiation between the seafloor types and the various objects, as
well as between the objects themselves. These statistical modeling techniques are used to
find the odds of an outcome variable occurring versus a baseline outcome based on selected
attribute variables [25]. BLR is a type of generalized linear model which uses the logit link
function to fit the maximum likelihood outcome, which will yield the odds of selecting one
outcome variable over a baseline outcome variable [25].

log
(

p(X)

1− p(X)

)
= β0 + β1X1 + · · ·+ βpXp

MLR functions similarly to BLR but allows for more than two dependent variables to
be tested by using the multinomial logit link function [25].

log
(

Pr(Y = k|X = x)
Pr(Y = K|X = x)

)
= βk0 + βk1x1 + · · ·+ βkpxp

where X = (X1, . . . , Xp) are p predictors, β are model coefficients, with k categories and K
being a reference category. In the case of this work, predictors would include variables
BMB amplitude, distance from nadir, roll, and the orientation offset. Categories (k) would
be those created with type, class, and object classifications, with the reference category
(K) being specified for each test. Once selected, the predictors and all combinations of
predictors for each category are analyzed by creating generalized linear models to find
the best fit combinations that represent each category, and subsequently compared to the
baseline category to find an odds ratio of selection to the respective category.

These statistical tests were chosen based on their ability to model probability outcomes,
which in the case of this study, will give the probability of a sounding being associated with
a particular object or seafloor type based on the attribute variables. The attribute variables
used in the analysis were BMB amplitude (Amplitude), distance from nadir (Distance_t),
roll (Roll), and the orientation offset (Offset). For all sites, the testing data were partitioned
into two groups with 70% of the data being used for building the statistical models. The
remaining 30% of the data was used for testing the models. These tests were run using
the multinom function from the nnet package, which allows for logistic regression of two
or more outcome classes. Interaction between these terms was allowed in each model so
that every combination of these variables was tested. Each model was allowed to run for a
maximum of 300 iterations or until convergence.

There are assumptions around data sets used with these statistical models [26], which
were adhered to by the data in this study. These assumptions include independence of
outcome variables, which in the case of this study means that a singular sounding cannot
be both ‘Sand’ and ‘Object’ simultaneously. There is also the assumption that the attribute
variables are not perfectly separated based on the outcome variables. Within this study,
there is overlap in the values of all attribute variable predictors between the outcome
variables, that is to say the full range of values for all attribute variables can be associated
with any of the outcome variables. These statistical tests also fit these data well because
there is no assumption of linearity, normality, or homoscedasticity within the data set for
these tests [26].

For site 1, a single BLR model was created to differentiate between the ‘Class’ classifi-
cation since only UXO were used at this site. A single MLR was created to attempt a more
refined classification of soundings using the ‘Object’ designation. Due to the sample size of
soundings that fall under the ‘Mud’ bed type designation being several orders of magnitude
higher than ‘Object’ soundings, an additional MLR model was run excluding all soundings
that were designated as ‘Mud’. This model was used to characterize ‘Object’ classifications.

For sites 2 and 3, a single BLR model was created to differentiate between the ‘Type’
classification. Two MLR models were created to attempt a more refined classification of
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soundings using the ‘Class’ and ‘Object’ designations described previously. For all three of
these models for each site, the respective bed type was used as the reference category. Due
to the sample size of soundings that fall under the respective bed type designation being
several orders of magnitude higher than ‘Object’ soundings for both sites, an additional
two MLR models for site 3 and additional MLR and BLR models for site 2 were run
excluding all soundings that were designated as the bed type. These models were used
to characterize the ‘Class’ and ‘Object’ classifications. For site 3, calibration spheres were
set as the reference category when there was an elimination of ‘Sand’ soundings. For site
2, the 155 mm UXO was used as the reference category when there was an elimination of
‘Gravel’ soundings.

Classification matrices for the testing data that were run through the trained models
are presented here, along with correct classification rates. The summary function in R was
used to display output log odds ratios and standard errors. Using these data, Z- and P-
values were calculated based on methods set forth by Blissett (2017). The log odds ratios
were exponentiated to yield odds ratios that can be more easily compared. This function
will present the odds ratios an X.XX . . . :1 output.

3. Result

The full data set from each site contained 3.0× 106, 10.9× 106, and 7.5× 106 soundings
for sites 1, 2, and 3, respectively. The third quartile BMB amplitude value for each of the
surveys was 83 dB, 87.5 dB, and 88 dB, for sites 1, 2, and 3, respectively. The filtered data
sets contained 7.5× 105, 3.0× 106, and 2.1× 106 soundings for sites 1, 2, and 3, respectively.
These data sets differ in size due to the different number of targets mapped and site
accessibility with regards to possible variability of survey line orientation. The filtered
amplitude ranges for each object across sites 1, 2, and 3 are represented in Figures 5–7,
respectively. For the box plots below, the solid black line represents the median value,
with the lower and upper bounds of the gray box representing the first and third quartile
value, respectively. The extension lines, or whiskers, from the box show the maximum and
minimum of the data within 1.5 times the interquartile range. The small dots outside of
this range represent outliers that are outside of this interquartile range.
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3.1. Muddy Intertidal

Trial 4 took place on 16 October 2020, at site 1. The acoustic survey commenced at
approximately 1140 h EDT and concluded at 1250 h EDT. The high tide for this day occurred
at 1118 h EDT. Two casts of the SonTek CastAway CTD were conducted during the survey
to measure the speed of sound through the water column during the time of survey. There
were 22 sonar files that include soundings of an object collected. Once completed, the
acoustic survey team retrieved the objects and returned to the dock. Three bottom grab
samples were collected using a 4 L Ponar grab to perform grain size analysis and sieved
using a 4 mm screen size (Table 1). The samples were processed through a Beckman Coulter
LS 13 320 Particle Size Analyzer. There were no calibration spheres or clutter objects used
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for this site. For the table below, Table 1, as well as the other tables representing grain size
information in this paper, D10, D50, and D90 represents the size of the grains in µm at the
10th percentile, 50th percentile (median), and 90th percentile of the full sample, respectively.

Table 1. Site 1 grain size characteristics.

Sample 1 Sample 2 Sample 3 Average

D10 (µm) 9.690 13.17 9.635 10.831

D50 (µm) 106.0 127.3 97.60 110.288

D90 (µm) 213.0 342.1 296.9 284.018

Sorting Poorly Sorted Poorly Sorted Poorly Sorted N/A

Skewness Very Fine Skewed Very Fine Skewed Very Fine Skewed N/A

For site 1, when comparing all objects (in this case only UXO) to a muddy seafloor,
the model created here was able to correctly classify objects 50.6% of the time (Table 2).
When comparing individual UXO to the mud seafloor, the 155 mm UXO had the highest
correct classification rate of 52.0% (Table 3). The 105 mm, 81 mm, and 60 mm UXOs had
correct classification rates of 0.0%, 2.4%, and 15.5%, respectively, when comparing with a
mud seafloor. When eliminating the seafloor soundings from the model in an attempt to
differentiate between the objects themselves, the 155 mm, 105 mm, 81 mm, and 60 mm UXOs
had correct classification rates of 96.8%, 60.3%, 3.8%, and 18.9%, respectively (Table 4).

Table 2. Site 1 class BLR with mud testing data classification results.

Predicted Mud Predicted UXO

Actual Mud 221,653 1309

Actual UXO 13 1339

% Correct classification 99.993% 50.6%

Table 3. Site 1 object MLR with mud testing data classification results.

Predicted Mud Predicted 155 mm Predicted 105 mm Predicted 81 mm Predicted 60 mm

Actual Mud 221,656 565 306 293 150

Actual 155 mm 4 642 82 236 197

Actual 105 mm 3 0 0 2 0

Actual 81 mm 3 22 0 14 25

Actual 60 mm 0 5 1 41 68

% Correct Classification 99.995% 52.0% 0.0% 2.4% 15.5%

Table 4. Site 1 object MLR without mud testing data classification results.

Predicted 155 mm Predicted 105 mm Predicted 81 mm Predicted 60 mm

Actual 155 mm 1195 136 354 293

Actual 105 mm 0 234 133 38

Actual 81 mm 36 12 22 26

Actual 60 mm 3 6 77 83

% Correct Classification 96.8% 60.3% 3.8% 18.9%
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3.2. Mixed Sand and Gravel Intertidal

Trial 5 took place on 13 May 2021, at site 2. The survey commenced at approximately
1250 h EDT and concluded at 1445 h EDT. The high tide for this day occurred at 1330 h EDT.
Two casts of the SonTek CastAway CTD were conducted during the survey to measure
the speed of sound through the water column during the time of survey. Five sediment
samples were collected throughout the study site to characterize the seafloor and processed
through a CAMSIZER P4 Particle Size Analyzer (Table 5). It is important to note that the
sediment samples for site 2 were sieved with a 4 mm screen size to remove the larger
particles as to not damage the analyzer. This results in the sediment sample classifying the
underlying seafloor but not including the gravel. During the acoustic survey, 43 sonar files
that include soundings of an object were collected. There were no calibration spheres used
in this site.

Table 5. Site 2 grain size characteristics.

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Average

D10 (µm) 287.1 240.1 250.6 258.4 344.7 274.1 275.8

D50 (µm) 597.7 452.7 554.1 560.5 607.6 640.8 568.9

D90 (µm) 1413.6 698.0 1353.3 1389.9 1745.3 1714.8 1385.8

Sorting Moderately
Sorted

Moderately
Well Sorted

Moderately
Sorted

Moderately
Sorted

Moderately
Sorted Poorly Sorted N/A

Skewness Symmetrical Fine Skewed Symmetrical Coarse
Skewed

Coarse
Skewed

Coarse
Skewed N/A

For site 2, when comparing all objects to a gravel seafloor, the model created here was
able to correctly classify objects 27.4% of the time (Table 6). When comparing all UXOs to
the gravel seafloor, there was a 64.1% correct classification rate (Table 7). For individual
UXO, the 155 mm UXO had the highest correct classification rate of 61.3% (Table 8). When
comparing to the seafloor, clutter objects in site 2 were virtually undetectable. When
eliminating gravel soundings from the models, there was a 98.1% correct classification
rate for UXOs (Table 9), with the 155 mm UXO being the most distinguishable at a correct
classification rate of 75.9% (Table 10). Clutter objects had a correct classification rate of
65.5% when there were no seafloor soundings present in the model.

Table 6. Site 2 type BLR testing data classification results.

Predicted Gravel Predicted Object

Actual Gravel 867,785 16,137

Actual Object 106 6075

% Correct classification 99.988% 27.4%

Table 7. Site 2 class MLR with gravel testing data classification results.

Predicted Gravel Predicted UXO Predicted Clutter

Actual Gravel 867,798 5829 5963

Actual UXO 93 10,419 0

Actual Clutter 0 1 0

% Correct classification 99.989% 64.1% 0.0%
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Table 8. Site 2 object MLR with gravel testing data classification results.

Predicted Gravel Predicted
155 mm

Predicted
105 mm Predicted 81 mm Predicted 60 mm Predicted Clutter

Actual Gravel 867,819 2256 2397 1415 1304 5963

Actual 155 mm 4 3648 1264 1878 1567 0

Actual 105 mm 62 0 0 0 3 0

Actual 81 mm 0 23 17 64 6 0

Actual 60 mm 6 19 0 140 247 0

Actual Clutter 0 1 0 0 0 0

% Correct
Classification 99.992% 61.3% 0.0% 1.8% 7.9% 0.0%

Table 9. Site 2 class BLR without gravel testing data classification results.

Predicted UXO Predicted Clutter

Actual UXO 15,934 2057

Actual Clutter 315 3906

% Correct classification 98.1% 65.5%

Table 10. Site 2 object MLR without gravel testing data classification results.

Predicted 155 mm Predicted 105 mm Predicted 81 mm Predicted 60 mm Predicted Clutter

Actual 155 mm 4516 1483 2289 1706 612

Actual 105 mm 371 1637 550 682 151

Actual 81 mm 19 22 62 5 8

Actual 60 mm 103 71 153 316 16

Actual Clutter 938 465 443 418 5176

% Correct
Classification 75.9% 44.5% 1.8% 10.1% 86.8%

3.3. Sandy Intertidal

Trial 6 took place on 27 May 2021, at site 3. The survey commenced at approximately
1200 h EDT and concluded at 1430 h EDT. The high tide for this day occurred at 1245 h
EDT. Three casts of the SonTek CastAway CTD were conducted throughout the survey to
measure the speed of sound through the water column during the time of survey. During
the acoustic survey, 65 sonar files that include soundings of an object were collected. Once
completed, the acoustic survey team returned to the dock. Four grain size samples were
collected throughout the study site to characterize the seafloor (Table 11). During the
acoustic survey, 65 sonar files that include incidence of an object were collected. For site 3,
when comparing all objects to a sand seafloor, the model created here was able to correctly
classify objects 52.1% of the time (Table 12). When comparing all UXOs to the sand seafloor,
there was a correct classification rate of 81.2%, with clutter objects only reaching 1.9%
correct classification (Table 13). When comparing individual UXO to the sand seafloor, the
81 mm UXO had the highest correct classification rate of 59.9% (Table 14). The 155 mm UXO
and 105 mm UXO had rates of 49.8% and 51.0%. When eliminating seafloor soundings
from the models, UXO and clutter were correctly classified 96.9% and 87.2% of the time
(Table 15). When classifying objects with the removal of seafloor soundings, 155 mm UXOs
were correctly classified 66.8% of the time, with calibration spheres only being correctly
classified at a rate of 8.3% (Table 16).
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Table 11. Site 3 grain size characteristics.

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Average

D10 (µm) 521.8 530.9 512.0 558.8 559.8 531.6 535.816

D50 (µm) 804.3 807.1 772.4 868.9 867.8 811.4 821.999

D90 (µm) 1481.7 1431.7 1346.9 1565.3 1563.8 1539.1 1488.066

Sorting Moderately
Well Sorted

Moderately
Well Sorted

Moderately
Well Sorted

Moderately
Well Sorted

Moderately
Well Sorted

Moderately
Well Sorted N/A

Skewness Coarse
Skewed

Coarse
Skewed

Coarse
Skewed

Coarse
Skewed

Coarse
Skewed

Coarse
Skewed N/A

Table 12. Site 3 type BLR testing data classification results.

Predicted Sand Predicted Object

Actual Sand 615,405 10,860

Actual Object 588 11,810

% Correct classification 99.905% 52.1%

Table 13. Site 3 class MLR with sand testing data classification results.

Predicted Sand Predicted UXO Predicted Calibration Sphere Predicted Clutter

Actual Sand 615,721 2689 0 6294

Actual UXO 109 11,645 1871 42

Actual Calibration Sphere 0 0 0 0

Actual Clutter 163 4 0 125

% Correct classification 99.956% 81.2% 0.0% 1.9%

Table 14. Site 3 object MLR with sand testing data classification results.

Predicted
Sand

Predicted
155 mm

Predicted
105 mm

Predicted
81 mm

Predicted
60 mm

Predicted Cal.
Sphere

Predicted
Clutter

Actual Sand 615,765 1261 661 674 664 11 6305

Actual 155 mm 52 2553 561 500 887 810 31

Actual 105 mm 8 604 1705 134 19 414 0

Actual 81 mm 0 530 419 1954 764 396 0

Actual 60 mm 0 67 0 0 265 78 0

Actual Cal.
Sphere 0 112 0 0 0 162 0

Actual Clutter 168 0 0 0 4 0 125

% Correct
Classification 99.963% 49.8% 51.0% 59.9% 10.2% 8.7% 1.9%

Table 15. Site 3 class MLR without sand testing data classification results.

Predicted Calibration Sphere Predicted UXO Predicted Clutter

Actual Calibration Sphere 0 0 0

Actual UXO 1871 13,896 824

Actual Clutter 0 442 5637

% Correct Classification 0% 96.9% 87.2%



Remote Sens. 2023, 15, 1685 16 of 20

Table 16. Site 3 Object MLR without sand testing data classification results.

Predicted
Calibration Sphere

Predicted
155 mm

Predicted
105 mm

Predicted
81 mm

Predicted
60 mm Predicted Clutter

Actual
Calibration Sphere 156 96 0 0 0 0

Actual 155 mm 810 3423 935 913 1092 623

Actual 105 mm 408 688 1751 136 17 0

Actual 81 mm 383 492 399 1945 763 0

Actual 60 mm 114 257 57 82 562 0

Actual Clutter 0 171 204 186 169 5838

% Correct
Classification 8.3% 66.8% 52.3% 59.6% 21.6% 90.4%

Overall, the results from testing the models with 30% of the data will be the primary
indicator of DCL for this paper. Detection will be recognized here when comparing objects
to the respective seafloors. Classification will be recognized when comparing objects among
themselves, both with and without the data representing the seafloor soundings present in
the model.

Object detection from the soundings when compared to the surrounding seafloor
occurs at an average rate of 43.4% of the time across all sites. When detecting UXO alone
from the seafloor across all sites, there was an average correct classification rate of 65.3%.
The 155 mm UXO had the highest classification rate, 54.4%, when comparing individual
objects to the seafloor across all sites. The 105 mm, 81 mm, and 60 mm UXOs had an
average correct classification rate of 17.0%, 21.4%, and 11.2%, respectively, when comparing
with the seafloor across all models. Detecting clutter objects versus the seafloor for sites 2
and 3 yielded a correct classification rate of about 1%.

When looking at the models with the surrounding seafloor removed to attempt classi-
fication of the soundings, UXOs in sites 2 and 3 had an average correct classification rate of
97.5%. When differentiating between the UXOs themselves for all three sites, the 155 mm,
105 mm, 81 mm, and 60 mm UXOs had correct classification rates of 79.8%, 52.4%, 21.7%,
and 16.9%, respectively. This suggests, as with other acoustic methods, that larger UXOs
are generally easier to classify, possibly due to the increased number of soundings that can
be associated with the objects. This shows that when eliminating the surrounding seafloor
from the input data, there was an increase in average correct classification of 29%, 35.4%,
0.3%, and 5.7% for 155 mm, 105 mm, 81 mm, and 60 mm UXOs, respectively.

4. Discussion

The data presented here begin to give insights into the detection, classification, and
localization (DCL) of unexploded ordnance (UXO) and other objects on the seafloor through
uncalibrated BMB from phase-measuring sidescan sonar systems (PMSS). It is beyond the
scope of this study to set a benchmark level at which a classification rate can be used to
identify objects on the seafloor. This work was performed with the intention of producing
baseline analysis on select attributes of BMB soundings for the purposes of DCL. Given the
lack of studies in the peer-reviewed literature, we believe this will lay the foundation for
future studies on the application of uncalibrated BMB from these instruments.

The attribute variables used in this study included amplitude, distance from nadir,
roll, and the orientation offset between objects and the vessel heading. These attributes
were chosen to represent the soundings based on visual observation of how the objects
were being ensonified. The amplitude was the initial indicator found from this inspection
due to the connection of high-amplitude soundings and objects when compared to the
surrounding seafloor. Upon further inspection, this effect became more dramatic with an
increase in the distance from nadir, which was then included as an attribute variable.
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Overall, the detection of UXO was most effective for the 155 mm UXO, regardless of
whether the seafloor was present in the model or not. This is likely because of the increased
number of soundings that were associated with the object due to the proportional number
of soundings within the 25 cm buffer. Due to the relative increase in size between the objects,
the model would have increased sample size with which to better refine the model with
larger UXOs. Although this trend could be general, it was shown that 60 mm were more
correctly classified when compared to 81 mm across all sites with the seafloor soundings
in the model. This could be an artifact of the chosen subset or due to the variation in
soundings within the buffer for each of the respective objects. These models seem to be
less effective on smaller UXOs (60 mm, 81 mm) when compared to larger UXOs (105 mm,
155 mm), both with and without the seafloor soundings present in the model, meaning
these models may not currently be a suitable method of DCL for objects of these sizes.

There was also an abundance of points on objects that had a larger surface area whose
long axis was oriented parallel to the sonar when compared to those that had larger surface
areas that occurred perpendicular to the sonar. This led to the inclusion of the heading
offset used in this study. There also appeared to be a higher abundance of soundings on
larger objects that sat higher off of the seafloor. Because of this abundance of points, roll
was included to account for any change in the exposed surface area of ensonification.

These results from models with the surrounding seafloor removed suggest that super-
vising the selection of input data by a sonar technician could improve the DCL of objects.
Although Hasan et al. (2012) [27] tested several calibration methods with backscatter from
an MBES for the purposes of benthic habitat mapping something similar could be done
for these types of data from PMSS. This could occur by selecting areas of interest during
the survey or in post processing of the data, which could potentially represent objects on
the seafloor. One major benefit of using PMSS for this work is the coincidence of multiple
data types which could help inform this supervised processing. This type of supervision of
input data selection could also be aided by deep learning techniques, such as the use of
image analysis through convolutional neural networks [28].

Along with the supervised processing of model input data, other data types, such as
sidescan backscatter, could be used to help refine the models further similar to those using
multispectral backscatter from MBES [29–31]. We believe in spite of these PMSS reflectivity
data being uncalibrated, mutually beneficial research can be conducted with investigators
using PMSS data and those working with MBES backscatter, such as the GeoHab working
group [32].

The sidescan backscatter amplitude could potentially be correlated with the BMB am-
plitude to help inform object DCL, although it is important to remember that these are both
relative data sets. High-quality bathymetry could be used to infer a correlation between
sounding geometry and sounding attributes such as those used in this study. Although this
could be done with a combination of other types of sonar arrays (MBES and SSS), the survey
efficiency and colocation accuracy would likely not be as precise as with PMSS. Through
this work, it was shown that the best indicator of selecting any object versus a seafloor
type occurs through a combination of distance from nadir and roll (Distance_t:Roll). The
odds ratios for selecting any object when compared to a seafloor type were 2.58:1, 7.16:1,
and 1.87:1 for mud, gravel, and sand, respectively. This finding could also yield useful
detection methods for other objects that are proud of the seafloor, such as sitting pipelines,
shipwrecks, and marine debris that could critically impact surrounding habitats.

This combination of distance from nadir and roll could lead to the speculation that
a grazing angle, or the angle at which the ping is interacting with the seafloor or object,
could be of importance. Although exemplified in this study, the survey conditions may
not be typical for future UXO detection surveys. This survey used UXOs that were proud
of the seafloor due to their placement prior to acoustic surveying. However, UXOs are
often partially buried, leading to grazing angles that may not reflect those of the objects in
this study.
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Additional attributes could also be tested with these statistical methods. There are
attributes stored within the JSF files for each ping, such as a specific SNR value, that are
not brought into programs such as SW7. With that, not all attributes will produce reliable
results. The per-ping heave and roll values that were brought into the processed csv files
were originally included in the calculation of the BLR and MLR model. The resulting odds
ratios were clearly erroneous, with the ratios being orders of magnitude higher than other
attributes such as the amplitude.

One issue with additional processing parameters and attributes from the EdgeTech
6205 comes from the proprietary processing and data collection methodology used by
EdgeTech. As such, the user does not have full access to their algorithms. This can make
the analysis of these data more complex, as well as limit the application of the BMB data
and methodology presented here.

It is important to note that the results presented here are only one way of analyzing
these data. Other statistical classification techniques, such as random forest or discriminant
analysis, could be used with potentially differing results. There is also the possibility of
applying deep learning techniques, such as multilayer or convolutional neural networks,
which may be able to better recognize patterns that exist between these data [33,34]. These
data also have been analyzed on a per-sounding basis, suggesting that each sounding is
independent. There is the opportunity to perform clustering, or “hot-spot”, analysis on
these data, which may more readily indicate the presence of an object with a cluster of high
amplitude BMB soundings.

Along with other statistical measures, other data processing parameters may lead
to more definitive results. The processing parameters used in this study attempt to use
the highest quality data with the least amount of post-processing manipulation. There is a
myriad of options when processing these data that could be explored to yield different results.
Options such as empirical gain normalization in SW7 and different binning styles in Discover
Bathymetric could have significant effects on the outcomes of these statistical models.

An interesting result of this study comes from the acoustic response modeling of
calibration spheres at site 1. Acting as highly effective scatterers of sound, these targets
would have been assumed to have had a very distinctive response, and therefore been more
readily identified in the modeling process. The models presented here show poor DCL
results for these objects, though they were only tested with a single seafloor type, sand.
This result could be an artifact of dilution from surrounding soundings due to the size of
the selection buffer used. This buffer size is potentially larger than is necessary based on
the accuracy of the soundings from the PMSS system used in this study [35].

5. Conclusions

Overall, these analyses show the potential usefulness and effectiveness of phase-
measured, bathymetry-mode backscatter from PMSS. It is the belief of the authors that
these models yield results that are informative when attempting DCL for objects using
BMB from PMSS. Due to the lack of research in current literature, results from statistical
models such as these using BMB should be expanded and improved upon before any
major conclusions are drawn. The results presented here give a clear indication that DCL is
possible from BMB. Along with the BMB, the additional data streams from PMSS systems
can help increase the application of DCL as well as address other critical needs in coastal
science, such as habitat mapping, navigation, and sedimentology.

If supervised selection, or informed selection through AI techniques, of soundings
or areas of interest was to be used to pick apparent objects from the full data set, UXO
and clutter objects may be more easily identified than with full data set inspection. It
is important to stress that the results presented here cannot definitively show DCL, as
significantly more testing is needed to support and confirm the results. These results simply
suggest that BMB could be used to aid in DCL efforts that are ongoing.
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