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Abstract: Nowadays, millions of photovoltaic (PV) plants are installed around the world. Given
the widespread use of PV supply systems and in order to keep these PV plants safe and to avoid
power losses, they should be carefully protected, and eventual faults should be detected, classified
and isolated. In this paper, different machine learning (ML) and deep learning (DL) techniques were
assessed for fault detection and diagnosis of PV modules. First, a dataset of infrared thermography
images of normal and failure PV modules was collected. Second, two sub-datasets were built from
the original one: The first sub-dataset contained normal and faulty IRT images, while the second
one comprised only faulty IRT images. The first sub-dataset was used to develop fault detection
models referred to as binary classification, for which an image was classified as representing a faulty
PV panel or a normal one. The second one was used to design fault diagnosis models, referred to
as multi-classification, where four classes (Fault1, Fault2, Fault3 and Fault4) were examined. The
investigated faults were, respectively, failure bypass diode, shading effect, short-circuited PV module
and soil accumulated on the PV module. To evaluate the efficiency of the investigated models,
convolution matrix including precision, recall, F1-score and accuracy were used. The results showed
that the methods based on deep learning exhibited better accuracy for both binary and multiclass
classification while solving the fault detection and diagnosis problem in PV modules/arrays. In fact,
deep learning techniques were found to be efficient for the detection and classification of different
kinds of defects with good accuracy (98.71%). Through a comparative study, it was confirmed that
the DL-based approaches have outperformed those based on ML-based algorithms.

Keywords: photovoltaic modules; fault detection and diagnosis; machine learning and deep learning;
hybrid model; transfer learning

1. Introduction

According to the International Energy Agency [1], the total cumulative installed
capacity of photovoltaic (PV) energy at the end of 2021 reached at least 942 GW worldwide.
To keep these plants working effectively and reliably over time and for safety reasons,
they should be carefully protected, monitored, and supervised [2]. Designing effective
fault detection and diagnosis approaches is a crucial task that plays an important role in
protecting PV plants from many risks such as fire. Effective fault detection approaches can
help in detecting faults at an early stage and then avoiding power losses. While effective
fault diagnosis helps operation and maintenance (O&M) to make quick interventions with
appropriate decisions (clear fault, change PV modules, etc.). Such techniques could be
developed and integrated with the monitoring system for real-time application. Based on
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the logged PV power values, monitoring systems can detect whether plants are working
correctly or not [3].

To date, various fault detection and diagnosis methods have been developed [4]. In
this work, we will focus on an approach based on infrared thermography images (IRTs) for
the classification of four major defects that may occur on PV modules. The investigated
defects are, in turn: dust and sand accumulated on PV module surfaces, damaged bypass
diodes, shunted PV modules, and partial shading effect.

The main idea developed in this study consists of solving a classification problem
based on the collected IRT images. Thus, binary classification for fault detection and
multiclass classification for fault diagnosis purpose are used. According to the literature,
various methods have been developed. Recently, the application of machine learning (ML)-
and deep learning (DL)-based algorithms for the diagnosis of PV modules based on IRT
images has attracted the attention of many researchers. For example, the classification
of normal RGB images of PV modules (PVM) using a combination of deep learning and
machine learning algorithms was addressed in [5]. A set of lazy classifiers, including locally
weighted learning (LWL), the K-star algorithm (KS), nearest neighbor (NN), and k-nearest
neighbor (kNN), were adopted to perform the classification process on the chosen image
features. With the kNN classifier, whose computation time was 0.04 s, a higher accuracy—
reaching a maximum of 98.95%—was achieved when compared to the other classifiers.

In ref. [6], true-color images captured by unmanned aerial vehicles (UAVs) were
dually processed by CNN-ML classifiers to detect PVM faults. The AlexNet, VGG16,
GoogLeNet, and ResNet50 models were assessed and demonstrated standing feature
extraction capabilities. According to the study, support vector machine (SVM) classifiers
demonstrated best-in-class performance and, as a result, can be regarded as ready for
real-time multiclass classification applications.

The authors in [7] conducted a comparative study to assess the anomaly detection
performance of three ML models. Data collected from two working PV power plants in
India allowed the determination of some correlations between internal and external plant
feature parameters. The study concluded that the auto-encoder–long short-term memory
(AE-LSTM) method was able to efficiently detect anomalies and healthy signals.

As an alternative to signal processing for PVM fault diagnosis, IRT-based fault classifi-
cation was proposed in [8,9]. The authors’ more recent work provides an automated fault
detection methodology utilizing texture feature analysis and supervised machine learning.
The suggested approach uses IRT to identify PVM anomalies and fuzzy edge detection to
determine the orientation of anomalous modules. A gray level co-occurrence matrix was
used to extract picture texture. The retrieved characteristics were labeled and trained using
SVM to identify the PVM failure type.

Utilizing three segmentation models (FPN, U-Net, and DeepLabV3+), ref. [10] pre-
sented a deep learning-based photovoltaic defect detection method using UAV thermal
imaging to identify defective solar panels on large-scale farms. Two datasets were merged
to boost accuracy. Among the different segmentation models, the highest dice scores
were obtained with the FPN, U-Net, and DeepLabv3+ networks. Achieving dice scores of
0.94 (U-Net), 0.87 (FPN), and 0.87 (DeepLabV3+), these tests were able to produce com-
petitive semantic segmentation results. This research revealed that picture segmentation
algorithms based on deep learning outperform conventional approaches.

An automatic UAV-based PVM inspection system [11] was tailored for large-scale
farms using an offline scheme. For defect detection purposes, a seven-learned-layer CNN-
based deep learning structure was adopted to detect visible PVM defects. An 8400-image
dataset was used in the study to assess six typical defects. To make sure all defects were
sufficiently represented in the dataset, images from three photovoltaic (PV) plants of PV
modules with artificially produced defects were either taken manually or with UAVs.
The proposed approach was validated and compared with classical pattern recognition
approach and the pre-trained VGG-16 in ImageNet.
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In [12], the authors suggested an automatic PVM fault detection study using IRT
images collected experimentally in indoor and outdoor conditions. Isolated and develop-
model transfer deep learning techniques were used. An isolated trained model based on
a light CNN architecture achieved 98.67% of accuracy. Transfer learning begins with a
foundational model pre-trained on the PVM electroluminescence (EL) image dataset, which
was subsequently refined using the IR image datasets. The accuracy of the transfer-learning
model was 99.23%. The times required to make a prediction for a single image using
isolated and transfer learning networks were 13.12 and 13.07 ms, respectively.

In [13], a semi-supervised learning model (ppFDetector) was proposed as a novel
method for detecting PV panel faults quickly and accurately, with only a small number of
negative samples being required. A generative adversarial network (GAN) was used to
reconstruct positive images using a centralized gradient. By comparing the original and
reconstructed images (32,000 images reconstructed from a smaller dataset of images taken
at a large-scale PV power plant located at Zhejiang, China), ppFDetector was used, along
with the convolutional block attention module (CBAM) and SmoothL1 loss algorithms, to
identify defective and healthy PVMs. The ppFDetector model outperformed all selected
semi-supervised models, but demonstrated lower performance compared with a fully
supervised pre-trained VGG-16 model with 200 negative images. The study did not report
the computational cost required to achieve the model’s performance.

The authors in [14] investigated an IRT image-based approach using an isolated
convolutional neural model (ICNM) with a transfer learning approach to detect PVM
faults of a small-sized solar PV system in Pakistan. The performance metrics of the pro-
posed multi-class classification strategy were measured, including training loss, training
accuracy, validation loss, validation accuracy, testing accuracy, and execution time. The
results for PV health-based classification were provided for the ICNM, as well as pub-
licly available pre-trained transfer learning networks (SqueezeNet, GoogleNet, and Shuf-
fleNet). The seven-layered ICNM trained model achieved better performance than the
aforementioned pre-trained networks with respect to execution time, training loss and
training/validation accuracy.

Overheated PVM regions were investigated in [15] using IRT image analysis with
a deep convolutional neural network (DeepCNN). To address the deep CNNs’ limited
effectiveness in the detection of overheated regions, the authors proposed a skip-connected
DeepCNN architecture (SC-DeepCNN). A dataset was employed that consisted of 1428 IRT
images captured at a 120 kWp PV solar farm in Jilin, China, of which 695 images included
overheated region defects, including hotspots and overheated substrings and strings. IRT
images with overheated regions were selected using SC-DeepCNN. A series of regions of
interest (RoIs) for each raw IRT image was predicted using selective search (SS). Therefore,
an RoI-DeepCNN model was developed and used along with joint learning for overheated
region object detection. The results were presented and compared with other ML models,
demonstrating that the method outperformed SC-DeepCNN and RoI-DeepCNN in terms
of relevant performance metrics. Features and feature extraction techniques are reviewed
and explained in [16,17].

In [18] a fine-tuned model based on Visual Geometry Group (VGG-16) and a DeepCNN
were developed to classify five faults often observed in PV modules (short-circuit, open
circuit, dust deposit, bypass diode failure, and partially covered PV module). The VGG-16
achieved an accuracy of 99.91% for fault detection and 99.80% for fault diagnosis for the
five types of defect.

Other methods based on deep learning for fault detection and diagnosis can be found
in [19–22].

The main objective of this study is to develop and assess various fault detection and
diagnosis methods for PV modules by means of IR thermography images and deepCNN.

In the context of the literature review presented above, the most important contribu-
tions of the current study are:
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• The performance of different state-of-the-art ML and DL methods is compared for the
fault detection and diagnosis of PV modules.

• To the best of the authors’ knowledge, no comprehensive comparative study has
previously been performed on such applications that has included DL, ML, and
hybrid approaches.

• The investigations are conducted using real-world IR thermography images of PV Si
mono-crystalline technology.

• Four common faults in PV modules were examined: bypass diode failure, shading
effect, short-circuited PV module, and soil accumulation on the PV module.

The rest of this paper is organized as follows: The materials and methods are described
in Section 2, including the dataset used in this study, as well as the classification processes
based on machine learning, deep learning, transfer learning, and hybrid approaches.
Section 3 illustrates the results obtained, along with a discussion. A comparative study is
reported in Section 4. Finally, conclusions and perspectives are presented in Section 5.

2. Materials and Methods
2.1. Research Methodology

To achieve these research objectives, a design methodology was designed composed
of three steps (Figure 1). The main purpose of this study implementation is to test the
feasibility of PV modules defects classification based on ML and DL techniques in order to
subsequently extend the developed algorithms to a real case study in the Saudi Arabian
context, in which PV images will be taken using drone-based equipment (Figure 2).
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In fact, this IRT-based PV fault detection investigation is the first part of a compre-
hensive case study targeting the first Saudi utility-scale solar energy project, the Sakaka
photovoltaic power plant in the Al-Jouf region, northern Saudi Arabia. The power facility
comprises 1.2 million PV panels over a surface of 6 square kilometers. It is expected to
produce 300 MWp. After entering service, the farm will require maintenance and follow-up
to ensure its full operation with the desired efficiency. Since the current maintenance
approach depends on reading the electrical outputs at the inverter level, the proposed
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research approach based on IRT and ML/DL represents a more effective and safer solution
for solar panels, as it provides an opportunity for early detection of defects before they
develop. Furthermore, the facility size challenge with respect to field inspection is easily
overridden. Overall, this research consists of the following steps:
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2.1.1. Data Collection and Preparation

During this step, the research team, which specializes in IRT imaging, conducts an
aerial survey of the solar panels in the study area using a drone equipped with an IR
camera. The work team ensures the suitability of the weather and operational conditions at
the photovoltaic plant before starting the onsite survey work in order to obtain high-quality
IRT images. The first dataset is built by the structural health monitoring (SHM) expert,
including the classification and labeling of IRT images into normal and faulty classes.
Further preprocessing results in a second dataset, which in this project will take three or
four classes into consideration (e.g., image with dust, image with sand, image with shading,
etc.). It is worth noting that the identification of fault classes to build the IRT dataset is
complex. This is made more difficult by the fact there is not an equal number of thermal
images in each fault category.

2.1.2. Fault Detection Procedure Based on DeepCNNs

A DeepCNN classifier (binary classification) is developed for detection purposes. To
this end, the IRT images are used to train and test the DeepCNN, following which new
images taken by drone are used to test the DeepCNN classifier.

2.1.3. Fault Classification Procedure Based on DeepCNNs

An advanced type of deepCNN using a transfer learning approach is designed for
fault classification (based on the collected images, the DeepCNN classifier will be able to
classify the type of faults). This classifier can assist users in making informed decisions
related to interventions in the PV installation, in cases where it is necessary to immediately
clean, remove, or replace faulty panels (if fault hotspots persist undetected for a long time,
they may cause a fire hazard).

The following flowchart (Figure 3) comprises two procedures for the use of DCNN-
based processing of IRT datasets for fault detection and classification:

2.2. Databases

The databases used are summarized in Table 1. An augmentation technique was used
to increase the size of these databases. A range of techniques are supported, as well as pixel
scaling methods. We focused on five main types of data augmentation technique for image
data, specifically:

• Image shifts via the width_shift_range and height_shift_range arguments.
• Image flips via the horizontal_flip and vertical_flip arguments.
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• Image rotations via the rotation_range argument.
• Image brightness via the brightness_range argument.
• Image zoom via the zoom_range argument.
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Table 1. Databases.

Databases Size Classification

Database #1 4740 Binary

Faulty Normal
Before augmentation 158 158
After augmentation 2370 2370

Database #2 10,845 Multiclass

F1 F2 F3 F4
Before augmentation 190 188 187 188
After augmentation 2850 2820 2805 2820

Each image from the datasets was generated 15 times employing the above aug-
mentation techniques. The first database (database #1) consists of 4740 IR thermography
images (each class comprises 2370 images). The second one (database #2) includes a total
of 10,845 images (for example, F1 = 2850 images for the class F1 faulty PV panels). As
an example, Figure 4 shows a sample of the collected images—(a) normal and (b) faulty.
All investigated defects on PV modules (shunted, dust accumulated, shading effect and
damaged bypass diode) are natural.
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As can be seen, hotspots can be clearly observed in each faulty PV image with variable
profiles. The main problem faced by maintenance decision makers is the distinguish
between those profiles and the efficient classification of defects such that precise decisions
are possible (i.e., to determine whether to replace the PV module, clean the PV module,
or remove the fault). Furthermore, if such phenomena persist for a long time without
detection, they may lead to a fire hazard [2], resulting in damage to the PV module or even
to part of the PV plant. To remove noise from the collected IRT images (image denoising),
all images are then preprocessed using median filters (Figure 5).
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2.3. ML-Based Classification

The preprocessing of images is an important step in developing an accurate classifi-
cation model (Figure 6). ML algorithms require that all images in a dataset have a fixed
feature vector size. This implies that the images should be preprocessed and scaled to
have identical widths and heights. There are numerous ways of achieving this resizing and
scaling, ranging from more advanced methods that respect the aspect ratio of the original
image to the scaled image to simple methods that ignore the aspect ratio and simply squash
the width and height to the required dimensions [16,17]. Three ML-based classifiers are
discussed below: k-nearest neighbor (k-NN) [23]; support vector machine (SVM) [24]; and
CatBoost [25].
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2.3.1. k-NN

The k-nearest neighbor algorithm, commonly referred to as KNN or k-NN, is a su-
pervised learning classifier that employs proximity to classify or predict the grouping of a
single data point. Ref. [23] looked into the combination of k-NN and the local manifold
learning categorization of hyperspectral images. Local manifold learning was investi-
gated from both supervised and unsupervised perspectives. Three variants were tested
with AVIRIS and Hyperion hyperspectral data. The results showed that the hybrid k-NN
performed better than the conventional k-NN. Additionally, the hybrid k-NN including
supervised manifold learning outperformed that incorporating unsupervised manifold
learning in terms of accuracy. The hybridization of k-NN and supervised manifold learning
is interesting, since it depends only on the weights provided by the kernel function of
the particular machine learning method, and does not require dimensionality reduction.
Furthermore, this classifier should work for other classification problems like the one
examined in this paper (normal and defective solar panels).

2.3.2. SVM

Support vector machine (SVM) is a group of supervised learning techniques for
classifying data, performing regression analyses, and identifying outliers. SVM is built on
the idea of a hyper-plane classifier. It seeks out the hyper-plane that optimizes the margin
between two classes. SVM has been widely applied to many classification problems, among
them the categorization of MR (Magnetic Resonance) images. Recently, there has been
a significant increase in the use of magnetic resonance images in clinical studies due to
their safety for the human body and the possibility of obtaining accurate information by
scanning the same slice using different frequencies and settings. Ref. [24] used a support
vector machine (SVM) to categorize the breast tissues in MR images. In order to confirm the
viability and efficacy of this method, the authors in [24] carried out several experiments and
compared the results with the widely utilized C-means (CM). In the scenario of SNR = 5 dB,
the accuracy of SVM classification was noticeably higher than that of CM. As a result, it
may be concluded that the SVM is noise-resistant and capable of segmenting multi-spectral
MR images. Doctors can use the classification results of real MR images to achieve more
accurate diagnosis and evaluation of patients’ conditions.

2.3.3. CatBoost

CatBoost is a technique for decision trees that incorporates gradient boosting. It was
created by Yandex researchers and engineers and is used in a variety of tasks, especially for
remote sensing image classification. In remote sensing, there are three primary techniques
for image classification: (1) classification under supervision; (2) classification without
supervision; and (3) image analysis using objects. The third technique works well with
high-resolution data. However, the two most common techniques for classifying images
are supervised and unsupervised. Ref. [25] introduced and studied CatBoost for the
classification of remote sensing (RS) images using a variety of attributes. CatBoost is
a kind of ordered gradient boosting (OGB) that has been modified in a novel way to
enable categorical features. A new pseudo-label feature extraction approach using multi-
size neighboring patch-based multi-clustering has been proposed in order to enhance
classification performance by supporting effective and efficient spatial feature extraction.
When compared to many other gradient boosting and standard boosting implementations,
CatBoost is better able to avoid the overfitting problem by achieving unbiased estimations of
the gradient step. Experimental results on one PolSAR and two hyperspectral benchmarks
showed that CatBoost demonstrated improved classification accuracy, but worse computing
efficiency at higher numbers of boosting iterations. Parallelization performance and GPU-
based acceleration of CatBoost could be attractive areas for future research.



Remote Sens. 2023, 15, 1686 9 of 21

2.4. DL-Based Classification

Deep learning (DL) enables the acquisition of data representations at various levels of
abstraction by computational models made up of several processing layers (Figure 7).
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The addition of deep learning techniques has enhanced the current state of the art in
many fields, including drug discovery and genomics, object identification, visual object
recognition, and speech recognition. By applying the backpropagation algorithm to de-
termine how a machine should modify the internal parameters required to compute the
representations in each layer on the basis of those in the previous layer, deep learning can
uncover detailed structures in large data sets. Recurrent nets have shed light on sequential
data types like text and speech, whereas deep convolutional nets have led to improve-
ments in the processing of images, video, speech, and audio. Recently, deep learning
approaches have shown tremendous success in image classification. As an example, two
DL-based classifiers were selected: Visual Geometry Group from Oxford (VGG-16) [26]
and Convolutional Neural Network (CNN) [27].

2.4.1. Classification Based on Transfer Learning Methods (VGG-16)

Recently, the idea of transfer learning has gained popularity and has been proven to
be useful for classification problems. In transfer learning, convolutional layer weights from
previously learned models are employed, whereby only the final layers require training
on the basis of data from more recent classes. In ref. [26], the capacity of the well-known
pre-trained CNN model VGG-16 with transfer learning was studied with respect to the
automatic classification of MR brain images into normal and abnormal categories. The
name VGG-16 refers to the group that developed it, while the number 16 refers to the
fact that it is a deep neural network with 16 layers. To validate the pre-trained model
with transfer learning, the dataset from the Harvard Medical School repository, containing
both normal and pathological MR images of various neurological illnesses, was used.
In comparison to other existing state-of-the-art studies, the validation using the test set
with respect to accuracy, specificity, and sensitivity showed that the pre-trained VGG-16
model with transfer learning yielded the best performance. Additionally, the method offers
end-to-end classification on unprocessed imagery without the need for manual attribute
extraction. However, the drawback of this model is its extremely lengthy training period.

2.4.2. Classification Based on DeepCNN

Recently, convolutional neural networks (CNN), which represent a strong deep learn-
ing model, have been widely employed in the field of image processing, because they are
effective at handling difficulties related to image recognition and classification and have
achieved a significant increase in the accuracy of many ML tasks (Figure 8). CNN, which
is a multilayer neural network, has demonstrated excellent performance in hyperspec-
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tral image classification. CNN employs a feature detection layer to implicitly learn from
training data in order to avoid explicitly extracting features. Ref. [27] suggested a novel
training criterion for deep neural networks for the maximum interval minimal classification
error based on an investigation of the error backpropagation technique. To achieve better
results, the loss function and the cross-entropy obtained by gradient analysis are examined
concurrently. Two deep learning benchmark databases, MNIST and CIFAR-10, were used
for experiments. The proposed CNN was able to achieve effective results in both databases.
CNN is incomparable in terms of representing and classifying image features. Neverthe-
less, CNN is still viewed as a black box model. More research is required to examine the
relationship between the different layers of the deep convolutional neural network and the
visual nervous system of the human brain, as well as how a deep neural network can be
built incrementally, in the same manner that humans do.

Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 22 
 

 

to the automatic classification of MR brain images into normal and abnormal categories. 
The name VGG-16 refers to the group that developed it, while the number 16 refers to the 
fact that it is a deep neural network with 16 layers. To validate the pre-trained model with 
transfer learning, the dataset from the Harvard Medical School repository, containing 
both normal and pathological MR images of various neurological illnesses, was used. In 
comparison to other existing state-of-the-art studies, the validation using the test set with 
respect to accuracy, specificity, and sensitivity showed that the pre-trained VGG-16 model 
with transfer learning yielded the best performance. Additionally, the method offers end-
to-end classification on unprocessed imagery without the need for manual attribute ex-
traction. However, the drawback of this model is its extremely lengthy training period. 

2.4.2. Classification Based on DeepCNN 
Recently, convolutional neural networks (CNN), which represent a strong deep 

learning model, have been widely employed in the field of image processing, because they 
are effective at handling difficulties related to image recognition and classification and 
have achieved a significant increase in the accuracy of many ML tasks (Figure 8). CNN, 
which is a multilayer neural network, has demonstrated excellent performance in hyper-
spectral image classification. CNN employs a feature detection layer to implicitly learn 
from training data in order to avoid explicitly extracting features. Ref. [27] suggested a 
novel training criterion for deep neural networks for the maximum interval minimal clas-
sification error based on an investigation of the error backpropagation technique. To 
achieve better results, the loss function and the cross-entropy obtained by gradient analy-
sis are examined concurrently. Two deep learning benchmark databases, MNIST and 
CIFAR-10, were used for experiments. The proposed CNN was able to achieve effective 
results in both databases. CNN is incomparable in terms of representing and classifying 
image features. Nevertheless, CNN is still viewed as a black box model. More research is 
required to examine the relationship between the different layers of the deep convolu-
tional neural network and the visual nervous system of the human brain, as well as how 
a deep neural network can be built incrementally, in the same manner that humans do. 

 
Figure 8. Workflow of CNN-based classification. 

2.5. Classification Based on Hybrid Method (CNN-SVM) 
Hybrid approaches combine two or more algorithms together in order to be able to 

take advantage of the features of each of the methods employed. Hybrid approaches have 
been investigated to address classification problems requiring tremendous computational 
effort. They have demonstrated superiority compared to traditional approaches. In order 
to benefit from their surprising ability to solve a wide spectrum of classification problems, 
we explored hybrid models combining CNN as an automatic feature extractor and SVM 
as a binary classifier. The CNN-SVM hybrid model proposed exhibited superior features, 
especially when tackling the categorization of remote sensing images (RSI), which is 
known to be a complex process characterized by poor pertinence, poor classification ac-
curacy, and low computational efficiency. In [28], a seven-layer CNN structure was cre-
ated where the ReLU function served as the activation function. Then, remote sensing im-
ages were entered into the CNN model, feature maps were retrieved, and the output layer 

Figure 8. Workflow of CNN-based classification.

2.5. Classification Based on Hybrid Method (CNN-SVM)

Hybrid approaches combine two or more algorithms together in order to be able to
take advantage of the features of each of the methods employed. Hybrid approaches have
been investigated to address classification problems requiring tremendous computational
effort. They have demonstrated superiority compared to traditional approaches. In order
to benefit from their surprising ability to solve a wide spectrum of classification problems,
we explored hybrid models combining CNN as an automatic feature extractor and SVM
as a binary classifier. The CNN-SVM hybrid model proposed exhibited superior features,
especially when tackling the categorization of remote sensing images (RSI), which is
known to be a complex process characterized by poor pertinence, poor classification
accuracy, and low computational efficiency. In [28], a seven-layer CNN structure was
created where the ReLU function served as the activation function. Then, remote sensing
images were entered into the CNN model, feature maps were retrieved, and the output
layer of the CNN was substituted by training the feature maps in the SVM classifier.
An empirical study of volcanic ash cloud classification from moderate-resolution image
spectroradiometer (MODIS) RSI was performed, and the results assessed. The experimental
results demonstrated that the proposed method, when compared to conventional methods,
has a lower loss value and better generalization when performing modeling and/or training;
the total classification accuracy and Kappa coefficient of the volcanic ash cloud reached
93.5% and 0.8502, respectively, thus indicating preferable volcanic ash cloud identification
and visual effects. To increase classification accuracy and computational efficiency, future
work is planned that will focus on how to extract more spectral features from various data
sources, such as hyperspectral data and data with high spatial and temporal resolution.

2.6. Fault Detection and Diagnosis Procedure

To develop our models, we used the Keras and TensorFlow libraries. The following
steps summarize the fault detection and diagnosis procedure for PV modules:

• Step #1: Upload the image and resize it.
• Step #2: Call the fault detection model (class = 0 means healthy, class = 1 means faulty).
• Step #3: Check whether class = 0. If so, this means the PV module is healthy, move to

Step #5; otherwise move to Step #4.
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• Step #4: Call the fault diagnosis model and identify the type of fault (Fault 1, Fault 2,
Fault 3 or Fault 4).

• Step #5: Display the results and move to Step #1.

The procedure consists of two main functions: fault detection and fault diagnosis.
Fault detection aims to detect anomalies in the PV modules, while the goal of the fault
diagnosis function is to classify the examined faults. This procedure is based on examining
the hotspot profile variations; each fault has a specific temperature profile. In order to
develop the models, the databases were divided into two sets (80% for training and 20%
for testing).

2.7. Evaluation Metrics

To verify the performance of the models, the confusion matrix is computed. The
equations used to calculate accuracy, precision, recall, and F1-score are as follows [29]:

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
(1)

Precision =
TP

(TP + FP)
(2)

Recall =
TP

(TP + FN)
(3)

F1-score = 2
(Precision ∗ Recall)
(Recall + Precision)

(4)

where TP: number of true positives, TN: number of true negatives, FP: number of false
positives, FN: number of false negatives.

3. Results and Discussion

The fault detection and diagnosis method developed based on Deep CNN configu-
ration was evaluated using the confusion matrix. The codes were executed using Google
Colab Pro with the following specifications: System RAM = 25 GB, GPU RAM T4, 16 GB,
Hard Disk = 166 GB, and GPU clock = 585 MHz. More specifically, Colab is a hosted Jupyter
notebook service that requires no setup to use, while providing access free of charge to
computing resources, including GPUs. We selected an image size of 224 × 224 pixels due
to the limited memory provided by Colab Pro (up to 25 GB) (Figure 9).
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It can be seen from Figure 9a that the system RAM was fully used, and it was not
possible to run our code correctly in the case of images with a size of 480 × 480, while in
Figure 9b, it can be seen that in the case of images with a size of 224 × 224, there is enough
memory to run the code. This also depends on the size of the dataset.
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3.1. Fault Detection Based on Binary Classification

The configuration of the developed fault detection model (DeepCNN) consisted of
15 layers (Figure 10): the first nine layers (four conv2D layers, four MaxPooling layers and
one dropout layer) were used for feature extraction; the second six layers (one flatten layer,
four dense layers, and a final dense layer containing the Softmax function), with total of
56,210 trained parameters.
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Figure 11 depicts the system memory, GPU memory, and disk capacity requirements.
As can be seen, the fault detection code required about half (12 GB) of the available memory
(25 GB). However, it consumed most of the available GPU RAM (16 GB). A disk with a
capacity of 128 GB was large enough to support the size of database #1.
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Figure 11. Assigned hardware resources (RAM and disk capacity) during the training process
(multiclass classification).

Figure 12a shows the variation in training loss and accuracy functions. As can be
seen, the loss reached 0.04 and the accuracy was very close to 1. Figure 12b displays the
confusion matrix. It can be observed that three Faulty images were misclassified into the
Normal class, and nine images belonging to the Normal class were misclassified into the
Faulty class. The ROC curve shows that all of the examined classes were very close to 1.
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Figure 12. Binary classification (fault detection): (a) training loss and accuracy functions; (b) confusion
matrix; and (c) ROC curve.

The calculated error metrics, including precision, recall, F1-score, and accuracy, during
the testing process, are listed in Table 2, as well as the required running time during the
training process.

Table 2. Calculated error metrics (precision, recall, F1-score and accuracy) and running time (during
the training process).

Class Precision Recall F1-Score Support Training
Time (min) Accuracy (%)

Faulty {1} 0.98 0.99 0.99 473

98.73
Norma {2} 0.99 0.98 0.99 474 9

Accuracy (%) - - - -
Macro average 0.99 0.99 0.99

Weighted average 0.99 0.99 0.99

From Table 2, it can be seen that the accuracy was 98.73% and the running time was
about 9 min. Precision, recall and F1-score ranged between 98% and 99%. Therefore, it
can be concluded that the deepCNN model developed for fault detection is able to detect
anomalies with very good accuracy.
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3.2. Fault Diagnosis Based on Multiclass Classification

The configuration of the developed fault diagnosis model consisted (deepCNN) of
17 layers (Figure 13): the first 11 layers (five conv2D layers, five MaxPooling layers, and
one dropout layer) were used for feature extraction; the second six layers (one flatten layer,
four dense layers, and a final dense layer containing the Softmax function), with total of
110,196 trained parameters.
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Figure 14 depicts the system memory, GPU memory, and disk capacity requirements.
As can be seen, the code required about 80% (about 20 GB) of the available system memory
capacity (25 GB). However, it consumed most of the available GPU RAM (16 GB). In this
case, too, the disk with a capacity of 128 GB was large enough to support the size of
database #2.
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Figure 14. RAM and disk consumption during the training process (multiclass classification).

Figure 15a shows the variations in the training loss and accuracy functions. As can be
seen, the loss has reached 0.01 and the accuracy was very close to 1. Figure 15b displays
the obtained confusion matrix. The ROC curve shows that all the examined classes were
very close to 1 (Figure 15c). From the confusion matrix, it can be seen that in the first
row, the classes were correctly classified; however, in the second row, 15 images were
misclassified. In addition, in the third row, five images were misclassified, and nine images
are misclassified in the fourth row.
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Figure 15. Multiclass classification (fault diagnosis): (a) training loss and accuracy functions; (b) con-
fusion matrix; and (c) ROC curve.

F1 (short-circuited PV module), F2 (dust accumulation), F3 (shading effect) and F4
(damaged bypass diode) achieved classification accuracies of 100% (570 out of 570, 0 errors),
97.34% (549 out of 564, 15 errors), 99.11% (559 out of 564, five errors) and 98.40% (554 out of
563, five errors), respectively.

For more details, the calculated error metrics, including precision, recall, F1-score and
accuracy, are listed in Table 3, as well as the required running time.

The accuracy was 98.71%, and the precision, recall, and F1-score ranged between 97%
and 100%, clearly showing the accuracy of the developed fault diagnosis model. The fault
diagnosis model required more time (15 min) than the fault detection model.
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Table 3. Calculated error metrics (precision, recall, F1-score and accuracy), and running time (during
the training process).

Class Precision Recall F1-Score Support Training
Time (min)

Accuracy
(%)

Fault 1 0.98 1.00 0.99 570

15 min 98.71

Fault 2 0.99 0.97 0.98 564

Fault 3 1.00 0.99 1.00 564

Fault 4 0.97 0.98 0.98 563

Accuracy (%) - - - -

Macro average 0.99 0.99 0.99 2261

Weighted average 0.99 0.99 0.99 2261

4. Comparative Study

To check the effectiveness of the proposed fault detection and diagnosis method,
we conducted a comparative study with other machine learning (e.g., k-NN, SVM, and
CatBoost), deep learning (VGG-16), and hybrid (CNN-SVM) methods. Both databases
were used to design fault detection and diagnosis models. We used the same procedure as
that shown in Section 2.6. Figure 16 shows the simulated confusion matrices for different
methods of fault detection (binary classification).
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The calculated error metrics, including precision, recall, F1-score, and accuracy, are
provided in Table 4, as well as the required running time.
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Table 4. Calculated error metrics (precision, recall, F1-score and accuracy), and running time (during
the training process): k-NN, SVM, CatBoost, VGG-16 and hybrid CNN-SVM.

Class Precision Recall F1-Score Training
Time (min) Accuracy (%)

k-NN Model: (n_neighbors = 5, n_jobs = 1, algorithm = ‘kd_tree’)

Faulty 0.82 0.67 0.73 13+ 75.18

Normal 0.70 0.84 0.77

SVM model: (kernel = rbf, probability = True, random_state = 42)

Faulty 0.82 0.81 0.82 13+ 81.41

Normal 0.80 0.82 0.81

CatBoost Model: (Iterations = 500, max_depth = 5, n_estimators = 100,
learning_rate = 0.99)

Faulty 0.97 0.90 0.94 13+ 93.56

Normal 0.90 0.97 0.94

Hybrid CNN-SVM model: (11 layers: 4Con2D, 4 MaxPooling, 1 dropout,
1 flatten layer and 1 dense layer)

Faulty 0.99 0.99 0.99 7 98.73

Normal 0.99 0.99 0.99

VGG-16

Faulty 1.0000 0.9978 0.9989 25 99.89

Normal 0.998 1.000 0.999

Figure 17 shows the simulated confusion matrices for different methods of fault
diagnosis (multiclass classification) for k-NN, SVM, CatBoost, VGG-16 and CNN-SVM.

With reference to the results presented in Tables 4 and 5, Figures 13 and 14, the
following points can be highlighted:

• In the case of machine learning, it takes about 13 min to process the first database (bi-
nary classification) and 32 min to process the second database (multiclass classification)
to extract features from images.

• The worst classification accuracy is obtained by the k-NN (70.10%) and SVM (81.41%),
while acceptable accuracy is given by the CatBoost classifier (93.56%).

• Deep learning methods perform better than the investigated machine learning models
(k-NN, SVM and CatBoost).

• VGG-16 based on the transfer learning approach provides very good results (more
than 99% in both binary and multiclass classifications), but the main issue with this
approach is the complexity of its configuration and the fact that it takes too much time
compared to the other examined configurations.

• Hybrid approaches that use the CNN learning process to extract features and the
ML classifier also did well (98.73% for binary classification and 98% for multiclass
classification).

The proposed deepCNN configuration shows good accuracy and comprises a small
configuration that could be implemented easily.
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Table 5. Calculated error metrics (precision, recall, F1-score and accuracy), and running time (during
the training process): k-NN, SVM, CatBoost, VGG-16 and hybrid CNN-SVM.

Classes Precision Recall F1-Score Training
Time (min) Accuracy (%)

k-NN Model: (n_neighbors = 5,n_jobs = 1,algorithm = ‘kd_tree’)

Fault 1 0.80 0.46 0.59 37 70.10

Fault 2 0.51 0.96 0.67

Fault 3 0.87 0.76 0.81

Fault 4 0.94 0.63 0.75

SVM model: (kernel = rbf, probability = True, random_state = 42)

Fault 1 0.72 0.88 0.79 49 81.41
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Table 5. Cont.

Classes Precision Recall F1-Score Training
Time (min) Accuracy (%)

Fault 2 0.83 0.86 0.85

Fault 3 0.93 0.84 0.88

Fault 4 0.85 0.72 0.78

CatBoost Model: (Iterations = 500, max_depth = 5, n_estimators = 100,
learning_rate = 0.99)

Fault 1 0.91 0.98 0.94 41 93.56

Fault 2 0.91 0.92 0.91

Fault 3 0.99 0.88 0.93

Fault 4 0.91 0.92 0.91

Hybrid CNN-SVM model: (11 layers: 4Con2D, 4 MaxPooling, 1 dropout,
1 flatten layer and 1 dense layer)

Fault 1 0.99 1.00 1.00 7 98.00

Fault 2 0.99 0.99 0.99

Fault 3 0.98 0.94 0.96

Fault 4 0.96 0.98 0.97

VGG-16

Fault 1 1.0000 1.0000 1.0000 45 99.95

Fault 2 1.0000 0.9983 0.9991

Fault 3 1.0000 1.0000 1.0000

Fault 4 0.9982 1.0000 0.9991

5. Conclusions

This research work presents a comprehensive comparative study between machine
learning, deep learning, and hybrid methods for fault detection and diagnosis of PV mod-
ules by means of infrared thermography images. A deepCNN configuration was developed
from scratch for binary and multiclass classification. The results showed the ability of the
developed deepCNN to detect and classify four major faults that can occur in PV modules
with very good accuracy (98.70% for both binary and multiclass classification cases).

A comparative study demonstrated that fault detection and diagnosis based on deep
learning presented the highest accuracy versus machine learning methods. The VGG-16
provides more accurate results. However, the proposed configuration is the most appropri-
ate with regard to simplicity of implementation.

As a continuation of the present work, and in order to experimentally verify and
generalize the developed model, our next work aims to incorporate the deepCNN model
into a low-power edge device for real-world application. The IRT images collected by
drones will also be used to test how well the model works for other PV installations
and locations.
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Abbreviations

AE-LSTM Auto-Encoder LSTM
CBAM Convolutional Block Attention Module
CNN Convolutional Neural Network
DL Deep Learning
ICNM Isolated Convolutional Neural Model
IR InfraRed Image
IRT IR Thermography
KNN k-Nearest Neighbor
LSTM Long Short-Term Memory
LWL Locally weighted learning
ML Machine Learning
NN Neural Networks
PVM PV module
ReLU Rectified Linear Unit
RoI Region of Interest
SHM Structural Health Monitoring
SVM Support Vector Machine
UAV Unmanned aerial vehicle
VGG Visual Geometry Group
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