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Abstract: Accurate Noctiluca scintillans bloom (NSB) recognition from space is of great significance
for marine ecological monitoring and underwater target detection. However, most existing NSB
recognition models require expert visual interpretation or manual adjustment of model thresholds,
which limits model application in operational NSB monitoring. To address these problems, we
developed a Noctiluca scintillans Bloom Recognition Network (NSBRNet) incorporating an Inception
Conv Block (ICB) and a Swin Attention Block (SAB) based on the latest deep learning technology,
where ICB uses convolution to extract channel and local detail features, and SAB uses self-attention
to extract global spatial features. The model was applied to Coastal Zone Imager (CZI) data onboard
Chinese ocean color satellites (HY1C/D). The results show that NSBRNet can automatically identify
NSB using CZI data. Compared with other common semantic segmentation models, NSBRNet
showed better performance with a precision of 92.22%, recall of 88.20%, F1-score of 90.10%, and IOU
of 82.18%.

Keywords: Noctiluca scintillans blooms; remote sensing; deep learning; HY-1C/D; CZI

1. Introduction

Noctiluca scintillans is widely distributed in global nearshore waters [1], occurring
frequently worldwide in recent years [2], especially along the coast of China [3,4]. Al-
though Noctiluca scintillans blooms (NSBs) are non-toxic red tides, explosive proliferation,
and aggregation of Noctiluca scintillans cells makes the ocean surface mucilaginous or
gelatinous [2], seriously impeding the exchange of sea air in the surface layer of the ocean
and affecting the marine ecosystem [5,6]. Noctiluca scintillans emits blue light when mechan-
ically disturbed by waves, ships, underwater vehicles, etc. [7,8], which can be applied for
surface and underwater target detection at night [9,10]. Therefore, an accurate and efficient
automated recognition method for NSB detection is of great significance for both marine
ecological studies and underwater target detection.

Currently, NSB can be identified by field experiments of remote sensing. In the Ger-
man Bight, Schaumann et al. [11] established a link between water column eutrophication
and the abundance of Noctiluca scintillans cells. Uhlig et al. [12] found a pattern of sea-
sonal periodic outbreaks of NSB through long-term observations. In the East China Sea,
Tseng et al. [13] conducted high-frequency sampling at fixed stations and found that the
area beyond the estuary of the Yangtze River was the main active area of the NSB. However,
most of the above field-based studies are limited to a shorter period and a smaller area,
which leads to findings that are constrained in time and space. Satellite remote sensing
has been widely used in various red tide recognition tasks with the advantages of a fixed
revisit period, low cost, and high spatial and temporal coverage. At present, a large num-
ber of studies have proposed various threshold-based band ratio or baseline subtraction
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methods based on the analysis of the spectral characteristics of red tide. For example,
Tang et al. [14] demonstrated the feasibility of the normalized difference vegetation index
in red tide recognition from remote sensing data. Hu et al. [15] used fluorescence line
height to detect and track a red tide outbreak off the coast of southwest Florida using
MODIS data. Ahn et al. [16] designed the red tide index (RI) based on red tide spectral
features and applied it to SeaWiFS data to identify red tides off the coasts of Korea and
China. Takahashi et al. [17] further improved the RI based on spectral features and applied
it to Sentinel-2 MSI data to identify red tides in lakes [18]. Based on the unique absorption
and scattering properties of NSB, Qi et al. [19,20] determined the NSBs using the ratio of
multiband differences and analyzed the impacts of environmental factors on NSB distri-
bution. Unlike the direct recognition of NSBs from spectral features, Dwived et al. [21]
used sea surface temperature and chlorophyll to identify NSBs in the Arabian Sea. By
analyzing the spectral response characteristics of red tide, Liu et al. [22] designed a red
tide recognition method for GF-1 WFV data and validated it in a red tide event. To expand
the differences between red tide and non-red tide water bodies, Liu et al. [23] chose to
transfer remote sensing images from RGB color space to CIE1931 color space. However,
there are many difficulties when applying index-based algorithms to identify or monitor
NSBs. First, identifying small Noctiluca scintillans patches in satellite remote sensing data is
challenging [19]. Second, passive remote sensing satellites are susceptible to interference
from various influencing factors such as clouds, aerosols, and observation geometry [24].
Finally, almost all NSB recognition methods require manually adjusted thresholds or expert
visual examination, making them difficult to operate automatically.

With powerful feature extraction and nonlinear approximation capabilities, deep
learning has achieved excellent results in classification, detection, fusion, and segmentation
using remote sensing data. In 2015, a fully convolutional network (FCN) was first applied
to the semantic segmentation task [25]. Then, Ronneberger et al. [26] developed UNet, a
semantic segmentation model using an encoder-decoder structure, where the encoder is
used to extract semantic information from the input data and the decoder is responsible
for fusing the semantic information with the underlying features and finely decoding the
segmentation results. A jump connection is set between the encoder and the decoder to
preserve the underlying details and reduce the feature loss due to downsampling. With
the innovative work of the encoder-decoder, UNet achieves better results when applied
in remote sensing with fewer training samples. The subsequently developed SegNet [27]
and DeepLab V3+ [28] adopting the encoder-decoder structure were applied in red tide
recognition. Lee et al. [29] developed a neural network to identify and monitor red tides
using high-resolution satellite data. Kim et al. [30] verified the possibility of using UNet for
automatic pixel-based red tide detection. Later, Zhao et al. [24] added a channel attention
model to UNet for better identification of red tide using HY-1D and GF-1 data.

Although the deep learning models mentioned above can recognize NSB using re-
mote sensing images, the simple stacked convolution operation cannot fully utilize the
information from remote sensing data. To efficiently utilize computational resources
and extract diverse features from remote sensing data, various deep learning-based ap-
proaches have emerged. In 2014, the Google team first proposed the concept of Inception
in GoogLeNet [31], and its core idea is to extract multiscale information by combining dif-
ferent convolutional parallel structures into a sparse network structure and finally, perform
feature fusion to obtain a better image representation. Later, Google proposed Inception
V2–V4 [32–34] and Xception [35] to reduce the computational effort by using parallel
convolution while maintaining the multiscale feature extraction capability. Liu et al. com-
bined Inception with dilated convolution to further exploit the potential of Inception [36].
In addition to multiscale feature extraction, other studies tend to model global correla-
tions within data using self-attention learning. Lin et al. first introduced the concept of
self-attention in 2017 [37], which was designed to enable networks to focus on globally im-
portant features and ignore irrelevant distracting information. Recent studies have shown
that self-attention is also applicable to computer vision tasks. Vision in Transformer (VIT)
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proposed in [38] first applied a self-attention-based Transformer to image classification
with better results than CNN by exploring the connections between global data through
self-attention learning. Since self-attention can build long-range dependencies in data and
learn high-quality intermediate features, it was applied to DANet [39] and CCNet [40]
to extend CNN capacities. On the other hand, CvT [41], CoAtNet [42], UniFormer [43],
and iFormer [44], pair self-attention with convolution. Later, SETR [45] used VIT exclu-
sively as the encoder, PVT [46] used VIT encoder while giving the model the ability to
extract multiscale features by setting up a pyramid structure, and these improvements
further increased the computational cost of the model. To reduce the huge computational
effort required by self-attention, Liu et al. [47] designed the Swin Transformer in 2021 by
introducing a CNN-like hierarchical construction method that combines the windowing
of convolution and the global nature of self-attention to achieve the best performance in
a variety of vision tasks while having low computational complexity. The success of VIT
in vision tasks shows the potential of self-attention in remote sensing, inspiring a series
of self-attention-based small-data networks, such as UTNet [48], Transformer UNet [49],
Trans UNet [50], and Swin UNet [51], which have been further applied in remote sensing
change detection [52–54] and semantic segmentation [55–58].

Inspired by the above studies, to automatically recognize NSBs from remote sensing
data and improve the recognition accuracy, this manuscript proposes a Noctiluca scintillans
Bloom Recognition Network (NSBRNet) incorporating convolution and self-attention to
achieve automatic recognition of NSBs using high spatial resolution satellite remote sensing
data. The rest of this manuscript is organized as follows. The second part describes the
Coastal Zone Imager (CZI) remote sensing data and the processing methods. The third
part presents the details of NSBRNet. The fourth part examines the recognition accuracy of
the model and conducts comparison and ablation experiments to compare with other deep
learning models and to examine the performance of ICB, SAB, and NSBI.

2. Materials and Methods
2.1. CZI Data and NSB Event Information

CZI Level-1B data were acquired from the National Satellite Ocean Application Service
(NSOAS). The CZI sensor was carried on the HY-1C satellite launched in 2018 and the
HY-1D satellite launched in 2020. The CZI sensor has four bands with a spectral range
of 460–825 nm, swath of 950 km, and spatial resolution of 50 m. Onboard HY-1C and
HY-1D, CZI can make observations with a revisit period of 1 day at any location along the
China coast. With a wide swath and high spatial resolution, CZI sensors are widely used in
various ocean monitoring missions. Figure 1 shows an example of NSB in the East China
Sea acquired by CZI on 17 August 2020. The NSB event information used in this study was
obtained from the reports released by NSOAS. CZI data on cloud-free days were searched
to match the NSB events. Finally, six CZI images were matched with reported NSB events
and are summarized in Table 1.

Table 1. Information on NSBs in CZI.

Date Region Longitude Latitude

17 August 2020 East China Sea 123◦36′–125◦32′ 31◦58′–33◦18′

17 August 2020 East China Sea 124◦92′–135◦45′ 32◦63′–34◦73′

14 February 2021 Beibu Gulf 107◦71′–109◦38′ 19◦21′–21◦25′

13 March 2022 Dapeng Bay 108◦84′–118◦15′ 19◦49′–21◦45′

10 April 2022 Yangjiang 111◦45′–120◦83′ 20◦08′–22◦06′

10 April 2022 Dapeng Bay 112◦05′–121◦62′ 22◦90′–24◦90′
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Figure 1. CZI FRGB image with NSB acquired on 17 August 2020.

CZI Level-1B data were processed to Rayleigh corrected reflectance (Rrc) [59]:

Rrc = Rt − Rr (1)

Rt = πLt/(F0cosθ0) (2)

where Rt denotes top-of-atmosphere reflectance, Rr denotes Rayleigh reflectance, Lt denotes
total top-of-atmosphere irradiance, F0 denotes extraterrestrial solar irradiance, and θ0
denotes solar zenith angle. The Rayleigh corrected CZI reflectance data were further
subjected to geometric correction, Noctiluca scintillans bloom annotation, data cropping,
data partitioning, sample equalization, and data augmentation. The specific data processing
flow chart is shown in Figure 2:

2.2. Noctiluca scintillans Bloom Index

Influenced by wave and tidal motion, Noctiluca scintillans patches are usually stretched
into thin strips on the ocean surface (Figure 3a). Unlike the general semantic segmentation
task, the spectral features of the Noctiluca scintillans patches vary with the abundance of
Noctiluca scintillans cells per unit area. As shown in Figure 3b, high spectral reflectance
in the red band is observed in intense Noctiluca scintillans patches (points 1 and 2), while
relatively low reflectance is observed in sparse patches (points 3 and 4).

To enhance the difference between the NSB and the background waters, similar to
the Floating Algae Index (FAI) proposed by Hu [60], the Noctiluca scintillans Bloom Index
(NSBI) was designed in this study using the green and near-infrared bands as the baseline to
measure the reflectance peaks of Noctiluca scintillans in the red band. The NSBI is calculated
as follows:

NSBI = RrcR − R′rcR (3)

R′rcR = RrcNIR + (RrcG − RrcNIR)× (λNIR − λR)/(λNIR − λG) (4)

where the subscripts NIR, R, and G are wavelengths in the near-infrared, red, and green
regions, respectively. For the CZI data, λG = 560 nm, λR = 650 nm, and λNIR = 825 nm.
The Rayleigh-corrected reflectance of four typical targets on the sea surface is shown in
Figure 4a, and the corresponding NSBI is shown in Figure 4b. The NSBI values of water
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and clouds are close to zero with low variation, while the NSBI values of Noctiluca scintillans
are greater than zero. Macroalgae show a negative NSBI value due to the strong reflection
peak in the near-infrared band. Clearly, the NSBI can be used to differentiate NSBs from
other ocean targets, such as water, clouds, and macroalgae.
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2.3. Annotation Method

Similar to Qi et al. [19], the water color anomaly region was first identified by visual
interpretation, and then the Rrc of the target pixel was subtracted from the clean water
pixel within 3 × 3 km near the target pixel to obtain ∆Rrc to minimize the influences of thin
clouds or aerosols. Clean water pixel selection relied on visual interpretation. The ratio of
∆Rrc in the red and NIR bands was used to determine whether NSB were present in the
current water color anomalies. This method was used to label NSBs in CZI data. As shown
in Figure 5, each step of the method relies on a large number of manual operations, making
it impossible to automatically recognize NSB.
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2.4. Dataset Construction

Considering the area ratio of NSBs and background in remote sensing images and
the limited memory capacity of computing devices, the input size of NSBRNet is set to
128 × 128 pixels. Therefore, the annotated CZI data and the corresponding NSB labels
were randomly divided into 128 × 128 pixel samples. After random partitioning, a total
of 1108 samples of CZI data were obtained and randomly divided into a training set
(60%), validation set (20%), and test set (20%) at a ratio of 6:2:2. To obtain enough training
data and avoid overfitting the model, the dataset was randomly enhanced by horizontal
flipping, vertical flipping, diagonal flipping, random angle rotation, and random scale
scaling. Examples of data augmentation results are shown in Figure 6:
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2.5. Evaluation Criteria

The confusion matrix proposed by Congalton in 1991 [61] is the basis for algorithm
validation, and almost all algorithm evaluation metrics are implemented based on the
confusion matrix, which is shown in Table 2.

Table 2. Confusion matrix for binary classification.

Confusion Matrix
Ground Truth

Positive Negative

Recognition
Result

Positive True-Positive (TP) False-Positive (FP)
Negative False-Negative (FN) True-Negative (TN)

Where TP and FP are the number of NSB pixels and non-NSB pixels identified as NSB, respectively; while TN and
FN are the number of non-NSB pixels and NSB pixels identified as non-NSB, respectively.

In remote sensing images, the ratio of NSB area to total area is extremely small,
usually less than 2%, which often leads to overall accuracy (OA) failure. This means that
NSB remote sensing recognition is a serious category imbalance task. To measure the



Remote Sens. 2023, 15, 1757 8 of 19

performance of different methods, four evaluation metrics: precision, recall, F1-score, and
Intersection Over Union (IOU), are used in this study, and they are calculated as follows:

Precision = TP/(TP + FP) (5)

Recall = TP/(TP + FN) (6)

F1− Score = 2× (Precision× Recall)/(Precision + Recall) (7)

IOU = TP/(TP + FP + FN) (8)

3. Noctiluca scintillans Bloom Recognition Network (NSBRNet)
3.1. Network Structure

In order to achieve the automatic recognition of NSBs in remote sensing data, diverse
features need to be fully explored. In this study, the Inception Conv Block and Swin At-
tention Block were used to develop NSBRNet. Similar to classical semantic segmentation
models such as UNet, NSBRNet also adopts the same symmetric encoder-decoder structure
for feature extraction and processing. The network structure of NSBRNet is shown in Fig-
ure 7. The input image is five-channel data with a size of 128× 128 pixels, and the output is
the NSB recognition with the same size as the input. The input data include Rrc data at four
bands and NSBI to increase the difference between NSBs and background. The input will
first go through 4 rounds of downsampling and hybrid feature extraction in the encoder
after the preprocessing convolution layer. In the encoder, the hybrid feature extraction
combined with the Inception Conv Block and Swin Attention Block encodes the different
features of NSBs, while the downsampling and hybrid feature extraction stacked step by
step can expand the receptive field of the model. It enables the encoder to learn the details
and semantic features of NSBs at different scales from the input, which can effectively
improve the generalization performance of the model to NSBs at various scales. Unlike the
encoder, the hybrid feature extraction is used for feature decoding in the decoder, which
decodes the final NSB location information by 4 segments of similar level-by-level feature
decoding and upsampling. In addition, to reduce the loss of underlying features brought
by downsampling, NSBRNet sets jump connections between the corresponding layers of
the encoder-decoder structure. In the decoder, the feature maps encoded by the encoder are
upsampled and concatenated with the feature maps transmitted by the jump connection,
and then hybrid feature extraction is performed. This dense connection can well preserve
the NSB region with detailed features. Finally, the feature information decoded by the de-
coder is assigned a yes/no category label of NSBs for each pixel through the postprocessing
convolution layer and output as the result of NSB remote sensing recognition.

As shown in Figure 8, the hybrid feature extraction consists of two basic components:
Inception Conv Block and Swin Attention Block. Convolution is proficient in extracting
local high-frequency information through weight-sharing convolution kernels, while self-
attention tends to dynamically calculate the similarity between different patches to obtain
global low-frequency information. To fully integrate the advantages of these two different
feature extraction mechanisms, inspired by the study of Si et al. [44], the channel spectral
features were extracted in the hybrid feature extraction from the 1 × 1 convolutional
layer and divided into a high-frequency part and a low-frequency part. Then, the high-
frequency channel spectral features and local detail features of NSBs were extracted by
the Inception Conv Block, and the low-frequency global spatial features of NSBs were
extracted by the Swin Attention Block. The shallow layer of the model is usually used
to capture various detailed features, while the deep layer of the model tends to target
the global semantic information. As the depth of the model increases, the contribution of
the Swin Attention Block to the model gradually increases; as a result, the proportion of
low-frequency information increases accordingly. Considering the high spatial resolution
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of CZI data (i.e., 50 m), the proportion of convolutions and self-attention in each layer of
NSBRNet was set to 6:2, 5:3, 4:4, and 4:4.
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3.2. Inception Conv Block

The spectral features and local detail features are essential factors in determining
whether Noctiluca scintillans is present in the pixel, which requires the model to efficiently
extract the spectral features of the NSB. At the same time, there is other prior knowledge in
remote sensing images, i.e., a pixel has a great probability of being similar to its surrounding
neighboring pixels.
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To improve the performance of NSBRNet by using multiple features simultaneously,
the Inception Conv Block (ICB) is designed in this study to capture the characteristics of
NSBs in remote sensing data. As shown in Figure 9, ICB consists of three parts. The channel
spectral features extracted by the 1× 1 convolutional layer are first copied into three parallel
branches. The first branch is the skip connect layer, which not only preserves the channel
spectral features extracted by 1 × 1 convolution but also enables NSBRNet to deepen the
network depth and improve the network nonlinear fitting ability while maintaining the
ability of stable optimization of the network. This layer also slows down the degradation
of the deep network and avoids overfitting and gradient disappearance of the network.
The feature maps in the second branch are first subjected to 3 × 3 average pooling to
fuse the channel spectral information of neighboring pixels, and then the fused channel
spectral features are extracted using 1 × 1 convolution. The third branch is a conventional
stacking of 3 × 3 convolutions to extract local features of NSBs in a small range, where the
stacking of two layers of 3 × 3 convolutions can increase the receptive field to a 5 × 5 range
with a smaller number of parameters than a single layer of 5 × 5 convolutions. Finally,
the different channel features and local information in the three branches are cascaded
together by the concatenation operation as the output feature map of the ICB. The ICB can
be represented as:

FInput1, FInput2, FInput3 = Duplicate(FInput)

FLocal1 = FInput1

FLocal2 = Conv1×1(AvgPool(FInput2))

FLocal3 = Conv3×3(Conv3×3(FInput3))

Fchannel = Concate(FLocal1, FLocal2, FLocal3)

(9)
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3.3. Swin Attention Block

Repeated stacking of convolutional and downsampling layers can expand the receptive
field of the model, but it causes a large loss of feature information and leads to a surge
in the number of model parameters. Self-attention is another peer-to-peer method in
representation learning that can capture the connection between different regions in the
global feature map by dynamically computing the similarity between patches. Therefore,
self-attention is often used to model the correlation relationships within the data.

In the NSB remote sensing recognition task, the input feature maps are divided into
non-overlapping patches by the patch embedding operation. Since the pixels with NSBs
are usually clustered together, the patches containing NSB regions have strong semantic
correlation among the patches. However, computing the global self-attention among all
patches brings a computational complexity of quadratic number of patches, which limits
the application of self-attention in recognition of NSBs. In contrast, the Swin Transformer
based on the shift window strategy proposed by Liu et al. [47] restricts the self-attention
computation to the inside of the window and moves the window to obtain attentional
interactions across the window. As shown in Figure 10, the Swin Attention Block (SAB)
consists of patch embedding, W-MHSA, and SW-MHSA. Windows multi-head self-attention
(W-MHSA) and shifted windows multi-head self-attention (SW-MHSA) replace the single-
layer self-attention in traditional ViT, effectively reducing the parameters and computation
of the model while retaining the ability to model global long-range dependencies. Therefore,
we fuse SAB with ICB in NSBRNet to provide global contextual information of NSBs across
multiple patches during hybrid feature extraction, and dynamically generate codec weights
of different regions in the feature map.
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In SAB, W-MHSA divides the input feature map into windows that do not overlap
each other and uses MHSA to calculate the correlation between different patches within
windows. Subsequently, in SW-MHSA, the result of self-attention within windows will be
divided after displacement into new windows, at which time, the region once located at
the edge of the windows becomes close to the center of the windows, and the MHSA in
SW-MHSA calculates the global correlations of the feature maps using the new windows
with the assistance of the location mask. SAB is useful in prompting the model to focus
on the NSB regional spatial features, and it will also suppress the interference features
brought by different background regions, weaken the influence of the surrounding marine
environment on NSB recognition, and provide more high-level semantic information for
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the model in the deeper layers of the network to solve NSB remote sensing recognition
problems in complex background environments. SAB can be represented as:

Fw = W −MHSA(LN(FInput)) + FInput

Fw = MLP(Fw) + Fw

Fsw = SW −MHSA(LN(Fsw)) + Fsw

FGlobal = MLP(Fsw) + Fsw

(10)

4. Results
4.1. Result Validation

We first examined the performances of NSBRNet using the reserved CZI data. Figure 11a
shows two regions mentioned in the NSOAS report. Since only a few CZI images were
available, region (A) was partially used for model training, while region (B) was not used for
model training. The remote sensing recognition results of NSBs in Figure 11d demonstrate
that NSBRNet shows accurate NSB recognition capability in CZI remote sensing images.

4.2. Comparison Experiment

To further measure the performance of NSBRNet, we compared it with some com-
mon deep learning models: Res UNet [62], UNet [26], Swin UNet [51], Trans UNet [50],
FCN-8s [25], and PSPNet (ResNet34) [63] using the same hyperparameters and inputs. The
comparison experiment was conducted on two NVIDIA RTX 3090 graphics processing
units (GPUs) with 24G graphics memory, and various semantic segmentation models were
implemented using the open source deep learning library PyTorch. To compare NSBRNet
with other deep learning models, we controlled all experiments with the same hardware
and software, and set the following identical hyperparameters for all models: batch size set
to 32, training epoch set to 120, combining cross-entropy and boundary loss [64,65] as loss
functions, using Adam as the optimizer, setting the initial learning rate to 1 × 10−3, and
using a cosine annealing learning rate decay strategy to make the learning rate fluctuate in
a cosine-like cycle.

Table 3 lists the recognition results with various deep learning models using the same
CZI data. The recall and IOU of NSBRNet are 88.20% and 82.18%, respectively, and the
precision and F1-score are 92.22% and 90.10%, respectively, which achieve the best compre-
hensive performance in the test set. The experimental results also show that NSBRNet has
strong adaptability to identify NSB in different background environments. In addition, al-
though self-attention is good at global modeling, it lacks fine-grained localization ability. To
avoid this problem, NSBRNet uses a flexible combination of convolution and self-attention
by channel partitioning to extract global spatial information while preserving channel and
local detail information. While Trans UNet replaces some of the convolution layers in the
encoder with self-attention, Swin UNet is built entirely with self-attention, and the above
self-attention addition affects the extraction of the underlying detail features by the model.
In NSB recognition, the channel and detail features play a decisive role in the recognition
results. Therefore, with the same hyperparameters, the results show that the recall and
IOU of Res UNet and UNet are 85.42% and 79.22%, and 84.46% and 77.82%, respectively,
outperforming Swin UNet and Trans UNet. The models with tandem structures such as
PSP Net and FCN-8s achieved the worst results in the CZI dataset, which proves that
the models with encoder-decoder structures are more suitable for identifying NSBs in
remote sensing data than the deep learning models with other structures. Figure 12 shows
that NSBRNet can accurately detect NSBs with CZI data. By comparing the recognition
results with other models, NSBRNet clearly has obvious advantages in both NSB patches
and edges. Additionally, NSBRNet can better distinguish NSBs with low biomass or in
near-shore turbid water.
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Table 3. Performance of each model in the CZI dataset.

Model Precision Recall F1-Score IOU

Res UNet 91.51 85.42 88.26 79.22
UNet 90.75 84.46 87.38 77.82

Swin UNet 87.72 83.64 85.49 74.92
Trans UNet 87.76 82.79 85.03 74.25

FCN-8s 85.00 80.57 82.67 70.75
PSPNet (ResNet34) 84.52 76.28 80.12 66.94

NSBRNet 92.22 88.20 90.10 82.18
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The remote sensing recognition results of NSBs for different models in the CZI data
are shown in the following figures:

5. Discussion
5.1. Ablation Experiment

As the design of NSBRNet inherits the structure of UNet [26], this section conducts
ablation experiments using UNet as the baseline model to evaluate the influence of ICB
and SAB on the performance of NSB recognition. The same computing resources and input
parameters were used in the ablation experiment.

The results of the ablation experiments are shown in Figure 13 and Table 4. Although
both ICB and SAB improved the recognition performance of the NSBRNet model, ICB
mainly contributes to the improvement of the model. In other words, the spectral and local
detail features in the NSBs play a decisive role in the recognition results. The results show
that NSBRNet incorporating ICB and SAB can achieve better performance than that of the
single structure model.
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Table 4. Performance of each model in the dataset.

Model Precision Recall F1-Score IOU

UNet 90.75 84.46 87.38 77.82
NSBRNet (SAB) 91.52 85.94 88.56 79.70
NSBRNet (ICB) 92.02 86.14 88.89 80.28

NSBRNet 92.22 88.20 90.10 82.18

5.2. NSBI Applicability Analysis

To evaluate the effect of NSBI on the performance of NSBRNet, we compared the
results with 4 channels (R, G, B, NIR) and 5 channels (R, G, B, NIR, NSBI) as the input of
NSBRNet. Similar to the ablation experiment, the same computing resources and input
parameters were used in the NSBI applicability analysis.

Adding one more channel in the input, the accuracy of the NSBRNet model slightly
improved as shown in Table 5 and Figure 14. For example, recall slightly increased from
87.25% to 88.20% and IOU increased from 81.25% to 82.18% when NSBI data were included
in the model. The results show that NSBI can still improve the NSB recognition performance
of NSBRNet to some extent.

Table 5. Impact of NSBI on the performance of NSBRNet.

Model Precision Recall F1-Score IOU

R, G, B, NIR 92.11 87.25 89.51 81.25
R, G, B, NIR, NSBI 92.22 88.20 90.10 82.18
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6. Conclusions

In this study, we developed a remote sensing recognition model NSBRNet incorporat-
ing an Inception Conv Block and a Swin Attention Block based on the latest deep learning
technology using CZI data, where ICB uses convolution to extract channel and local detail
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features, and SAB uses self-attention to extract global spatial features. NSBRNet signif-
icantly combines the advantages of convolution and self-attention through the channel
partitioning mechanism, which extracts the global spatial information while preserving
the channel and local detail information, making NSBRNet flexible in constructing and
fitting most of the information compared with other models. The hybrid feature of NSBR-
Net enables the model to delineate NSB features at different spatial scales and different
background conditions. To improve the recognition accuracy, we developed NSBI and used
it as an input to the model.

We collected the NSB event reports released by NSOAS to check the performance of the
model. Validation results showed that the model can efficiently and automatically recognize
NSB from CZI images. Comparison and ablation experiments were then conducted to
compare the performance of the developed NSB model with other deep learning models and
to examine the performance of ICB, SAB, and NSBI in the NSB model. In the comparison
experiments, NSBRNet performed better with an IOU of 82.18% and recall of 88.20%,
which were improved by 2.96–15.24% and 2.78–11.92% compared to other deep learning
models. In the ablation experiment, ICB and SAB had 2.46% and 1.88% improvements in
IOU compared to baseline UNet, respectively, and NSBI had a 0.93% improvement in IOU
for NSBRNet.

The NSBRNet proposed in this study can be quickly extended to many other satellite
sensors with higher spatial resolution such as Landsat OLI (~30 m) and Sentinel MSI
(~10 m), or lower spatial resolution but with wide swath such as MODIS (~250 m) and OLCI
(~300 m) by constructing the corresponding datasets. By combining different satellite data,
the global appearance of RNS can be well observed from space and their spatio-temporal
characteristics can be comprehensively analyzed. This will provide useful information
in the future research to study the relationships between RNS bloom and the relevant
environmental factors.
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