Unsupervised Change Detection for VHR Remote Sensing Images Based on Temporal-Spatial-Structural Graphs
Abstract
:1. Introduction
- We propose a novel temporal-spatial-structural neighborhood, which combines the common spatial neighborhood and a new temporal-structural neighborhood by introducing the structural constraint of ground objects in the bi-temporal images with different scale parameters. Based on the defined neighborhood, a weighted graph is then constructed for each superpixel with the fine scale, which can effectively avoid the loss of structure and context information, as the complicated interactive relationships among superpixels of both two images with coarse and fine scale parameters are taken into account.
- A new metric function is designed to measure the similarity between graphs with the same topological structure, which integrates the spectral difference with the temporal-structural difference to better alleviate impacts of inevitable spectral variability and noise commonly existing in VHR images.
2. Materials and Methods
- The input images and are first stacked into one image (with the size of ) in sequence of bands. Then, is segmented by the fractal net evolution approach (FNEA) [26] with a coarse scale and a fine one . After that, the boundaries with and are mapped to and , respectively, to obtain the coarse scale superpixel sets and the fine sets .
- After defining the temporal-spatial-structural neighborhood, we construct a graph for each superpixel of based on the defined neighborhood. The graphs and corresponding to the superpixels and have the same topological structure.
- All graph pairs ( and ,, where is the number of superpixels with ) are fed into the designed metric function to obtain the difference images (DIs).
- The DI is segmented or clustered to obtain binary change maps.
2.1. Graph Construction Based on Temporal-Spatial-Structural Neighborhood
2.2. Measurement of Graph Similarity
3. Results
3.1. Data Sets and Experimental Settings
3.1.1. Optical Data Sets
3.1.2. SAR Data Sets
3.1.3. Experimental Settings
3.2. Experiments on Optical Images
3.3. Experiments on SAR Images
4. Discussion
4.1. Discussion of the Methods of Multitemporal Segmentation
4.2. Influence of Parameter
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Radke, R.J.; Andra, S.; Kofahi, O.A.; Roysam, B. Image change detection algorithms: A systematic survey. IEEE Trans. Image Process. 2005, 14, 294–307. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Qin, Y.; Li, Z.; Mondini, A.C.; Casagli, N. Landslide mapping from multi-sensor data through improved change detection-based Markov random field. Remote Sens. Environ. 2019, 231, 111235. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, F.; Dong, J.; Wang, S. Transferred deep learning for sea ice change detection from synthetic-aperture radar images. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1666–1670. [Google Scholar] [CrossRef]
- Timilsina, S.; Aryal, J.; Kirkpatrick, B. Mapping urban tree cover change using object-based convolution neural network (OB-CNN). Remote Sens. 2020, 3017, 1218. [Google Scholar] [CrossRef]
- Chen, H.; Shi, Z. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection. Remote Sens. 2020, 12, 1662. [Google Scholar] [CrossRef]
- Zhang, C.; Yue, P.; Tapete, D.; Jiang, L.; Shangguan, B.; Huang, L. A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images. ISPRS J. Photogramm. Remote Sens. 2020, 166, 183–200. [Google Scholar] [CrossRef]
- Shi, Q.; Liu, M.; Li, S.; Liu, X.; Wang, F.; Zhang, L. A deeply supervised attention metric-based network and an open aerial image dataset for remote sensing change detection. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–16. [Google Scholar] [CrossRef]
- Li, Z.; Shi, W.; Zhang, C.; Geng, J.; Huang, J.; Ye, Z. Subpixel change detection based on improved abundance values for remote sensing images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 10073–10086. [Google Scholar] [CrossRef]
- Wang, P.; Wang, L.; Leung, H.; Zhang, G. Super-resolution mapping based on spatial-spectral correlation for spectral imagery. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2256–2268. [Google Scholar] [CrossRef]
- Nielsen, A.A. The regularized iteratively reweighted mad method for change detection in multi-and hyperspectral data. IEEE Trans. Image Process. 2007, 16, 463–478. [Google Scholar] [CrossRef] [Green Version]
- Lambin, E.F.; Strahlers, A.H. Change-vector analysis in multitemporal space: A tool to detect and categorize land-cover change processes using high temporal-resolution satellite data. Remote Sens. Environ. 1994, 48, 234–244. [Google Scholar] [CrossRef]
- Bovolo, F.; Marchesi, S.; Bruzzone, L. A framework for automatic and unsupervised detection of multiple changes in multitemporal images. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2196–2212. [Google Scholar] [CrossRef]
- Dekker, R.J. Speckle filtering in satellite SAR change detection imagery. Int. J. Remote Sens. 1998, 19, 1133–1146. [Google Scholar] [CrossRef]
- Inglada, J.; Mercier, G. A new statistical similarity measure for change detection in multitemporal SAR images and its extension to multiscale change analysis. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1432–1445. [Google Scholar] [CrossRef] [Green Version]
- Chatelain, F.; Tourneret, J.Y. Change detection in multisensor SAR images using bivariate Gamma distributions. IEEE Trans. Image Process. 2008, 17, 249–258. [Google Scholar] [CrossRef] [Green Version]
- Gong, M.; Zhang, P.; Su, L.; Liu, J. Coupled dictionary learning for change detection from multisource data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7077–7091. [Google Scholar] [CrossRef]
- Zhuang, H.; Tan, Z.; Deng, K.; Yao, G. Adaptive generalized likelihood ratio test for change detection in SAR images. IEEE Geosci. Remote Sens. Lett. 2020, 17, 416–420. [Google Scholar] [CrossRef]
- Bruzzone, L.; Prieto, D.F. Automatic analysis of the difference image for unsupervised change detection. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1171–1182. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Chen, Y. Multi-feature object-based change detection using self-adaptive weight change vector analysis. Remote Sens. 2016, 8, 549. [Google Scholar] [CrossRef] [Green Version]
- Im, J.; Jensen, J.R.; Tullis, J.A. Object-based change detection using correlation image analysis and image segmentation. Int. J. Remote Sens. 2008, 29, 399–423. [Google Scholar] [CrossRef]
- Lefebvre, A.; Corpetti, T.; Hubert-mov, L. Object-oriented approach and texture analysis for change detection in very high resolution images. In Proceedings of the IGARSS 2008—2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 6–11 July 2008; pp. 663–666. [Google Scholar]
- Wu, T.; Luo, J.; Fang, J.; Song, X. Unsupervised object-based change detection via a Weibull mixture model-based binarization for high-resolution remote sensing images. IEEE Geosci. Remote Sens. Lett. 2018, 15, 63–67. [Google Scholar] [CrossRef]
- Pham, M.T.; Mercier, G.; Michel, J. Change detection between SAR images using a pointwise approach and graph theory. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2020–2032. [Google Scholar] [CrossRef]
- Wang, J.; Yang, X.; Jia, L.; Yang, X.; Dong, Z. Pointwise SAR image change detection using stereo-graph cuts with spatio-temporal information. Remote Sens. Lett. 2019, 10, 421–429. [Google Scholar] [CrossRef]
- Wang, J.; Yang, X.; Yang, X.; Jia, L.; Fang, S. Unsupervised change detection between SAR images based on hypergraphs. ISPRS J. Photogramm. Remote Sens. 2020, 164, 61–72. [Google Scholar] [CrossRef]
- Baatz, M.; Schape, A. Multiresolution segmentation: An optimization approach for high quality multiscale image segmentation. In Beitrage zum AGIT-Symposium Salzburg 1999; Herbert Wichmann Verlag: Heidelberg, Germany, 2000; pp. 12–23. Available online: https://www.researchgate.net/publication/268745811_An_optimization_approach_for_high_quality_multi-scale_image_segmentation (accessed on 27 February 2023).
- Li, L.; Li, X.; Zhang, Y.; Wang, L.; Ying, G. Change detection for high-resolution remote sensing imagery using object-oriented change vector analysis method. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 2873–2876. [Google Scholar]
- Saha, S.; Bovolo, F.; Bruzzone, L. Unsupervised deep change vector analysis for multiple-change detection in VHR images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3677–3693. [Google Scholar] [CrossRef]
- Du, B.; Ru, L.; Wu, C.; Zhang, L. Unsupervised deep slow feature analysis for change detection in multi-temporal remote sensing images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9976–9992. [Google Scholar] [CrossRef] [Green Version]
- Lv, Z.; Wang, F.; Liu, T.; Kong, X.; Benediktsson, A.A. Novel automatic approach for land cover change detection by using VHR remote sensing images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 63–67. [Google Scholar] [CrossRef]
- Wu, J.; Li, B.; Qin, Y.; Ni, W.; Zhang, H. An object-based graph model for unsupervised change detection in high resolution remote sensing images. Int. J. Remote Sens. 2021, 42, 6212–6230. [Google Scholar] [CrossRef]
- Falco, N.; Marpu, R.; Benediktsson, J. A Toolbox for unsupervised change detection analysis. Int. J. Remote Sens. 2016, 37, 1505–1526. [Google Scholar] [CrossRef] [Green Version]
- Yousif, O.; Ban, Y. A novel approach for object-based change detection image generation using multitemporal high-resolution SAR images. Int. J. Remote Sens. 2017, 38, 1765–1787. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Dong, J.; Li, B.; Xu, Q. Automatic change detection in synthetic aperture radar images based on PCANet. IEEE Geosci. Remote Sens. Lett. 2016, 12, 1792–1796. [Google Scholar] [CrossRef]
- Gao, F.; Dong, J.; Li, B.; Xu, Q. Sea ice change detection in SAR images based on convolutional-wavelet neural networks. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1240–1244. [Google Scholar] [CrossRef]
Data Set | Mingfeng | SZTAKI | B&T | Wuhan | Beijing |
---|---|---|---|---|---|
α | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Scale parameters | (15, 30) | (15, 30) | (10, 30) | (15, 25) | (15, 25) |
Methods | Mingfeng | SZTAKI | ||||||
---|---|---|---|---|---|---|---|---|
FAR | MAR | OA | KC | FAR | MAR | OA | KC | |
CVA | 12.31 | 30.38 | 87.27 | 44.35 | 1.13 | 64.61 | 95.21 | 43.77 |
OCVA | 11.82 | 32.31 | 87.57 | 44.20 | 1.22 | 64.01 | 95.12 | 43.87 |
DCVA | 3.58 | 52.20 | 90.32 | 50.36 | 2.67 | 45.28 | 94.87 | 52.49 |
DSFA | 10.17 | 55.21 | 86.88 | 34.58 | 7.29 | 69.87 | 89.09 | 18.59 |
ASEA | 6.64 | 32.69 | 91.32 | 50.29 | 2.93 | 66.04 | 93.42 | 33.93 |
SNG | 3.56 | 45.90 | 93.11 | 51.51 | 3.10 | 43.10 | 94.59 | 51.97 |
TSSG | 3.54 | 45.27 | 93.18 | 52.10 | 0.90 | 56.28 | 95.90 | 53.24 |
Methods | B&T Sample 1 | B&T Sample 2 | ||||||
---|---|---|---|---|---|---|---|---|
FAR | MAR | OA | KC | FAR | MAR | OA | KC | |
CVA | 13.48 | 48.29 | 81.18 | 34.54 | 5.66 | 45.29 | 91.90 | 43.83 |
OCVA | 11.66 | 43.86 | 83.40 | 41.03 | 4.26 | 40.66 | 93.51 | 51.34 |
DCVA | 12.02 | 50.08 | 81.95 | 35.91 | 4.71 | 32.93 | 93.72 | 54.25 |
DSFA | 12.74 | 57.00 | 80.47 | 29.69 | 5.04 | 36.82 | 93.08 | 51.51 |
ASEA | 10.21 | 44.55 | 84.53 | 43.15 | 3.91 | 39.20 | 94.25 | 55.08 |
SNG | 9.45 | 40.36 | 85.81 | 47.88 | 3.02 | 42.59 | 94.46 | 55.87 |
TSSG | 9.00 | 38.09 | 86.54 | 50.51 | 1.57 | 43.35 | 95.88 | 60.51 |
Methods | Beijing | Wuhan | ||||||
---|---|---|---|---|---|---|---|---|
FAR | MAR | OA | KC | FAR | MAR | OA | KC | |
LR | 8.52 | 62.49 | 86.15 | 27.14 | 17.49 | 41.22 | 78.78 | 34.03 |
MR | 5.20 | 56.00 | 89.29 | 40.34 | 13.01 | 19.03 | 86.05 | 56.35 |
DPCA | 7.75 | 76.25 | 85.49 | 21.40 | 15.53 | 54.69 | 78.31 | 26.69 |
OMR | 9.51 | 28.75 | 88.59 | 49.06 | 14.13 | 18.92 | 85.12 | 54.39 |
OCN | 6.20 | 46.90 | 89.58 | 44.97 | 12.24 | 34.61 | 84.42 | 47.21 |
PCA-Net | 7.48 | 39.49 | 89.36 | 47.01 | 2.85 | 38.20 | 89.59 | 65.02 |
CWNN | 10.50 | 37.46 | 86.84 | 41.30 | 4.89 | 27.18 | 89.90 | 67.19 |
SNG | 7.08 | 40.14 | 89.66 | 47.60 | 8.58 | 15.25 | 90.37 | 67.70 |
TSSG | 6.88 | 37.99 | 90.05 | 49.65 | 5.78 | 18.47 | 92.23 | 72.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Ni, W.; Bian, H.; Cheng, K.; Liu, Q.; Kong, X.; Li, B. Unsupervised Change Detection for VHR Remote Sensing Images Based on Temporal-Spatial-Structural Graphs. Remote Sens. 2023, 15, 1770. https://doi.org/10.3390/rs15071770
Wu J, Ni W, Bian H, Cheng K, Liu Q, Kong X, Li B. Unsupervised Change Detection for VHR Remote Sensing Images Based on Temporal-Spatial-Structural Graphs. Remote Sensing. 2023; 15(7):1770. https://doi.org/10.3390/rs15071770
Chicago/Turabian StyleWu, Junzheng, Weiping Ni, Hui Bian, Kenan Cheng, Qiang Liu, Xue Kong, and Biao Li. 2023. "Unsupervised Change Detection for VHR Remote Sensing Images Based on Temporal-Spatial-Structural Graphs" Remote Sensing 15, no. 7: 1770. https://doi.org/10.3390/rs15071770
APA StyleWu, J., Ni, W., Bian, H., Cheng, K., Liu, Q., Kong, X., & Li, B. (2023). Unsupervised Change Detection for VHR Remote Sensing Images Based on Temporal-Spatial-Structural Graphs. Remote Sensing, 15(7), 1770. https://doi.org/10.3390/rs15071770