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Abstract: Many processes concerning below-ground plant performance are not fully understood,
such as spatial and temporal dynamics and their relation to environmental factors. Accounting for
these spatial patterns is very important as they may be used to adjust for the estimation of cassava
fresh root yield masked by field heterogeneity. The yield of cassava is an important characteristic that
every breeder seeks to maintain in their germplasm. Ground-Penetrating Radar (GPR) has proven to
be an effective tool for studying the below-ground characteristics of developing plants, but it has
not yet been explored with respect to its utility in normalizing spatial heterogeneity in agricultural
field experiments. In this study, the use of GPR for this purpose was evaluated in a cassava field
trial conducted in Momil, Colombia. Using the signal amplitude of the GPR radargram from each
field plot, we constructed a spatial plot error structure using the variance of the signal amplitude and
developed GPR-based autoregressive (AR) models for fresh root yield adjustment. The comparison
of the models was based on the average standard error (SE) of the Best Linear Unbiased Estimator
(BLUE) and through majority voting (MV) with respect to the SE of the genotype across the models.
Our results show that the GPR-based AR model outperformed the other models, yielding an SE
of 9.57 and an MV score of 88.33%, while the AR1 × AR1 and IID models had SEs of 10.15 and
10.56% and MV scores of 17.37 and 0.00%, respectively. Our results suggest that GPR can serve a dual
purpose in non-destructive yield estimation and field spatial heterogeneity normalization in global
root and tuber crop programs, presenting a great potential for adoption in many applications.

Keywords: ground-penetrating radar; cassava; heterogeneity; amplitude; variance; spatial; fresh yield

1. Introduction

Proximal sensing is increasingly expanding its impact on a wide variety of agricultural
applications [1,2]. The field of proximal sensing has rapidly evolved alongside advances in
sensor technologies, thus easing its adoption and deployment. Cassava (Manihot esculenta
Cranz) is the least expensive abundant source of carbohydrates, delivering higher amounts
of starch per unit area compared to other staple crops [3]. Producing cassava requires only
modest inputs and affords farmers great flexibility in terms of the timing of the harvest,
as this crop can be left in the ground even after reaching physiological maturity [4]. The
yield of cassava is an important characteristic that every breeder seeks to maintain in their
germplasm. A high-yielding cultivar can serve a dual purpose for the farmer, constituting
a source of income and food for the family. In addition, farmers also want a cultivar that
matures early [5]. For many years, a morphological or visual system that allows breeders
to recognize when a cassava plant starts to bulk or mature has been unavailable. However,
following the advent of the application of ground-penetrating radar (GPR) to the field of
agriculture, this is now possible [6,7].

In breeding experiments, the estimation of the true genetic value of the variables
of interest, such as yield, early maturity, etc., for these cultivars is of great importance.
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However, errors due to field heterogeneity often mask this estimation. A common approach
used to mitigate the problem of field heterogeneity is the use of an efficient experimental
design through blocking, a term that describes the grouping of experimental units; a block
is also known as an experimental plot [8]. Blocking is considered to be efficient based on the
assumption that the variation within a block is smaller compared to the variation between
blocks; however, in practice, this assumption does not often hold if the block size is large.

Nearest Neighbor (NN) and related statistical methods have been developed and
used to account for spatial dependency in the field [9–12]. Of all the NN variants, the one
proposed by Gilmour et al. (1997) [12] has been widely used in in agricultural experiments
in which neighboring experimental plots are equidistant from each other. The method uses
the first-order, separable autoregressive structure (AR) of residuals as a direct product of
row and column functions (AR1 × AR1). Hence, row- and column-based information is
important for modelling spatial dependency. Accounting for spatial dependency helps to
improve yield estimation and predictions that are potentially masked by field heterogeneity.

Laboratory analyses of soil samples from experimental plots have also been used to
discern field heterogeneity based on carefully measured soil properties [13–15]; however,
such analyses are costly. Soil probes and other in situ tools have also been used to char-
acterize important soil parameters [16–19]; in some cases, the outputs of these probes are
imported into an established empirical equation to derive the desired soil parameter. GPR,
a type of proximal sensing, has been used to study the spatial variability of soil moisture
content at the field scale based on calculated ground wave velocity, soil permittivity, and
empirically estimated volumetric moisture content [20–24]. Soil organic carbon content
of different soil layers has also been estimated in conjunction with additional secondary
covariates from electromagnetic induction (EMI) surveys [25].

To the best of our knowledge, the present work is the first investigation in the field
of agriculture to use multi-channel GPR for assessing and adjusting for spatial variation
in yield. The quantification of soil heterogeneity developed in this study is an exten-
sion of the variance of amplitude method described by Fedorova et al. [26]. GPR has
established itself in several disciplines, such as geoscience, civil engineering [27,28], arche-
ology, the military [29], and the study of forest ecosystems [30,31]. It is increasingly being
applied in agriculture for the estimation and prediction of root biomass [6,7,32–34]. How-
ever, the adoption of GPR into agriculture should increase if its multipurpose utility is
further explored.

Accordingly, the objectives of this study were as follows:

(a) Plan and execute an experimental design based on a multi-antenna GPR array;
(b) Evaluate the ability of GPR to account for spatial variation at the field scale;
(c) Evaluate the improvement in yield estimation after adjustment for GPR-derived

spatial variation.

2. Materials and Methods
2.1. Ground-Penetrating Radar (GPR)

GPR is a geophysical tool used for exploring the subsurface of the earth to depths
ranging from several cm up to several km under ideal conditions [35]. It consists of
a transmitter emitting a pulse of electromagnetic energy (EME) along with a receiver
that records any subsurface reflections. Changes in relative dielectric permittivity of the
geological medium through which the wave propagates often cause reflections. GPR
measures both the amplitude and the travel time of the reflected energy [36]. The GPR
system used in this study (Figure 1) is an experimental prototype system developed by IDS
Georadar from Pisa, Italy.

The system is composed of a transmitter and receiver, an antenna array, and a mobile
computer. The apparatus is cart-mounted for maneuverability in both regular and irregular
terrain. The computer controls the manufacturer-supplied software for data acquisition and
display. The antenna array is an air-launched bistatic configuration (see Table 1) of a modi-
fied vee-dipole, wideband frequency of 1.8 GHz, and vertically polarized antennas [37,38].
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The array comprises 8 identical antennas spaced 0.04 m apart with user-defined paring of
transmitting and receiving antennae [6]. The data visualization modes are presented in
Figure 2.
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Table 1. Data acquisition parameters.

Field Measurement Input Parameter Value

1 Frequency range (est.) 1.3–2.3 GHz

2 Central frequency 1.8 GHz

3 Effective depth penetration ~0.8 m

4 Spatial resolution 0.01 m

5 Number of samples 512

6 Temporal resolution 18 ns

7 Antenna spacing 0.04 m
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Figure 2. GPR radargram visualization: (A) A-scan representing the signal received via a single
outgoing pulse at a given transmission–reception antenna’s location; (B) B-scan representing the
series of A-scan pulses from a single antenna transect; and (C) C-scan representing collection of
B-scans. Adapted from [6].

2.2. Field Trial

This study was conducted during a field trial at the International Center of Tropical
Agriculture (CIAT), Momil, Colombia, in 2021. One hundred and ninety (190) genotypes
were planted in two field replications (each genotype is present in two field plots), which
were laid out in nineteen rows (herein referred to as field rows) and twenty columns;
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consequently, three hundred and eighty (380) agricultural field plots (see Figure 3) were
scanned using GPR to quantify the soil heterogeneity within each plot. A single plot
corresponds to dimensions of 3.5 m × 2.6 m and comprises 2 rows (herein referred to as
plot rows) of 5 plant stands. The within-plot and between-plot row spacing is 0.7 m and
1.0 m, respectively. Only the inner 6 plants (a net plot consisting of 2 rows of 3 plants)
were scanned by GPR. The outermost plants were excluded due to the possibility of edge
effects (this is a common practice in agricultural experiments whereby the inner plant
stands are shielded from environmental and physical stress by the outermost plants). A
plot row is hemispherical in shape, and overall, the field comprises a regular grid with
nearest-neighbor plots equidistant at 1.0 m.
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Figure 3. Field Map. The purple shading indicates the location of the experimental checks (control
cultivars). The teal and olive colors show the different replications. The X and Y axis correspond
to the field column (longitude) and field row (latitude), respectively, and are used to reference the
field plot.

2.3. Radar Acquisition Device

The plot rows were scanned in both directions (as illustrated in Figure 4). The cart
carrying the GPR antenna array was pulled at constant speed, with the antennas tilted
toward the plot’s interior at a ~0.5 m standoff and an inclination of 135◦ with respect to the
surface of the ground.

Each plot is represented by 4 B-scans (Row1E and W; Row2E and W (see Figure 5)). A
total of 1520 (380 plots × 2 transects × 2 plot rows) GPR profiles were collected. Variance
of amplitude (VOA) (see Equation (1) below) was calculated and summed across all
the B-scans. After GPR scanning was completed, fresh root yield (the ground-reference
data, hereinafter referred to as ‘fyld’) of harvested cassava (bulked together from the
6 plant stands) was measured in kilogram per plot using a weighing pan and suspended
salter scale.



Remote Sens. 2023, 15, 1771 5 of 17Remote Sens. 2023, 15, 1771 5 of 18 
 

 

 
Figure 4. Plot rows showing direction of transect. 

Each plot is represented by 4 B-scans (Row1E and W; Row2E and W (see Figure 5)). 
A total of 1520 (380 plots × 2 transects × 2 plot rows) GPR profiles were collected. Variance 
of amplitude (VOA) (see Equation (1) below) was calculated and summed across all the 
B-scans. After GPR scanning was completed, fresh root yield (the ground-reference data, 
hereinafter referred to as ‘fyld’) of harvested cassava (bulked together from the 6 plant 
stands) was measured in kilogram per plot using a weighing pan and suspended salter 
scale. 

 
Figure 5. Sample field plot representation using 8-bit gray-scale B-scan (left). 

Variance of amplitude (VOA) of each radar signal trace in each transect from a repre-
sentative TX–RX antenna pair (only channel 8 is used in this paper) is calculated as de-
scribed in the following equation [26]: 

Var(X)= ∑ (ି)మ்ୀ భ்      (1) 

where 𝑋 is a vector containing the amplitudes of each sample of the 𝑖-th trace; 𝑋 is a 
vector containing the mean value of the signal amplitude of the 𝑖-th trace; 𝑇ଵ…𝑇 is the 
time interval of each trace; and 𝑛 is the number of samples in a trace. The mean of the 
calculated variances of each trace (Var(X)) is then computed across all traces in a transect. 

Figure 4. Plot rows showing direction of transect.

Remote Sens. 2023, 15, 1771 5 of 18 
 

 

 
Figure 4. Plot rows showing direction of transect. 

Each plot is represented by 4 B-scans (Row1E and W; Row2E and W (see Figure 5)). 
A total of 1520 (380 plots × 2 transects × 2 plot rows) GPR profiles were collected. Variance 
of amplitude (VOA) (see Equation (1) below) was calculated and summed across all the 
B-scans. After GPR scanning was completed, fresh root yield (the ground-reference data, 
hereinafter referred to as ‘fyld’) of harvested cassava (bulked together from the 6 plant 
stands) was measured in kilogram per plot using a weighing pan and suspended salter 
scale. 

 
Figure 5. Sample field plot representation using 8-bit gray-scale B-scan (left). 

Variance of amplitude (VOA) of each radar signal trace in each transect from a repre-
sentative TX–RX antenna pair (only channel 8 is used in this paper) is calculated as de-
scribed in the following equation [26]: 

Var(X)= ∑ (ି)మ்ୀ భ்      (1) 

where 𝑋 is a vector containing the amplitudes of each sample of the 𝑖-th trace; 𝑋 is a 
vector containing the mean value of the signal amplitude of the 𝑖-th trace; 𝑇ଵ…𝑇 is the 
time interval of each trace; and 𝑛 is the number of samples in a trace. The mean of the 
calculated variances of each trace (Var(X)) is then computed across all traces in a transect. 

Figure 5. Sample field plot representation using 8-bit gray-scale B-scan (left).

Variance of amplitude (VOA) of each radar signal trace in each transect from a rep-
resentative TX–RX antenna pair (only channel 8 is used in this paper) is calculated as
described in the following equation [26]:

Var(X) = ∑Tn
i=T1

(Xi − X)
2

n
(1)

where Xi is a vector containing the amplitudes of each sample of the i-th trace; X is a vector
containing the mean value of the signal amplitude of the i-th trace; T1 . . . Tn is the time
interval of each trace; and n is the number of samples in a trace. The mean of the calculated
variances of each trace (Var(X)) is then computed across all traces in a transect.

Before VOA is calculated, a background correction is applied to the radargrams to
mitigate coherent sub-horizontal reflected energy; then, each GPR vertical section of the
radargram is carefully inspected and trimmed from the ground surface to a depth where
the signal amplitude level is just above the noise floor. The noise floor is the amplitude
level below which a signal can no longer be visually discerned.

Changes in variance of the signal amplitude are expected to be related to changes
in the number of radar-reflective boundaries within the soil medium; thus, they should
provide a proxy measure of heterogeneity. In total, there are 380 VOA and fyld deter-
minations, that is, one for each field plot. GPR-derived VOA is used in this manner to
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investigate spatial dependency across the field plots and adjust for measured fyld. GPR
data processing and estimation of VOA was performed using GPR-Studio version 2.0, a
web-based application [39].

2.4. Sampling Strategy and Fresnel Zone Footprint

From the five available rows, only the inner rows (2, 3, and 4) were scanned using GPR.
The Fresnel zone footprint illuminated by the GPR antenna array is the area of ground, at
a given depth, from which detectable return signals are recorded. The footprint is herein
conceptualized as the cross-section of an elliptical cone whose apex is at the TX antenna
and whose major axis D at some vertical offset h from the antenna is estimated using the
following formula [24,40]:

D =

√
λ2

4
+ 2λh (2)

where λ is the wavelength at the central frequency of the antenna in free space. A vertical
offset of h = 0.5 m is used to calculate D, which is an average of 0.4 m and 0.6 m in vertical
height at both ends of the array. Thus, we are calculating the size of the footprint at the
ground surface.

The Fresnel zone footprint of our GPR apparatus has a major axis of D~0.42 m, thereby
illuminating ~60% of each side of a hemispherical plot row (the entire width of the plot
row is ~0.7 m). Thus, the area of ground scanned using GPR extends to the other side of a
row during each transect (Figure 6). Considering the 0.04 m spacing between the 8 TX–RX
channels, each channel thus contributes ~0.02 m to the entire footprint. Based on the angle
of inclination in each transect, the length of the side of the ridge on the hemispherical plot
row (~0.4 m) is compared to D (~0.42 m); radar signal return from channel 8 is assumed
to originate from the other side of the plot row without roots. Hence, information from
channel 8 is used to characterize the host soil medium.
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time and shows a strikingly lower maximum amplitude (~106, arbitrary units) compared
to the other channels (amplitude ~107).
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2.5. Test for Spatial Dependency
2.5.1. Spatial Neighborhood Matrices

In order to test if there is spatial correlation amongst the GPR-derived VOA values of
the field plots, the spatial neighborhood must be defined. The concept of spatial contiguity
across a wide area is useful for understanding a localized or “neighborhood” structure.
The field row (i) and column (j) are used as the spatial coordinates (Figure 3); hence, they
can be used to calculate a spatial weight based on the Euclidean distance between plots
on field location (i,j). The (i,j)th element of a spatial neighborhood matrix W, denoted
by Wij, describes the spatial relationship between row i and column j, which defines a
neighborhood structure over the field (Figure 9 and Table 2). The elements of W are
regarded as the spatial weights. A larger weight is associated with columns that are closer
to a given row i than those farther away. In this study, a distance threshold of 1.2 m is set,
wherein two points farther apart than the threshold are not considered to be neighbors. A
binary, sparse adjacency matrix is constructed such that Wij = 1 if locations i and j share a
common boundary; otherwise, Wij = 0 and is used for subsequent autoregressive modeling
(described in Section 2.6).
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Figure 9. Neighborhood structure. It shows a global structure wherein most plots are connected.

Table 2. Spatial neighborhood information.

Neighborhood Parameter Value

Number of regions 380

Number of non-zero links 1822

Percentage of non-zero weights 1.26

Average number of links 4.80

2.5.2. Global Moran’s I Statistic

Moran’s I statistic (Moran’s I) is commonly used in spatial statistics to assess global
spatial autocorrelation. Herein, it is used to estimate correlations of the GPR-derived
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VOA between neighboring plots and, subsequently, find patterns [41]. In terms of its
interpretation, Moran’s I is similar to the Pearson correlation coefficient, with values
−1 ≤ I ≤ 1 ranging from a strong negative relationship between two variables to a strong
positive relationship. The value I = 0 suggests no spatial relationship between the variables.
An estimated Moran’s I~0.77 supports a hypothesis that the spatial distribution of VOA is
not random but instead forms clusters in space. The ‘lm.morantest’ function of the ‘spdep’
R package [42] was used to estimate Moran’s I based on Equation (3) below

I =
N
K

∑i=1 ∑j=1 Wij(xi − x)
(
xj − x

)
∑j=1 (xi − x)2 (3)

where N is the number of field plots; Wij is the element in the spatial weight matrix
corresponding to the pair defined by row i and column j; xi and xj are the GPR-based
observations (of VOA) at specific locations i and j in the field plot; x is the grand mean
value of VOA across all locations in the field plot; and K = Σi Σj Wij is the sum of all
matrix elements.

2.6. Spatial Process Model

In this section, autoregressive models are fitted and compared for the purpose of
creating a VOA covariance matrix, which is then used as a custom or user-defined plot
error structure for fyld adjustment. Consider a model in which observations in neighboring
locations are more similar to each other than observations that are farther apart; such a
model contains a component of random smoothing according to the neighborhood structure
and an unstructured component that models uncorrelated noise [43].

Simultaneous (SAR) and conditional autoregressive (CAR) models (as shown in
Equations (4)–(7), respectively) are used to model spatial dependency using the GPR-
derived VOA as the response variable, and replication, field row, and column as covariates.
Both SAR and CAR models were fitted using the ‘spautolm’ function of the R package
‘spdep’ [42]. In order to stabilize the variance in VOA, a natural logarithm transformation
was applied; hence, logVOA was used during modelling. A model that considers identical
and independent (IID) variance along field rows and columns (Equation (8)) was used as
the baseline model. The spatial covariance structure is revealed by the covariance matrices
that are calculated as a result of the SAR and CAR modeling. The response variables are
described in both cases by a Gaussian distribution (see Equations (5) and (7)).

y(si) = ρ
n

∑
j=1

wijy
(
sj
)
+ ε (4)

y ∼ N (0, σ2((1− ρW)−1)((1− ρW)−1)
T
) (5)

y(si)|−si
∼ N

(
ρ

n

∑
j=1

wijy
(
sj
)
, σ2

)
(6)

y ∼ N
(

0, σ2(1− ρW)−1
)

(7)

y = µ+ rowi + colj + εij (8)

In the previous equations, y = logVOA; W is a row-standardized spatial weight matrix
(the standardization is achieved by dividing each neighbor’s weight by the sum of all
neighbors’ weights); ρ is the spatial autoregressive coefficient, which can be regarded as the
estimated spatial correlation (rho); σ2((1 − ρW)−1) ((1 − ρW)−1)T is the SAR model VOA-
derived covariance matrix; and σ2(1 − ρW)−1 is the CAR model VOA-derived covariance
matrix. In addition, µ is the intercept (overall mean), whereas row and col are normally
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distributed (for which Equation (8) describes the baseline model) with constant variances
(N(0, σ2

row and N(0, σ2
col).

2.7. Spatial Model for Yield Adjustment

In this section, the GPR-derived spatial covariance matrix (described in Section 2.6)
is used to assess improvement in our model’s estimation of fyld (the agronomic trait of
interest) compared to other models. This trait was analyzed within a linear mixed-model
framework; however, all effects were considered fixed (the model parameters are non-
random quantities). Three univariate linear models were fitted; they differ in terms of their
plot error structure (ε), and can be described as follows:

The first model (AR1×AR1) considers the covariance matrix of the plot error structure
(σ2 Σ) in the form of Σcol × Σrow [12]. Σcol and Σrow are 20 × 20 and 19 × 19 matrix
functions of the column and row autoregressive parameters, respectively.

ypqkm = µ+ genp + repq + rowkq + colmq + εpqkm (9)

The second model (GPR-VOA) uses the VOA-derived covariance matrix (the GPR-
derived spatial covariance structure as described previously in Equations (5) and (7)).

ypqkm = µ+ genp + repq + rowkq + colmq + εvoa (10)

The third model considers constant variance along field rows and columns. This
model is equivalent to the identical and independent (IID) model described in the previous
section; however, the response variable modelled in this case is fyld.

ypqkm = µ+ genp + repq + rowkq + colmq + εpqkm (11)

In Equations (9)–(11), ypqkm is the (380 × 1) vector of model-estimated fyld; µ is the
intercept (overall mean); genp is the genotype effect; repq is the effect of the replication q;
rowkq is the effect of row k’s interaction with replication q; colmq is the effect of column m′s
interaction with replication q; εpqkm and εvoa are the residual terms (plot error structure),
which are assumed to follow a Gaussian distribution; ε ~ N(0, σ2

εΣ); εvoa ∼ N(0, σ2
εvoa Σ);

and ε ~ N(0, σ2
εI) for Equations (9), (10) and (11) respectively.

The outcome of the model described in Equations (9)–(11) is an adjusted average fyld
for each genotype. The outcome is regarded as the Best Linear Unbiased Estimator (BLUE).
The adjustment is based on the explanatory variables, namely, genotype, replication, rows
and columns (common to the three models), and plot error structure (different in each
model). In order to compare the performance of the models, the standard error (SE)
values of the BLUE of each genotype were obtained. The lower the SE, the better the
model. Firstly, the overall average SE was compared between the models; secondly, a
majority-voting (MV) procedure based on the individual SE of the genotype was carried
out whereby the frequency of lower SE values when compared across the three models
is expressed as a percentage [44]. The higher the percentage, the better the model, and
vice versa. For example, consider the following procedure: obtain the SE of genotype
“A” in each of the models; compare and record a count of when the SE in the GPR-VOA
model is less than that of the AR1 × AR1 and IID models. Estimation of the parameters
of Equations (9)–(11) was performed using the ‘gls’ and ‘remlf90’ functions in R packages
‘nlme’ [45] and ‘breedR’ [46].

2.8. Spatial Krigging

In this section, the possibility of minimizing time spent on GPR data acquisition in
the field is evaluated by considering random sampling of GPR-derived VOA (variance
of amplitude derived from the GPR radargram) in some field plots and then predicting
VOA of the unsampled plots. The universal kriging interpolation method is considered
for this approach. Kriging models consist of two parts, as shown in Equation (12) given
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below. The first part is f (x), which models the drift of the VOA mean. The second part is a
random process, C(x). The latter is a spatially autocorrelated error assumed to be a Gaussian
stationary process [47]. The kriging procedure involves predicting VOA in an unsampled
field plot by assuming that is has the form of a weighted average of the sampled VOA from
spatially correlated field plots. The predictions are evaluated through spatial best unbiased
linear prediction (BLUP), which is conditioned on the model covariance parameters. The
latter include sill, nugget and range, prior distributions and MCMC (Markov Chain Monte
Carlo) sampler starting values, and Metropolis proposal variance. The model parameters
are described and implemented in the ‘spLM’ function in ‘spBayes’ R package [48]. A
favorable prediction is an r-value that is close to 1. The kriging equations are as follows:

y = f (x) + C(x) (12)

ŷ(x0) = XT(x0)β + hT(x0)
(

Cn,n + τ2I
)−1

(Y− Xβ) (13)

where h(x0) = (C(x0, x1), . . . , C(x0, xn))
T , i.e., the covariances of VOA between the sam-

pled and unsampled field plots; ŷ(x0) is the predicted VOA; Cn,n is the covariance among
old locations; τ2 denotes random residual variance; X represents the independent effect of
replication; and β denotes the regression coefficient. All analysis was conducted using R
software [49].

3. Results
3.1. Spatial Distribution of VOA and FYLD

The spatial distribution of the VOA extracted from the GPR radargrams is shown in
Figure 10. Separate boxplots are presented for VOA as a function of plot rows and columns.
The boxplots indicate that there are significant complexities to the VOA distribution along
both columns and rows. However, Figure 11 shows that plot heterogeneity based on
the VOA proxy varies somewhat systematically across the field replications, whereas
fyld shows a fairly random distribution. There is little or no spatial correlation (Pearson
correlation r~0.1) between these variables (Figure S1). An explanation for this phenomenon
is that fyld is expected to be influenced mainly by the genetic potential of the genotype
rather than the GPR-sensed field heterogeneity.

3.2. Spatial Model Comparison

The parameters extracted from the best-fitting spatial process model are presented in
Table 3. The result shows that the CAR model has a higher spatial autoregressive coefficient,
namely, ρ~0.48, compared to the SAR model, whose value is ρ~0.27. However, the model
selection criteria such as the Corrected Akaike Information Criteria (AICC), which adjusts
for the number of model parameters and observations, and the log likelihood [50] reveal
almost no differences. The AICC and log likelihood values for the SAR model are −619.71
and 313.97, respectively, whereas they are −619.34 and 313.79, respectively, for the CAR
model. The lower the AICC and the higher the log likelihood estimate, the more favorable
the model [50]. Using the same criteria, the IID model (which assumes an identical and
independent degree of residual variance) appears to have outperformed both the SAR and
CAR models. IID has the lowest AICC (−627.73) and the highest log likelihood estimate
(317.98). Conversely, the Moran’s I test of spatial autocorrelation confirmed that there is
spatial dependency (I = 0.77) amongst the GPR-derived VOA measurements on the field
plots. A consideration of the no-spatial-dependence model (IID) implies an assumption of
spatial independence. Such an assumption may allow the field’s actual spatial heterogeneity
to mask the true fyld potential of each genotype. To this end, we determined that the CAR
model was more favorable than the IID model. The CAR model assumes the spatial version
of the Markov property; thus, the VOA of a plot is influenced by the neighboring plots.
Whereas the SAR model assumes the “neighbors of neighbors” effect, i.e., the VOA of a plot
is not only influenced by the neighboring plots but also by neighbors of those neighboring
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plots [51]. Accordingly, the CAR-model-based VOA-derived plot error structure (refer to
Equation (7)) should be used for fyld adjustment.
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Table 3. A table comparing SAR, CAR, and IID (no spatial) models.

SAR CAR IID

Intercept 17.47 17.43 17.37

rho 0.27 0.48 N/A

Sigma2 0.01 0.01 0.07

Log likelihood 313.97 313.79 317.98

AICC −619.71 −619.34 −627.73

3.3. Adjusting Estimation of Fyld Using VOA-Defined Covariance Structure

The results presented in Table 4 show that the GPR-VOA model that uses the VOA
plot error structure has a slightly lower average standard error (SE) of the BLUE and a
higher majority voting (MV) score compared to the model that uses the AR1 × AR1 plot
error structure and the IID model. However, the differences are subtle in terms of SE but
highly contrasting with respect to MV when compared with the AR1 × AR1 model, and
they exhibit a great degree of disparity when compared to the IID model. Since the BLUE
is an adjusted average of fyld using genotype, replication, row and column (common to
the three models), and plot error structures (different in each model), a lower average SE
suggests the superior accuracy of the estimated fyld. The same principle applies to MV that
considers SE on a genotype-by-model level (the frequency of low occurrences is reported
in percentages; hence, a higher value is better). Consequently, using the GPR-derived VOA
plot error structure, a phenomenon referred to as a custom error covariance structure in the
statistical paradigms thus helps improve the degree of adjustment to fyld estimation, as the
inherent field variation is captured to some degree by the GPR measurements.

Table 4. Model comparison using AICC, average standard error (avgSE) of BLUE, and majority
voting. Overall average of the BLUE is presented as avgBLUE.

Model avgBLUE AICC avgSE Majority Voting (MV)

GPR-VOA 27.09 −17,911.01 9.57 88.33

AR1 × AR1 22.23 −932.48 10.15 10.56

GPR-VOA 27.09 −17,911.01 9.57 100

IID 21.81 −378.99 17.37 0

3.4. Prediction in Untested Locations

The prediction of VOA in field locations where GPR surveys were not conducted was
tested using the universal kriging interpolation method. This approach is based on the
concept of scanning random locations in a field and then using the spatial coordinates
and logVOA of the tested locations to predict the VOA of untested ones. A leave-one-out
cross validation (LOOCV) technique [44] was used to partition the data into two subsets,
namely, samples of sizes 330 and 50, which were used for training and testing, respectively.
The results suggest that VOA can be effectively predicted using the model described by
Equation (12). The prediction accuracy presented in Figure S2) is r~0.8 (a positive high
Pearson correlation). Being able to predict VOA helps to minimize time spent on GPR
field scanning. Thus, both predicted and observed VOA can be combined to create a plot
error structure.

4. Discussion

The non-invasive prediction or estimation of fyld in cassava plantations is important
since bulked roots raise this plant’s economic value as food and income. To the plant
breeder, fyld is a valued trait to ensure in the products provided to farmers. For many
years, there was no effective method by which to determine the rate of root formation
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except time-consuming and laborious excavation. Recently, GPR has become an enabling
technology with which to overcome this gap. The application of GPR is especially important
in breeding during early-stage testing when large numbers of genotypes are screened in
unreplicated plots.

Spatial variability, which can be quantified using a GPR diagnostic attribute such as
VOA, is well known in the agricultural space as it is one of the major factors that can mask
the true fyld-producing capability of the genotype.

Many processes concerning below-ground plant performance are not fully understood,
such as spatial and temporal root-forming dynamics and their relation to heterogeneous
environmental factors [52]. Accounting for the spatial pattern of subsurface heterogeneity
becomes very important as it may be used to adjust for the estimation and/or prediction
of fyld. GPR can be used to investigate the below-ground characteristics of developing
plants [6,7,32], but it has not been fully utilized to explore the role of spatial heterogeneity
in agricultural field experiments. Our results presented herein agree with previous findings
on the improvement of the prediction accuracy of yield through spatial adjustments [8].
However, most of the spatial adjustments hitherto performed were based on a simple
AR1 × AR1 model. Such models are endogenous; hence, they are easier to use as their plot
error structure is discerned solely from the design effects (i.e., the row and column layout
of the agricultural plots).

The use of a GPR-derived plot error structure is an exogenous approach that offers a
complementary measure of spatial heterogeneity. The deployment of GPR offers breeders a
straightforward procedure for quantifying a field’s spatial heterogeneity at different stages
of a growing season. GPR is also a tool that can be used to target the onset of early maturity
in a root via a proximal measurement of its biomass [6]. As shown in Figure S2, the result of
spatial kriging demonstrates that a subsampling of VOA could be used to interpolate and
extrapolate VOA to unsampled locations. The kriging procedure can help field technicians
minimize their time spent in the field conducting GPR scans. For example, instead of
scanning 500 field plots, 300 randomly selected plots could be scanned, and the application
of the kriging method to the VOA results could be performed to predict the VOA on the
remaining 200 plots.

The spatial autoregressive coefficient ρ estimated by the CAR model is higher than
that of the SAR model. However, the AICC and Log likelihood estimates from both models,
which were not significantly different, suggest they would produce an adjustment similar
to fyld estimation.

The AR1 × AR1 model’s results compare favorably with those of the CAR model.
There is only a marginal difference in the overall BLUE average standard error of the
genotype. The grand difference in the MV is a result of the marginal differences in the SEs
of each genotype. Since the SE is a measure of accuracy, the CAR model can be adjudged to
provide better accuracy of the estimated fyld at the individual level of the genotype.

The antenna orientation effect as the cart traverses rugged terrain and other types of
measurement uncertainties are common in GPR [24]. Thus, the reliability of the method
described in this study is subject to random and systematic errors. An important type
of error is caused by complicated reflections from cassava roots in some plots, which
arise as a result of irregularities in antenna orientation. To circumvent this problem, an
optimal antenna orientation to create the desired offset in field plots can be achieved by
burying metal test objects at specific locations along the plot row. Plot rows along which no
reflection from this metal object are observed can be adjudged to contain an “offset error”
as a result of a change in the angle of orientation, which is also called the ”look angle”. In
this study, a constant visual assessment of the clamp holding the antenna was performed
to ensure that the look angle did not change. Furthermore, caution must be exercised while
using GPR, especially for agricultural purposes, in order to avoid the plodding of plot rows.
Plodding is a term that describes walking heavily or trudging on the GPR target area of a
scan. Plodding can lead to soil compaction, thus adding to the complexity of the subsurface
and ultimately impairing signal penetration.
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In a practical agricultural application of GPR, it is recommended to scan the exper-
imental plot rows before the plants start to germinate. This would allow the antenna to
easily hover on top of the plot row without needing to consider irregularities in antenna ori-
entation and its associated effects, such as reflections from cassava roots, since germination
has not occurred. This was not possible in this study because cassava is only commonly
grown as a crop outside of the United States; thus, all the cassava plants from the field trial
identified in Momil, Colombia, had already germinated.

Nonetheless, the sampling approach described herein can be considered to comprise a
post-hoc dual approach whereby root biomass at the onset of root maturity (about 5 months
after planting) and spatial variation can be jointly estimated. Additionally, to minimize or
eliminate some of the limitations described above, there may be an advantage in utilizing
two antennae operating at different frequencies during data acquisition, where one is tuned
for root biomass and the other is tuned for soil heterogeneity, or in comparing the use of
different multichannel antenna configurations; however, this enhancement may cause field
operations to become more cumbersome.

In addition, another consideration regarding the use of GPR in plant breeding pro-
grams is the use of an efficient storage system for mapping GPR radargrams to an associated
field plot. Such a mapping technique can provide additional data for retrospective anal-
ysis, thus minimizing data management complexities that may arise from complex data
relationships [53].

5. Conclusions

This study presents the first GPR-derived spatial adjustment to yield applied to cassava
and offers similar promising affordances to other root and tuber crops. The results of this
study indicate a potential advancement in the utility of GPR beyond the estimation of
root biomass. Exogenous approaches, such as the use of a GPR-derived proxy measure of
heterogeneity, are useful methods for creating field maps of spatial variation at different
times of a season and for adjusting yield estimation at harvest. Thus, the procedure
detailed herein should help breeders plan field trials and select genotypes more efficiently.
Interpolating and extrapolating GPR-derived VOA from scanned to unscanned plots would
also help reduce time spent and resources used in the field.
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