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Abstract: In the field of remote sens., change detection is an important monitoring technology.
However, effectively extracting the change feature is still a challenge, especially with an unsupervised
method. To solve this problem, we proposed an unsupervised transformer boundary autoencoder
network (UTBANet) in this paper. UTBANet consists of a transformer structure and spectral attention
in the encoder part. In addition to reconstructing hyperspectral images, UTBANet also adds a decoder
branch for reconstructing edge information. The designed encoder module is used to extract features.
First, the transformer structure is used for extracting the global features. Then, spectral attention can
find important feature maps and reduce feature redundancy. Furthermore, UTBANet reconstructs
the hyperspectral image and boundary information simultaneously through two decoders, which
can improve the ability of the encoder to extract edge features. Our experiments demonstrate
that the proposed structure significantly improves the performance of change detection. Moreover,
comparative experiments show that our method is superior to most existing unsupervised methods.

Keywords: autoencoder; boundary information; change detection; hyperspectral image; unsupervised

1. Introduction

As an effective monitoring method, change detection has been widely used for disaster
evaluation [1], building planning [2,3], sea ice monitoring [4], forest vegetation manage-
ment [5,6], and land use analysis [7,8]. Because hyperspectral images can provide more
abundant spectral information to reveal subtle changes in land cover [9,10], hyperspectral
image change detection has become a hot research field [11–13].

In general, change detection can be divided into supervised change detection and
unsupervised change detection. Supervised methods need to train the model through
labeled data. Wu et al. proposed a general end-to-end 2-D convolutional neural network
(CNN) framework based on unmixing spectral information [14]. To further combine
spectral and spatial features, Zhan et al. designed a spectral–spatial CNN to extract
the features from the spectral information and two spatial directions [15]. Wang et al.
designed a low-complexity network with few parameters and a residual self-calibrated
structure [16]. To solve the band redundancy, a slow–fast band selection CNN framework
was proposed to extract effective spectral information [17]. Zhang et al. designed a multi-
scale Siamese transformer to extract global features [3]. However, there are only a few
public hyperspectral change detection datasets with labeled data [18], resulting in limited
applications for supervised methods.

Because unsupervised methods can be used on unlabeled datasets, many researchers have
exploited unsupervised methods for change detection. The early unsupervised change detection
methods were mainly direct comparison and algebraic transformation. Although pixel-based
comparison methods, such as change vector analysis (CVA) [19,20], are simple and efficient and
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are vulnerable to various types of noise. To reduce noise interference, algebraic transformation
is used for change detection to extract image features. Deng et al. proposed adding a principal
components analysis into the CVA method, which enhances the change information [21].
Nielsen et al. proposed iteratively reweighted multivariate alteration detection (IR-MAD) for
hyperspectral image change detection [22]. This method uses a canonical correlation analysis
to transform the original variables and assigns each pixel a different weight. Slow feature
analysis (SFA) change detection aims to minimize the difference between the invariant points in
the new transformation space [23]. Compared to direct comparison, analyzing the difference
between two temporal features causes the change detection results to be more robust and
accurate. In addition, some change detection algorithms based on other perspectives have been
proposed in recent years. Inspired by orthogonal subspace projection, Wu et al. proposed a
subspace-based change detection (SCD) method that calculates the distance from the pixel to
the subspace form by another time image [24]. Spectral unmixing has also been applied to
change detection, and abundance is considered an image feature that identifies changes [25–28].
However, these methods usually only focus on spectral dimension information and lack the use
of spatial information.

As CNN and transformers can combine spectral and spatial features and perform
well in other computer vision tasks, in recent years, many unsupervised change detection
methods based on deep learning have been proposed. Transfer learning, autoencoders, and
generative adversarial networks (GANs) have attracted great attention for unsupervised
change detection [2,29–31]. Du et al. proposed an unsupervised deep learning SFA that
uses an optimizer based on SFA to train the feature extraction module in the neural
network [32]. Hu et al. used two autoencoders to reconstruct two temporal hyperspectral
images, respectively, and then used the reconstructed data to obtain the change results [30].
Nevertheless, these methods lack attention to the edge features, resulting in the poor
detection of changed boundaries.

Although a lot of research has been carried out, there are still several problems in unsu-
pervised change detection. First, the boundary of change targets is not easy to distinguish
using an unsupervised method. Many surrounding environment factors, such as noise
and resolution, will confuse the boundaries of change objects and increase the difficulty of
feature extraction [33]. Second, the redundancy of feature maps will affect the detection
results. To extract more image features, the network usually uses many convolution kernels.
However, some feature maps contain little useful information, reducing the final detection
accuracy [34].

To overcome the abovementioned problems, an unsupervised transformer boundary
autoencoder network (UTBANet) is proposed for hyperspectral image change detection
in this paper. Our method is an unsupervised method based on an autoencoder structure.
A transformer structure based on spectral attention is used in the encoder to enhance the
global features and to select effective feature maps. Furthermore, we design a boundary
information reconstruction module that allows the autoencoder to reconstruct the edge
information of the image in addition to the hyperspectral image. In this way, the ability of
the encoder to extract boundary features can be improved. The main contributions of our
article are as follows:

(1) An unsupervised UTBANet based on a transformer is proposed to improve global
feature representation in change detection.

(2) The encoder structure with spectral attention can give different weights to each feature map
and select important feature maps, thus reducing the impact of feature map redundancy.

(3) The boundary information reconstruction module forces the encoder to pay more
attention to the edge information, which causes the feature map to contain more
discriminative boundary features and improves the accuracy of change detection.
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2. Method
2.1. Overall Architecture

The structure of UTBANet consists of one encoder and two decoders, as shown in
Figure 1. The encoder is designed based on the transformer and spectral attention, which
can effectively extract global features and give weight to the feature map. The feature maps
with weight are output by the encoder, as shown by the green arrow in Figure 1a. During
training, the feature maps are sent to the hyperspectral reconstruction module (as shown by
the red arrow in Figure 1) and the boundary reconstruction module (as shown by the blue
arrow in Figure 1). The HLoss function is used to calculate the hyperspectral reconstruction
error, as shown by the red dotted arrow in Figure 1. At the same time, after edge detection
of the original hyperspectral image, the boundary reconstruction error is calculated using
the BLoss function, as shown by the blue dotted arrow in Figure 1. Boundary reconstruction
allows the encoder to focus on boundary features, thus improving the boundary feature
extraction ability of the encoder. These two reconstruction errors train the whole network
in an unsupervised pattern. Once the UTBANet is trained, we use the encoder to extract the
feature map (as shown by the yellow arrow in Figure 1) from two temporal hyperspectral
images and calculate the detection result.

Figure 1. The overall structure of our UTBANet.

2.2. Feature Extraction

Because the transformer can capture long-range correlations between spatial regions
and has good versatility, it performs well in various visual tasks [35–40]. Therefore, we use
it as the basic structure of the encoder to enhance the extraction of global features. Moreover,
we designed the spectral attention transformer (SAT) structure to extract effective features
from redundant feature maps, as shown in Figure 2.
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Figure 2. Diagram of SAT block.

First, the input HSI generates patches through embedding. Due to the strong corre-
lation between spectra, we use a convolution operation with the kernel size 3 × 3 as the
embedding operation and deem each spectral channel a patch [41,42]. Then, these patches
undergo two SAT blocks to obtain feature maps.

The structure of the SAT has two sub-layers and a squeeze-and-excitation (SE) block.
Each sub-layer employs a residual structure. Let Xin ∈ RH×W×C1 be the input feature maps
of SAT, where H, W, and C1 are the height, width, and number of feature map channels.
First, Xin is reshaped to the size of HW × C1, and then three parallel linear layers are used
to generate Q ∈ RHW×C1 , K ∈ RHW×C1 , and V ∈ RHW×C1 , respectively. The attention
matrix Z is computed by:

Z = softmax
(

QKT
√

C1

)
V (1)

Then, for subsequent convolution operations, Z is reshaped to H ×W × C1. Consider-
ing the continuity between spectra, we do not use random initialization to add position
embedding. Referring to Cai et al. [39], we regard V as the initial position embedding and
use the reshape operation, two convolution layers, and a GELU activation to obtain the
position embedding.

The feed-forward sub-layer consists of a LayerNorm operation and convolution block
(Conv Block), which is used to increase the ability of feature representations. The Conv
Block comprises three convolution layers and three GELU activations, as shown in the gray
rectangle in Figure 2.

Through a series of convolution operations, we obtain a multi-channel feature map.
However, not every channel has useful information. Thus, the SE block is used to select
the important feature maps [43], as shown in Figure 3. First, a convolution layer is used
for dimension reduction (C2 = C1/2) and spectral feature extraction. Then, the SE block
generates the weight of each channel through global average pooling and a full connection
layer. Finally, we use the dot product to assign a high weight to the important channels. In
this way, redundant information can be involved in feature transmission as little as possible,
thus reducing feature redundancy.
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Figure 3. Diagram of SE block.

2.3. Boundary and Hyperspectral Reconstruction

We add a boundary information decoder branch into the autoencoder network to
obtain more effective boundary features to distinguish objects, as shown in Figure 1c. We
employ the Sobel operator to detect edges for each channel of the hyperspectral image. The
result is regarded as the boundary ground truth (GT) of the hyperspectral image. Figure 4
shows the boundary GT map of a spectral band. During training, this decoder reconstructs
the boundary information from the features extracted by the encoder, as shown by the blue
arrow in Figure 1. The purpose of this strategy is to make the encoder pay more attention
to boundary features by boundary reconstruction.

Figure 4. Boundary ground truth. (a,c,e) are the false color of the first temporal of three datasets.
(b,d,f) are the edge detection results of the 120th band.
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Another decoder branch is in typical autoencoder mode, which reconstructs the
original hyperspectral image via the deep features of the hyperspectral image, as shown by
the red arrow in Figure 1. These two decoders are designed to have the same structure with
two residual blocks. The residual block is shown in Figure 5. The first convolution layer
is used to recover the number of channels and corresponds to the dimension reduction
operation in the encoder.

Figure 5. Residual block.

2.4. Loss Function

According to the above description, our UTBANet does not need labeled data for
training and is, therefore, an unsupervised method. The original hyperspectral data are
both the input data and the GT of hyperspectral reconstruction. The corresponding edge
detection result is the GT of boundary reconstruction. To optimize the whole network, we
use two loss functions during training. The hyperspectral loss HLoss is used to measure
the similarity between input and reconstructed hyperspectral images, and the boundary
loss BLoss is used to evaluate the similarity between the boundary GT and the reconstruc-
tion boundary. We use mean square error (MSE), which is widely used in hyperspectral
reconstruction tasks [44–46], as the calculation formula for two functions. The final loss
function L can be written as:

L = λHLoss + BLoss (2)

where λ is a weight to balance the two loss functions.

2.5. Change Detection

After training UTBANet, we use the encoder to obtain the feature maps of two tempo-
ral hyperspectral images, as shown by the yellow arrow in Figure 1. Then, we calculate
their Euclidean distance to determine the gray difference map (GDM):

GDM = ‖F1 − F2‖2 (3)

where F1 and F2 represent the feature maps of the two temporal hyperspectral images.
Finally, we use the Otsu algorithm to segment the GDM into a binary change map. For the
binary change map, a value of 1 represents a change pixel, and 0 represents no change.

3. Experiment and Discussion
3.1. Datasets

Three public datasets were used in our experiments. The three datasets were all ac-
quired using a Hyperion sensor. The sensor provides 242 spectral bands with wavelengths
ranging from 0.4 to 2.5 µm. The spectral resolution is about 10 m, and the spatial resolution
is approximately 30 m.

The first dataset is Farmland, as shown in Figure 6a,b. The two temporal hyperspectral
images were acquired on 3 May 2006, and 23 April 2007, respectively. The main scene is
a farmland in Yancheng, Jiangsu Province, China, with a size of 450 × 140 pixels. After
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removing the bands with a low signal-to-noise ratio, 155 bands were retained. The main
changes are caused by the seasonal change in crops.

The second dataset is Hermiston, as shown in Figure 6c,d. The two images were
acquired on 1 May 2004, and 8 May 2007. The main scenes are rivers and circular irrigation
areas in Hermiston City, USA, with a size of 390 × 200 pixels. In total, 163 bands were
selected after noise removal. The main changes are also caused by the seasonal change
in crops.

The third dataset is River, as shown in Figure 6e,f. The two images were acquired on
3 May 2013, and 31 December 2013. The main scenes are rivers and residential areas in
Jiangsu Province, China, with 463 × 241 pixels. In total, 167 bands were selected after noise
removal. The main change is sediment in rivers and residential areas.

Figure 6. The false color images for three datasets. (a) Farmland dataset (3 May 2006). (b) Farmland
dataset (23 April 2007). (c) Hermiston dataset (1 May 2004). (d) Hermiston dataset (8 May 2007).
(e) River dataset (3 May 2013). (f) River dataset (31 December 2013).



Remote Sens. 2023, 15, 1868 8 of 19

3.2. Implementation Details

To improve the convergence speed of our model, the three datasets were normalized
from 0 to 1. To increase the training samples, before training, we cropped each hyperspectral
image into sub-images sized 32 × 32 with a step size of eight. The boundary GT was also
cropped to the sub-images. The two temporal sub-images were mixed and shuffled and
input into the network as training data. In addition, during training, these sub-images
were randomly rotated, vertically flipped, and horizontally flipped.

The UTBANet was trained by Pytorch with GeForce RTX 3090 24 GB. The learning rate is
0.01 in the beginning, and the decay coefficient is 0.1 with every 100 epochs. Early stopping was
used to prevent overfitting. The optimizer was Adma with the default parameter.

To evaluate the performance of our method, we used three metrics: overall accuracy
(OA), the kappa coefficient (KC), and intersection over union (IoU). TP is a true positive,
TN is a true negative, FP is a false positive, and FN is a false negative. The three metrics
can be defined as:

OA =
TP + TN

TP + TN + FP + FN
(4)

KC =
OA− P

1− P
(5)

IoU =
TP

TP + FP + FN
(6)

where

P =
(TP + FP)(TP + FN)

(TP + TN + FP + FN)2 +
(FN + TN)(FP + TN)

(TP + TN + FP + FN)2 (7)

3.3. Parameter Setting

In our proposed method, the number of kernels, batch size, and the weight of the two
loss functions will affect the change detection result. We carry out a series of comparison
experiments to explore the influence of these hyperparameters. When analyzing one
parameter, the other parameters are fixed.

3.3.1. The Analysis of Kernel Number

Here, we suppose that the kernel number in the embedding layer is K. Then, the
number of output channels of SAT1, SAT2, Residual block 1, and Residual block 2 are K/2,
K/4, K/2, and C, respectively, where C is the number of hyperspectral image channels.
We tested the K values of 32, 64, 128, and 256. Table 1 shows that as the kernel number
increases, the OA of Farmland and River increase and then decrease. The best numbers of
kernels are 64, 256, and 64 for the three datasets, respectively.

Table 1. OA of UTBANet with different kernel numbers for the three datasets.

Dataset
Kernel Number

32 64 128 256

Farmland 0.9611 0.9663 0.9624 0.8228
Hermiston 0.9724 0.7355 0.8549 0.9858

River 0.8929 0.9492 0.8899 0.8263

3.3.2. The Analysis of the Batch Size

In this experiment, we compared three different batch sizes: 32, 64, and 128. Table 2
shows that the number of batch sizes greatly influences the results of the Hermiston and
River datasets. The best batch sizes for the three datasets are 128, 32, and 64, respectively.
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Table 2. OA of UTBANet with different batch sizes for the three datasets.

Dataset
Batch Size

32 64 128

Farmland 0.9617 0.9572 0.9663
Hermiston 0.9858 0.8082 0.8282

River 0.8495 0.9492 0.8759

3.3.3. The Analysis of the Weight of Two Loss Functions

In this experiment, six different λ (0.1, 0.5, 1, 2, 5, and 10) were used for comparison.
Table 3 shows that when the weight of the hyperspectral loss is higher than or equal to the
boundary loss, the OA of Farmland and Hermiston are relatively high. The best weights
for the three datasets are 5, 5, and 2.

Table 3. OA of UTBANet with different λ for the three datasets.

Dataset
λ

0.1 0.5 1 2 5 10

Farmland 0.7075 0.8469 0.9645 0.8593 0.9663 0.9186
Hermiston 0.8288 0.8307 0.9769 0.8171 0.9858 0.9776

River 0.9018 0.8697 0.7979 0.9492 0.8603 0.7943

3.3.4. The Analysis of the Edge Detection Operator

In this experiment, two common edge detection operators (Sobel and Canny) were
used for comparison. As shown in Table 4, different operators had little effect on Farmland
and Hermiston. However, the Sobel operator performed better than the Canny operator on
the River dataset. Therefore, we selected the Sobel operator for edge detection.

Table 4. OA of UTBANet with different operators for the three datasets.

Dataset
Edge Detection Operator

Sobel Canny

Farmland 0.9663 9578
Hermiston 0.858 0.9856

River 0.9492 0.8541

3.4. Comparison with Other Methods

In this section, we compared our model with other unsupervised change detection
methods, including CVA, PCA-CVA [7], IR-MAD [8], DCVA [21], and convolutional au-
toencoder multiresolution features (CAMF) [26].

CVA: The Euclidean distance between two pixels is calculated to determine whether
the point changes.
PCA-CVA: This is an improved CVA method. It first obtains the principal components
of the hyperspectral image and then uses the CVA algorithm to detect changes.
IR-MAD: This method adds weight to each pixel while using a canonical correlation
analysis for algebraic transformation.
DCVA: This method first trains a CNN with other images to extract image features.
Then, feature variance is used to select useful feature maps. Finally, global and local
thresholding is used to make judgments.
CAMF: This method uses two temporal images to train an autoencoder. Then, the
feature comparison and selection are used to extract features.

For all comparison methods, the parameters have been optimized. These methods
first generate gray results, and then we use Otsu for segmentation. Although the quan-
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titative evaluation is carried out on the binary map, we also show the gray results in the
experimental section.

3.4.1. Experiment on the Farmland Dataset

The gray results are shown in Figure 7. Figure 8 shows the binary change detection
results of all methods. Compared with the ground truth, the CVA, PCA-CVA, and CAMF
results show many white pixels in unchanged road areas, as shown in Figure 8. The
misjudgment of the unchanged pixels causes these false alarm pixels to present as changed
pixels. IR-MAD performed poorly, with many types of noise being observed. For DCVA,
there was a large false alarm region in the bottom left corner of the result. Because UTBANet
combines global and boundary features, our method only generated a few false alarm pixels,
and the overall performance of its result was the closest to the ground truth; therefore, it
can better identify the boundary of Farmland. Table 5 displays the metrics of these methods.
Our method achieved the best value of the three metrics, with an OA of 0.9663, a KC of
0.9195, and an IoU of 0.9434.

Figure 7. Gray results of different methods on the Farmland dataset. (a) CVA. (b) PCA-CVA.
(c) IR-MAD. (d) DCVA. (e) CAMF. (f) UTBANet. (g) Ground truth.
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Figure 8. Binary results of different methods on the Farmland dataset. (a) CVA. (b) PCA-CVA.
(c) IR-MAD. (d) DCVA. (e) CAMF. (f) UTBANet. (g) Ground truth.

Table 5. Change detection results of the Farmland dataset.

Method
Metrics

OA KC IoU

CVA 0.9615 0.9073 0.9427
PCA-CVA 0.7318 0.2767 0.8233
IR-MAD 0.7273 0.2969 0.8154
DCVA 0.8690 0.7152 0.8114
CAMF 0.8006 0.5804 0.7273

UTBANet 0.9663 0.9195 0.9434



Remote Sens. 2023, 15, 1868 12 of 19

3.4.2. Experiment on the Hermiston Dataset

Figure 9 shows the gray results of Hermiston dataset. And Figure 10 displays the
binary results of six methods. CVA identified the most changed areas but also misjudged
some unchanged areas. PCA-CVA and DCVA mistakenly detected the river as a changed
area. IR-MAD also did not perform well on this dataset, with many types of noise being
produced in the results. UTBANet has the highest consistency with the ground truth.
Figure 10f indicates that after paying more attention to edge features, our method is more
accurate in identifying changed irrigation areas, and there are no obvious false alarm pixels.
Table 6 shows the results of all methods. Because there are many false alarm pixels in the
PCA-CAV results, its KC value is only 0.2996. Figure 10e shows that CAMF missed many
changed pixels and generated many false alarm pixels. Therefore, the KC and IoU values
of the CAMF are all low. UTBANet demonstrated good performance in the three metrics,
with an OA of 0.9858, a KC of 0.9362, and an IoU of 0.9443.

Figure 9. Gray results of different methods on the Hermiston dataset. (a) CVA. (b) PCA-CVA.
(c) IR-MAD. (d) DCVA. (e) CAMF. (f) UTBANet. (g) Ground truth.
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Figure 10. Binary results of different methods on the Hermiston dataset. (a) CVA. (b) PCA-CVA.
(c) IR-MAD. (d) DCVA. (e) CAMF. (f) UTBANet. (g) Ground truth.

Table 6. Change detection results of the Hermiston dataset.

Method
Metrics

OA KC IoU

CVA 0.9734 0.8849 0.9347
PCA-CVA 0.7655 0.2996 0.8529
IR-MAD 0.7810 0.4079 0.8584
DCVA 0.8965 0.6394 0.6976
CAMF 0.7416 0.2456 0.3791

UTBANet 0.9858 0.9362 0.9443

3.4.3. Experiment on the River Dataset

Gray and binary change detection results are shown in Figure 11 and Figure 12,
respectively. Table 7 shows the quantitative indicators of the six methods. PCA-CVA
misjudged the river as a changed region, which may be due to the low signal-to-noise
ratio of the river region. IR-MAD did not detect the changed area in the middle of the
river. Figure 12d shows a large white area compared with the ground truth, indicating
that the DCVA performance is poor. This may be because no suitable data were found
to pre-train the CNN for DCVA. For CAMF, there were many false alarm pixels in the
residential area. Therefore, the KC value of CAMF was only 0.2769. Figure 12 shows
that CVA and our method are the closest to the ground truth. Compared with CVA, our
method shows fewer false alarm pixels, which may be because the boundary reconstruction
allows our method to better identify rivers and riversides. However, compared with the
ground truth, UTBANet missed the detection of some changed small targets. Therefore,
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our method achieved higher OA and KC values than those of CVA, but the IoU is lower
than that of CVA.

Figure 11. Gray results of different methods on the River dataset. (a) CVA. (b) PCA-CVA. (c) IR-MAD.
(d) DCVA. (e) CAMF. (f) UTBANet. (g) Ground truth.

Figure 12. Binary results of different methods on the River dataset. (a) CVA. (b) PCA-CVA.
(c) IR-MAD. (d) DCVA. (e) CAMF. (f) UTBANet. (g) Ground truth.
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Table 7. Change detection results of the River dataset.

Method
Metrics

OA KC IoU

CVA 0.9398 0.7020 0.9661
PCA-CVA 0.3310 0.0102 0.4425
IR-MAD 0.8654 0.0849 0.9269
DCVA 0.5936 0.0109 0.1517
CAMF 0.7725 0.2769 0.8610

UTBANet 0.9492 0.7225 0.9501

3.5. Ablation Analysis

In our model, the boundary decoder and SE block are used for feature extraction. To
verify the effectiveness of these two structures, we designed model experiments with and
without the boundary decoder and SE block. The network without the boundary decoder
(Net without BD) consists only of feature extraction and the hyperspectral reconstruction
module. The network without the SE block (Net without SE) still comprises two decoder
modules, but the SE block is removed from the SAT. Figure 13a shows that without the
boundary decoder, the boundary of changed areas is blunt and cannot detect the unchanged
road between the farmlands. Figures 14 and 15 show that the boundary decoder is ef-
fective, not only for changed edges, but also for improving the overall detection results.
Table 8 shows quantitatively that the boundary decoder and SE block improved the change
detection results.

Figure 13. Contribution of BD on Farmland dataset. (a) Net without BD. (b) UTBANet. (c) Ground truth.
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Figure 14. Contribution of BD on Hermiston dataset. (a) Net without BD. (b) UTBANet. (c) Ground truth.

Figure 15. Contribution of BD on Hermiston dataset. (a) Net without BD. (b) UTBANet. (c) Ground truth.

Table 8. OA of the different networks.

Network Farmland Hermiston River

Net without BD 0.9345 0.8870 0.8585
Net without SE 0.9491 0.8284 0.8325

UTBANet 0.9663 0.9858 0.9492

4. Conclusions

In this paper, we proposed an unsupervised change detection method called UTBANet.
The proposed method was based on an autoencoder network that consisted of an encoder
and two decoders. In UTBANet, the boundary information reconstruction module is added
to the traditional hyperspectral reconstruction module, which has a positive influence on
feature extraction. Furthermore, the designed SAT block, which integrates the transformer
and spectral attention block, can adaptively extract and select important feature maps. The
experimental results obtained for the three public datasets with the five compared methods
show that our proposed method performed well. Furthermore, the ablation analysis verifies
that the boundary information reconstruction and spectral attention block improved the
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change detection results. In future work, we hope to apply UTBANet to more vegetation
and river area monitoring.
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