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Abstract: Ground-penetrating radar (GPR) is an efficient and nondestructive geophysical method
with great potential for detecting soil water content at the farmland scale. However, a key challenge
in soil detection is obtaining soil water content rapidly and in real-time. In recent years, deep learning
methods have become more widespread in the earth sciences, making it possible to use them for
soil water content inversion from GPR data. In this paper, we propose a neural network framework
GPRSW based on deep learning of GPR data. GPRSW is an end-to-end network that directly inverts
volumetric soil water content (VSWC) through single-channel GPR data. Synthetic experiments
show that GPRSW accurately identifies different VSWC boundaries in the model in time depth. The
predicted VSWC and model fit well within 40 ns, with a maximum error after 40 ns of less than
0.10 cm3 × cm−3. To validate our method, we conducted GPR measurements at the experimental
field of the Academy of Agricultural Sciences in Gongzhuling City, Jilin Province and applied GPRSW
to VSWC measurements. The results show that predicted values of GPRSW match with field soil
samples and are consistent with the overall trend of the TDR soil probe samples, with a maximum
difference not exceeding 0.03 cm3 × cm−3. Therefore, our study shows that GPRSW has the potential
to be applied to obtain soil water content from GPR data on farmland.

Keywords: ground-penetrating radar; neural networks; farmland; volumetric soil water content

1. Introduction

At present, there are 1.5 billion square hectares of cultivated land area all over the
world. Soil moisture, as a significant factor in agricultural development, has a direct
impact on crop yield. For example, in the case of rice, the yield of rice at maturity changes
accordingly as the soil moisture content gradually changes within a rice field [1]. Similarly,
there will be a significant difference in corn yield under different soil moisture contents in
the field [2]. With the promotion of precise agriculture, it is of great practical significance
to measure the soil water content rapidly and accurately in the field, which will guide the
area and amount of irrigation water and achieve maximum agricultural benefits.

At this stage, there are many methods available for detecting soil water content.
According to the detection range, soil water content detection can be classified into three
scales: small, medium, and large scale. Small-scale detection methods include the drying
method [3], time-domain reflectometry (TDR) method [4], and neutron probe method [5].
Small-scale detection results are accurate but easily affected by terrain, landscape type,
and soil heterogeneity. Therefore, it is difficult to represent soil moisture information on
a regional scale and impossible to quickly evaluate the overall water content distribution
range in farmland [6]. Medium-scale methods mainly include GPR technology, such
as the radar signal attribute method (RSAM) [7], borehole radar method [8], common-
offset GPR method, and multi-offset GPR method [9–11]. These methods have a high
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resolution, strong anti-interference ability, so that a system or device is capable of resisting or
rejecting external interference signals that may affect its performance or accuracy; integrated
data acquisition and processing imaging, nondestructive for soil structure; and perform
well in farmland water content detection, but the data inversion process is relatively
complex. Large-scale methods mainly include remote sensing, such as the thermal infrared
method [12], proximal visible–near infrared spectroscopy method [13], and microwave
remote sensing method [14,15]. These methods can quickly obtain the distribution of soil
moisture content on the surface of the land over a large range but are limited at very shallow
detection depths. In addition, the detection accuracy of these methods is easily affected by
weather conditions. Therefore, these methods are not suitable for detecting soil moisture
content at the farmland scale.

In previous research, a multi-offset GPR method has been primarily used to measure
soil water content on agricultural plots, specifically the ground wave method and reflected
wave method. The ground wave method can obtain the average soil water content on
the upper measurement line but cannot provide quantitative measurements of soil water
content at each point on the measurement line [16]. The reflected wave method is able
to obtain soil water content and soil depth when the soil has a clear reflected layer but is
not applicable when the soil is not clearly stratified. However, a multi-offset GPR method
requires multiple movements of the receiving antenna to collect data, which requires a
significant amount of time and work.

In recent years, deep learning technology has rapidly developed in various fields,
such as image processing [17], medical image reconstructions [18], electrical resistivity
inversions [19,20], and seismic inversions [21]. Deep learning has proven to possess excep-
tional power and accuracy in extracting the internal relationship between data variables
in data sets. In the field of earth science, deep learning has seen significant applications.
Zheng et al. [22] utilized a convolutional neural network (CNN) to automatically identify
defects in 3D seismic data volumes and predict one-dimensional velocity models and under-
ground density profiles. Araya-Polo et al. [23] extracted similarities from raw seismic data
to predict velocity models. Wu and Lin [24], Yang and Ma [25], and Li et al. [26] applied
CNN-based architectures to directly predict two-dimensional (2D) velocity models from
original seismic waveforms to support multi-offset, multi-wave seismic acquisition for oil
and gas exploration. Deep learning is also utilized in GPR signal recognition, target object
detection, and GPR data inversion. In the field of GPR signal recognition, Pham et al. [27]
used a pretrained Faster R-CNN framework for GPR image recognition, and the detection
results confirmed that deep learning methods outperformed traditional machine learning
methods in terms of accuracy. Based on this, Lei et al. [28] developed a double-cluster
search estimation and column-based transverse filter point algorithm in order to recognize
hyperbolas in GPR images. Hyperbola fitting in the hyperbola region detected by the Faster
R-CNN can automatically and efficiently extract hyperbola features but cannot decode
other features. Li et al. [29] proposed a method for identifying parabolic targets of different
sizes and cavities in subsurface soil or concrete structures based on YOLO v3. Experi-
mental results showed that the V-IoU method combined with non-maximum suppression
(NMS) can accurately extract targets in GPR images and reduce false recognition frames.
In the field of target object detection, S. Khudoyarov et al. [30] proposed a framework for
applying 3D convolutional neural networks to 3D GPR data and classifying unclassified
3D GPR data collected from urban roads in Seoul, Korea. Validation results showed that
four subsurface objects (pipes, voids, manholes, and subsoil) were successfully classified
with an average classification accuracy of 97%. Gao et al. [31] used a deep learning-based
intelligent detection method for subsurface targets to achieve high-accuracy detection of
subsurface targets on urban roads through feature extraction and classification recognition
of subsurface targets. Yang et al. [32] applied a fast R-CNN target detection algorithm in
deep learning to GPR image recognition and constructed a target detection model for soil
and rock dam disease identification with an average accuracy of over 90%. In the field of
GPR data inversion, Tong et al. [33] used CNN to achieve 3D reconstruction of the cleft.
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Alvarez et al. [34] proposed a deep learning framework for converting GPR maps into sub-
surface permittivity maps. Leong et al. [35] proposed and developed a data driven-based
GPR velocity inversion technique by employing deep learning. Giannakis et al. [36] pro-
posed a DNN-based orthorectification method and then added the proposed fast forward
method to the FWI network to improve the inversion efficiency.

In order to obtain soil water content on the farmland scale in a fast and real-time
method, we explored the feasibility and potential of deep learning techniques in predicting
soil water content from common-offset GPR data. In this paper, we utilized the open-source
software GPRNet proposed by Leong et al. [37] to develop a GPRSW neural network frame-
work. Specifically, we used CNN neural networks to map relationships between GPR data
and VSWC and proposed a GPRSW neural network framework. First, we introduced the
basic theoretical concept of using deep learning to invert soil water content and explained
the GPRSW neural network model and its structure in detail. After that, we generated the
training datasets about GPR data and VSWC, trained the GPRSW neural network, and
predicted synthetic samples through synthetic simulations. The entire training process and
evaluation metrics are presented in this paper. Finally, we carried out the field experiment
at the Gongzhuling Academy of Agricultural Sciences, Changchun City, Jilin Province to
examine the practical application of GPRSW. The comparison of water content inverted by
GPRSW, the TDR detection data, and the soil sampling value shows that the water content
inversion of GPRSW can be completed in nearly ten seconds with relatively stable accuracy
and a maximum error of less than 0.03 cm3 × cm−3.

2. Materials and Methods
2.1. Principle of VSWC Inversion Based on Deep Learning

GPR transmits high-frequency electromagnetic waves into the subsurface using the
transmitting antenna. These waves are reflected and scattered when they encounter target
bodies with different dielectric properties. Parts of the waves are filtered by the subsurface
medium, transmitted back to the surface, and received by the receiving antenna [38]. The
received signal is processed and converted into a time-series signal. The time series at each
measurement point is the radar waveform recording channel of the measurement point.
The characteristics of the radar waveform can be analyzed to determine the stratigraphic
structure, the distribution of different materials underground, and the size and depth of
the target body with different dielectric properties.

The characteristics of radar waveforms returned by high-frequency electromagnetic
waves propagating in materials with different dielectric properties are distinct. The per-
mittivity of unsaturated soil is mainly determined by the VSWC. As the volumetric water
content in soil changes, electrical conductivity and permittivity will vary greatly. To es-
tablish the relationship between the soil permittivity and VSWC, many theoretical and
empirical models have been proposed by researchers. Among them, the TOPP formula is
the most widely used [39]:

θ = −5.3 × 10−2 + 2.92 × 10−2εr − 5.5 × 10−4ε2
r + 4.3 × 10−6ε3

r (1)

where θ is the VSWC and εr is the relative permittivity. This formula is especially suitable
for coarse soil (cultivated soil).

The characteristics of radar waveform traces are closely related to the soil permittivity,
which is in turn related to the VSWC. Therefore, the characteristics of radar waveform
traces are closely related to the VSWC. In our study, the relationship between the radar
waveform traces, S, and the VSWC, θ, can be appropriately described as:

θ = F−1S (2)

where F−1 is the inverse operator which calculates the desired θ from the given S. In tradi-
tional physics-based full-waveform inversion, S is the time-domain data of common-offset
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GPR, and F−1 is the full-waveform inversion operator, which represents the calculation of
deep learning neural network in our data-driven inversion.

2.2. The Structure of CNN-Based Framework GPRSW

The CNN-based framework GPRSW is essentially an encoder–decoder model which
maps the GPR data and its corresponding VSWC in a nonlinear way. Its structure is
illustrated in Figure 1.
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Figure 1. The structure of CNN-based framework GPRSW. The top half is the GPR data encoder, and
the bottom half is the VSWC decoder. GPR data is input into the neural network, and the network
outputs VSWC of the same length. Conv1–4 and Deconv1–4 are convolutional layers; Pool1–4 are
pooling layers; Diconv1–4 are dilation layers; Up1–4 are up-sampling layers.

In the GPR data-encoding stage, the feature encoder network is used for down-
sampling and feature extraction, which in turn generates abstract high-level features.
These features are a high-level semantic description of the GPR data learned by multiple
layers of neural networks, and they provide adequate information for the output of VSWC
curves. At first, the time-domain GPR A-scan data is compressed using a Conv layer
and Pool layer, which reduces the dimensionality of the GPR data, reserves important
information, and extracts the abstract high-level features of A-scan. The extracted features
are merged in the Diconv layer after four down-sampling processes and four layers of
Diconv layers with different convolutional expansion rates. Finally, Mgconv is used as
the bottleneck layer of the encoder. To ensure the scale diversity of the features, both the
bottleneck layer and the Pool4 layer are connected to the decoder.

In the VSWC decoding stage, the features of the GPR data formed by the encoder are
mainly up-sampled, and finally, the VSWC inversion result consistent with the length of
the GPR data sequence is formed. The potential nonlinear relationship between the GPR
data and VSWC is stored in the whole network and its parameter matrix. Convolutional
layer + up-sampling is used to decode the features formed by the GPR data, recover the
sequence length structure after four up-sampling and invert the GPR features into VSWC
curves, and finally, output VSWC curves with the same length as the GPR data sequence
by a 1 × 1 Conv convolutional layer. To avoid the instability of the network output and
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improve the generalization of the structure, a Gaussian dropout operation is adopted before
the final output of the network.

This network is essentially an end-to-end inversion program, where an A-scan from 0
to 100 ns is applied to its input and a curve of volumetric water content at the same position
with the same size is applied to its output. However, we recognize that the accuracy of the
volumetric water content obtained from the inversion decreases as the depth of the time
series increases. This is caused by a decrease in the quality of the A-scan due to factors such
as multiple reflections. The inverse correspondence between A-scan and single-channel
VSWC is shown in Figure 2.
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Figure 2. A-scan conversion to single-channel VSWC correspondence. (a) Single-channel GPR data
and (b) Single-channel VSWC data.

Table 1 shows the output shapes and other configurations of all layers. In the structure
of the network, ReLu is used as the activation layer, the Padding is set to “same”, and
Adam’s algorithm is used as the optimization method [40,41].

2.3. Data Preparation and Network Training

To enhance the ability of the neural network to capture the relationship between the
GPR data and VSWC, 10,000 pairs of data were generated into a dataset. The dataset
comprises time-domain GPR data and random VSWC corresponding to it. The VSWC
ranges from 0 to 0.5 cm3 × cm−3, which covers most of the soil water content fugacity.
The dataset was generated by performing the following steps: (1) 10,000 pairs of relative
permittivity were generated, all with a longitudinal depth of 1280 grid numbers. Of these,
7000 sets were randomly generated 1D data and 3000 sets were 1D data obtained by
randomly selecting 5 traces from each of the 600 randomly generated 2D profiles, with
randomly generated relative permittivity values ranging from 1 to 40, randomly generated
layer numbers ranging from 4 to 12, and randomly generated layer thicknesses ranging
from 8 to 15. (2) Forward simulation using the 2D finite difference time domain (FDTD) [42]
was used to obtain the GPR data series corresponding to the relative permittivity. We used
a standard black Harris wavelet as the source wavelet, with a center frequency of 120 Mhz,
a sampling interval dt of 8 × 10−11, and a time window t of (1280 − 1) × dt. (3) The TOOP
formula was used to convert the relative permittivity to the corresponding VSWC ranging
from 0 to 0.5 cm3 × cm−3.
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Table 1. Detailed information about the GPRSW Model.

Layer Output Shape Layer Details

GPR Data L
Conv1 + Pool1 + Dropout L/2 × n k kernel size, n filters, 1 stride, 2 pool size
Conv2 + Pool2 + Dropout L/4 × 2n k kernel size, 2n filters, 1 stride, 2 pool size
Conv3 + Pool3 + Dropout L/8 × 4n k kernel size, 4n filters, 1 stride, 2 pool size
Conv4 + Pool4 + Dropout L/16 × 8n k kernel size, 8n filters, 1 stride, 2 pool size

Diconv 1 + Dropout L/16 × 16n k kernel size, 16n filters, 1 stride, 1 dilation rate
Diconv 2 + Dropout L/16 × 16n k kernel size, 16n filters, 1 stride, 6 dilation rate
Diconv 3 + Dropout L/16 × 16n k kernel size, 16n filters, 1 stride, 12 dilation rate
Diconv 4 + Dropout L/16 × 16n k kernel size, 16n filters, 1 stride, 18 dilation rate
Diconv + Dropout L/16 × 72n Concatenates Pool4, Diconv 1–Diconv 4
MgConv+ Dropout L/16 × 16n 3 kernel size, 16n filters, 1 stride

Deconv1 + Up1 + Dropout L/8 × 16n k kernel size, 16n filters, 1 stride, 2 up size
Deconv2 + Up2 + Dropout L/4 × 8n k kernel size, 8n filters, 1 stride, 2 up size

UpMgConv+Merge+ Dropout L/4 × 24n Concatenates UpMgConv and up2
Deconv3 + Up3 + Dropout L/2 × 4n k kernel size, 4n filters, 1 stride, 2 up size
Deconv4 + Up4 + Dropout L × 2n k kernel size, 2n filters, 1 stride, 2 up size

Deconv5 + Gaussian dropout L × 1 k kernel size, 1 filter, 1 stride, 2 up size
VSWC L

The generated data pairs were divided into 90% training data and 10% validation
data. The coefficient of determination (R Squared, R2) was used as the evaluation function
to evaluate the performance of the current training model. The evaluation metric mainly
evaluates the performance of the model during the training process. The R2 is expressed
as follows:

R2 = 1 − ∑n
i=1 (ŷi − yi)

2

∑n
i=1 (yi − yi)

2 (3)

where y .
i

represents the true value, ŷi represents the predicted value, and yi represents the
average value of the true value. The value of R2 ranges from 0 to 1. When R2 = 0, it means
that the neural network model is completely unable to predict the target variable and that
the VSWC value predicted by GPRSW from the time-domain GPR data series is completely
inconsistent and unrelated to the true value. If R2 = 1, it means the neural network model
is able to predict the target variable perfectly and the VSWC value predicted by GPRSW
from the time-domain GPR data is completely consistent with the VSWC value in the
true model.

The root-mean-square (RMS) error loss function is used as a loss function, which
calculates the difference between the predicted value Ŷ and the true value Y. The mean-
square error loss function is often used in regression problems, and its expression is
as follows:

loss
(
Y, Ŷ

)
=

1
N

ΣN
i=1

(
y .

i
− ŷi

)2
(4)

where y .
i

represents the true value and ŷi represents the predicted value. The value of
loss

(
Y, Ŷ

)
is non-negative, and the closer the value of loss

(
Y, Ŷ

)
is to 0, the smaller the

difference between the VSWC value predicted by GPRSW from the time-domain GPR data
and the VSWC value in the real model, and the better the prediction effect.

Prior to formal training, we processed the GPR data sequence to eliminate the direct
wave. The training process (Intel(R) Core(TM)i5-10500 CPU @310GHz 3.10GHz) takes ~2 h.
Figure 3 shows the variation in the R2 score and loss with the number of training epochs for
the training and validation data after training. The neural network was set to automatically
stop training when upon reaching 160 epochs. Finally, the evaluation index R2 for the
training set was approximately 0.991524, and the RMS was approximately 0.000001. The
evaluation of the validation set yielded an R2 value of approximately 0.9748 and RMS loss
of approximately 0.00005, which indicates that the neural network model is well-trained.
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The predicted VSWC values obtained by GPRSW from the time-domain GPR data are
closely aligned with the real model with a high degree of fit.

Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 19 
 

 

Prior to formal training, we processed the GPR data sequence to eliminate the direct 
wave. The training process (Intel(R) Core(TM)i5-10500 CPU @310GHz 3.10GHz) takes ~2 
h. Figure 3 shows the variation in the R2 score and loss with the number of training epochs 
for the training and validation data after training. The neural network was set to automat-
ically stop training when upon reaching 160 epochs. Finally, the evaluation index 𝑅2 for 
the training set was approximately 0.991524, and the RMS was approximately 0.000001. 
The evaluation of the validation set yielded an R2 value of approximately 0.9748 and RMS 
loss of approximately 0.00005, which indicates that the neural network model is well-
trained. The predicted VSWC values obtained by GPRSW from the time-domain GPR data 
are closely aligned with the real model with a high degree of fit. 

 
Figure 3. Training process of GPRSW. (a) The R2 value during training; (b) the RMS loss during 
training; (c) the R2 value of validation data sets; (d) the concurrent RMS loss of validation datasets 
during training. 

2.4. Principle of Field Soil Sampling and TDR Soil Probe Samples 
2.4.1. Principle of Field Soil Sampling 

We use the drying method to measure the soil moisture content of field soil samples. 
The principle of this method is based on the fact that the water content of a soil sample 
can be determined by measuring the difference in weight before and after drying the sam-
ple. To collect field soil samples, a soil corer or auger is used to collect soil samples from 
different depths in a specific area. The samples are then weighed, and the moisture con-
tent is determined by drying them in an oven until they reach a constant weight. The 
difference in weight before and after drying is used to calculate the moisture content of 
the soil sample. 

One advantage of using field soil samples is that they provide highly accurate meas-
urements of soil moisture content. However, this method is time-consuming, and it can 
be challenging to collect representative samples that accurately reflect the soil moisture 
content of a larger area. 

2.4.2. Principle of TDR Soil Probe Samples 
We used TRIME-PICO TDR for fixed point sampling. TDR soil probes are a com-

monly used method for measuring soil moisture content. The principle behind the method 
is based on the fact that the permittivity of soil changes with water content. TDR soil 
probes send a low-energy electromagnetic pulse through the soil and measure the time it 
takes for the pulse to reflect back to the probe. The time delay is directly related to the 
permittivity of the soil, which can be used to calculate the soil moisture content. 

One advantage of using TDR soil probes is that they provide real-time measurements 
of soil moisture content, which can be useful for irrigation scheduling and other applica-
tions that require immediate data. Additionally, TDR soil probes can be used to measure 
the soil moisture content at different depths, which can provide a more comprehensive 
picture of the moisture content of a specific area of soil. Similar to the field soil samples 

Figure 3. Training process of GPRSW. (a) The R2 value during training; (b) the RMS loss during
training; (c) the R2 value of validation data sets; (d) the concurrent RMS loss of validation datasets
during training.

2.4. Principle of Field Soil Sampling and TDR Soil Probe Samples
2.4.1. Principle of Field Soil Sampling

We use the drying method to measure the soil moisture content of field soil samples.
The principle of this method is based on the fact that the water content of a soil sample
can be determined by measuring the difference in weight before and after drying the
sample. To collect field soil samples, a soil corer or auger is used to collect soil samples
from different depths in a specific area. The samples are then weighed, and the moisture
content is determined by drying them in an oven until they reach a constant weight. The
difference in weight before and after drying is used to calculate the moisture content of the
soil sample.

One advantage of using field soil samples is that they provide highly accurate mea-
surements of soil moisture content. However, this method is time-consuming, and it can
be challenging to collect representative samples that accurately reflect the soil moisture
content of a larger area.

2.4.2. Principle of TDR Soil Probe Samples

We used TRIME-PICO TDR for fixed point sampling. TDR soil probes are a commonly
used method for measuring soil moisture content. The principle behind the method is
based on the fact that the permittivity of soil changes with water content. TDR soil probes
send a low-energy electromagnetic pulse through the soil and measure the time it takes for
the pulse to reflect back to the probe. The time delay is directly related to the permittivity
of the soil, which can be used to calculate the soil moisture content.

One advantage of using TDR soil probes is that they provide real-time measurements
of soil moisture content, which can be useful for irrigation scheduling and other applications
that require immediate data. Additionally, TDR soil probes can be used to measure the soil
moisture content at different depths, which can provide a more comprehensive picture of
the moisture content of a specific area of soil. Similar to the field soil samples method, one
limitation of using TDR soil probes is that they also may not be able to collect representative
samples that accurately reflect the soil moisture content of a larger area.

3. Results
3.1. Synthetic Experiments

Two-dimensional models were established to validate the predictive effect of GPRSW
on B-scans, which refer to the collection of all A-scans. Single-channel data were extracted
from each model to validate the predictive effect of A-scans. Four 2D models of VSWC
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were established for different media types, including horizontal layered media, horizontal
stochastic media, undulating-interface layered media, and undulating-interface stochastic
media. These models were then converted into corresponding relative permittivity models
using the TOOP formula, and the FDTD was utilized for forward simulation to obtain the
GPR data series. The relative permittivity distribution and time-domain GPR data for the
model are shown in Figure 4. To evaluate the effectiveness of the GPRSW neural network
model, GPRSW was employed to predict the volumetric water content values from the
time-domain GPR data, and two predictions (A-scans) at 5 m and 8 m were compared to
the true model data; it took less than 10 s to predict.
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Figure 4. Relative permittivity distribution of the model and the time-domain GPR profile obtained
by FDTD. (a) Horizontal layered media model; (b) horizontal stochastic media model; (c) undulating-
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In Figure 5a, the red dotted line accurately separates the four media, and the predicted
values fit the true values well from 0 to 40 ns. In Figure 3b, the degree of fit between the
predicted value and the model value is very high within 0–40 ns, and the maximum error
between the predicted VSWC and the true value is less than 0.10 cm3 × cm−3, which is
slightly better than that in Figure 3a. In Figure 3c, the boundary of VSWC is accurately
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separated at 5 m and 8 m, and the maximum error between the overall predicted VSWC
value and the true value is less than 0.10 cm3 × cm−3. However, the overall prediction is
slightly worse than the horizontal medium prediction. In Figure 3d, the boundary of VSWC
at 5 m and 8 m is accurately separated, and the overall prediction is slightly better than
that in Figure 3c but slightly worse than the horizontal medium prediction. The results of
the synthetic experiments showed that GPRSW can accurately predict the VSWC values at
different locations in the model.
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Figure 5. Synthetic experiments to evaluate the effectiveness of the GPRSW. (a) Horizontal layered
media water content model; (b) horizontal stochastic media water content model; (c) undulating-
interface layered media water content model; (d) undulating-interface stochastic media water content
model. Red dashed lines indicate VSWC boundaries in different depth domains in the horizontal
media. In the undulating media, red and blue dashed lines mark VSWC boundaries at 5 and 8 m
from the starting point, respectively.

3.2. Field Experiments

In this section, the performance of GPRSW was tested using field GPR data detected
by Mala ProEx radar with the radar parameters shown in Table 2. We took field soil
samples and TDR soil probe samples for comparative experiments. The different working
methods are shown in Figure 6. The experimental site was located in the experimental field
of Gongzhuling Academy of Agricultural Sciences, Changchun City, Jilin Province. The
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experimental site included two experimental fields with different farming methods. The
soil there is black soil, and the crops are corn all year round. Black soil is a type of soil that
is known as the “golden land” for agriculture and is widely distributed in northeastern
China, including Heilongjiang, Jilin, and Liaoning provinces. It is suitable for growing
crops such as soybeans, corn, and sorghum. This soil is rich in organic matter and has a
high clay content, making it very fertile and able to retain water well. Even in areas with
dry and low rainfall, black soil can support crop growth.

Table 2. Detailed information about the radar parameters.

Parameters Value

Radar Type Mala ProEx
Antenna Center Frequency 500 MHz

Bandwidth 500 MHz
Sampling Window 57 ns

Number of Samples 766
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Figure 6. GPR, TDR probe samples, and soil samples in the field. (a) Mala ProEx radar acquisition in
the field; (b) TDR probe spotting in the field; (c) field soil sampling and laboratory samples.

Since 2011, the two experimental fields have been cultivated in different ways: one
uses a no-till method which directly mulches straw without tillage at all, and the other uses
a deep-turn and deep-till method, in which all corn stalks are broken up and returned to
the field after deep turning and deep tilling, with a depth of 30–40 cm. The no-till area has
a dense soil surface structure, while the deep-turned and deep-tilled area has a looser soil
texture. During the experiment, there were no crops planted in the farmland, and the land
was relatively flat. Therefore, it was suitable for GPR to detect soil water content.

3.2.1. Data Preparation and Network Training

To encapsulate a larger range of VSWC variations, we randomly generated multilayer
permittivity datasets ranging from one to fifty and converted them into VSWC profiles
using the TOOP formula. An amount of 50,000 unique VSWC profiles were generated,
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corresponding GPR data, and were simulated using the FDTD method. For the measured
field data, which usually contain high levels of noise, and common-offset GPR data, we
added random Gaussian noise to expand the data set. In addition, we simulated the
variation in the true subsurface horizontal velocity by adding a stochastic time gain. At the
same time, we added some GPR data with corresponding relationships and field VSWC
measured by TDR for fine-tuning the optimization of the network. Finally, we generated
100,000 datasets, of which 1% were used for validation, with a smooth training process and
a final validation R2 accuracy of 0.9658.

3.2.2. Inversion of Volumetric Soil Water Content in Farmland Fields

The measurement of survey line 1 with a length of 35 m was carried out in the no-till
area. The measurement of survey line 2 with a length of 30 m was carried out in the deep-till
and deep-turn region, as shown in Figure 7a,b. The GPR measurements had a total of 721
and 627 traces collected, respectively. This process took approximately 15 min.

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 19 
 

 

corresponding GPR data, and were simulated using the FDTD method. For the measured 
field data, which usually contain high levels of noise, and common-offset GPR data, we 
added random Gaussian noise to expand the data set. In addition, we simulated the varia-
tion in the true subsurface horizontal velocity by adding a stochastic time gain. At the same 
time, we added some GPR data with corresponding relationships and field VSWC meas-
ured by TDR for fine-tuning the optimization of the network. Finally, we generated 100,000 
datasets, of which 1% were used for validation, with a smooth training process and a final 
validation R2 accuracy of 0.9658. 

3.2.2. Inversion of Volumetric Soil Water Content in Farmland Fields 
The measurement of survey line 1 with a length of 35 m was carried out in the no-till 

area. The measurement of survey line 2 with a length of 30m was carried out in the deep-
till and deep-turn region, as shown in Figure 7a,b. The GPR measurements had a total of 
721 and 627 traces collected, respectively. This process took approximately 15 min. 

 
Figure 7. The location and situation of the experimental site. (a) Regional location map of the exper-
imental site; (b) actual situation of the experimental site. 

B-scan collected under line 1 and line 2 was pre-processed using direct wave removal, 
band-pass filtering, and time gain. After that, the water content of the field data was in-
verted by GPRSW. It took less than 10 s to predict. The field GPR data and inversion re-
sults are shown in Figures 8 and 9. 

 
Figure 8. (a) Processed GPR data under line 1; (b) VSWC predicted value under line 1. 

Figure 7. The location and situation of the experimental site. (a) Regional location map of the
experimental site; (b) actual situation of the experimental site.

B-scan collected under line 1 and line 2 was pre-processed using direct wave removal,
band-pass filtering, and time gain. After that, the water content of the field data was
inverted by GPRSW. It took less than 10 s to predict. The field GPR data and inversion
results are shown in Figures 8 and 9.
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Figure 9. (a) Processed GPR data under line 2; (b) VSWC predicted value under line 2.

3.2.3. Field Soil Samples and TDR Soil Probe Samples

Random soil sampling was conducted next to two survey lines at a depth of approxi-
mately 15 cm, and spot probe soil sampling was also conducted using TDR at a depth of
approximately 15 cm. Soil sampling was conducted at 20 m next to survey line 1 and at
27 m next to survey line 2. The TDR was spotted at positions 0 m, 10 m, 15 m, 20 m, and
30 m on survey line 1, and at positions 0 m, 5 m, 15 m, and 27 m on survey line 2. During
the soil sampling process, each excavation, soil extraction, and backfill took approximately
5 min. The process for two locations took about 10 min. The TDR probe spotting pro-
cess took about 30 s per spot, with a total of nine spots taking approximately 5 min.
Tables 3 and 4 show the detailed information of field soil samples and TDR probe
samples, respectively.

Table 3. Detailed information about field soil samples.

Parameters/Units Survey Line 1 Survey Line 2

Net weight of wet soil/g 59.0654 53.2606
Net weight of dry earth/g 47.9557 43.6133

Dry soil volume/cm3 40 35
Volumetric weight g/cm3 1.4732 1.5184

Porosity 44.4075% 42.7019%
Volume water content/cm3 × cm−3 28.4% 20.86%

Table 4. Detailed information about TDR soil probe samples.

Survey Line Position Volumetric Water
Content Mean Value

1 (No-till area) 0 m 32.91%

28.44%
Description: The soil surface layer at
line 1 is denser than at line 2, and the
surface layer is covered with a large

amount of straw.

10 m 27.68%
15 m 27.6%
20 m 25.6%
30 m 28.4%

2 (Deep-turned and deep-tilled area) 0 m 23.8%

20.65%
5 m 22.19%
15 m 15.73%
27 m 20.86%

3.2.4. Comparison Verification

In order to further validate our prediction model, we transformed the VSWC distribu-
tion information from the time domain to the spatial domain based on:

d =
vt
2

(5)
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where v is the EM velocity, εr can be obtained from VSWC via Topp’s formula, v can be
obtained by converting v =

√
c
εr

, d is the thickness of each layer, and t is the one-way travel
time of the EM wave to the boundary between layers.

The time-domain VSWC was transformed into the spatial domain according to the
dual-traveling characteristics of the common-offset GPR data in Figure 10. The locations of
the measurement points in the previous section were marked in Figure 10a,b to facilitate
comparison with the actual measured values. It can be clearly seen from the inversion
results of spatial domain that there is an undulating interface within 0.1~0.3 m below survey
line 1 and an undulating interface within 0.15~0.35 m below survey line 2. The thickness of
the soil cultivation layer is about 30~40 cm, and it is inferred that the undulating layer is
the bottom layer of the cultivation layer. Above 15 cm depth, the soil water content under
survey line 1 is obviously higher than that under survey line 2. We infer that it is because
the straw on the surface of the land in the no-till area intercepts and preserves a lot of water
vapor from the air.
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Figure 10. Distribution of soil volumetric water content in the spatial domain. (a) Distribution of
VSWC spatial domain under line 1 and (b) distribution of VSWC spatial domain under line 2. The
brown ovals indicate soil sampling locations, while the black probes with blue tops indicate locations
where TDR probes were used for sampling.

Table 5 shows the details of the VSWC values obtained by different methods at 15 cm
depth. Additionally, a scatter plot was created for a more visual comparison and validation.
As shown in Figure 11, the VSWC at the depth of 15 cm under the two survey lines predicted
by GPRSW were compared with the field sampling value and TDR probe sampling value.
It was found that the predicted VSWC value under line 1 was consistent with the TDR
probe sampling value but slightly higher than the TDR probe sampling value. At 20 m,
both were slightly lower than the field soil sampling VSWC value, and the predicted value
was closer to it. For line 2, the predicted VSWC value was consistent with the trend of the
TDR probe sampling values and slightly higher than the TDR probe sampling value. At
27 m, the predicted value was slightly higher than the field soil sampling value, while the
TDR probe sampling value was consistent with it. In summary, the difference between
the soil water content at 15 cm depth under the two lines predicted by GPRSW and the
field sampling and TDR probe sampling was less than 0.03 cm3 × cm−3, which shows high
prediction accuracy and good results in the field experiment.

Table 5. Detailed information about VSWC values obtained by different methods at a depth of 15 cm.

Survey Line Position Prediction SW Field Sample TDR Mean Value Standard Deviation

1 (No-till area)

0 m 34.12% 32.91% 33.52% 0.61%
10 m 30.37% 27.68% 29.03% 1.35%
15 m 29.69% 27.6% 28.65% 1.05%
20 m 27.71% 28.4% 25.6% 27.24% 1.19%
30 m 28.31% 28.4% 28.36% 0.05%
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Table 5. Cont.

Survey Line Position Prediction SW Field Sample TDR Mean Value Standard Deviation

2 (Deep-turned
and deep-
tilled area)

0 m 25.42% 23.8% 24.61% 0.81%
5 m 23.01% 22.19% 22.60% 0.41%

15 m 18.59% 15.73% 17.16% 1.43%
27 m 22.2% 20.86% 20.86% 21.31% 0.63%
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Figure 11. Comparison of predicted and measured values. (a) VSWC values obtained by different
methods at 15 cm under line 1; (b) VSWC values obtained by different methods at 15 cm under line 2.
The red pentagram represents the predicted value inverted from GPRSW; the blue orb represents the
field soil sampling, and the brown diamond represents the TDR probe sampling.

4. Discussion

As the most direct way to detect soil water content, field sampling has the highest
accuracy for the detection of physical properties at the measurement point. However,
field sampling is destructive, and the difficulty of detection increases when the detection
depth increases. In addition, soil samples are time-consuming and laborious to collect and
still require post-processing in the laboratory to obtain the VSWC values. As a soil layer
sampling method, it is not suitable for the detection of soil volume water content at the
farmland scale.

As a very mature water content detection method, TDR spot sampling has high
accuracy and has been widely used in field spot measurements. However, its detection
range is small, and the detection depth is limited, which is still not suitable for farmland-
scale VSWC detection.

The common-offset GPR method is compact, lightweight, portable, easy to operate,
fast, and suitable for farmland-scale detection and research. In this paper, the deep learning
method was used to inverse VSWC from the measured time-domain GPR data. The
synthetic experiments and field experiments show that it can be used as an effective method
for the rapid detection of VSWC in the field. In the practice of guiding agriculture to obtain
farmland water content in the future, the application of real-time VSWC inversion can be
realized on the premise of completing training, which has great development potential.

The mean value of VSWC measured by TDR in the no-till area was 28.44%, with the
field soil sample value at 28.4%. On the other hand, the mean value of VSWC measured by
TDR in the deep-turned and deep-tilled area was 20.65%, with the field soil sample value
at 20.86%. The VSWC in the no-till area was generally higher than that in the deep-turned
and deep-tilled area at the same detection depth. The predicted values of GPRSW on both
survey lines were consistent with these findings. We analyzed the reason why the VSWC in
the deep-turned and deep-tilled area was low at this depth: The soil in this area is soft after
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artificial ploughing, and the protective effect of the soil surface layer on water is weakened,
which makes part of the water in the soil loose in the air. At the same time, ploughing
makes the porosity of the soil layer smaller and the water-bearing space smaller. Most of
the GPR values of soil water are higher than TDR values. We believe that one possible
explanation for this difference is that the two methods measure different volumes of soil.
GPR detects a larger area, which may be more sensitive to water in larger pores and cracks
within the soil, while TDR may be more sensitive to water in smaller pores closer to the
TDR probe. Additionally, other factors, such as soil texture and structure, may affect GPR
measurements and lead to differences between GPR and TDR values.

Our study is highly relevant to precision agriculture, which requires accurate and
efficient measurement of soil moisture content to optimize irrigation and fertilizer use for
efficient agricultural production. GPR based on deep learning technology has advantages
for quickly and accurately estimating soil moisture content, which can help farmers achieve
precise irrigation and fertilizer application, resulting in improved crop yield and quality.
Although our method has shown promising results, there are potential challenges and
limitations when applying it to different soil types and environmental conditions. For
instance, we can only estimate the volumetric water content of the soil, and further research
is necessary to explore the impact of soil mineral content on GPR-based soil moisture
measurements. Additionally, the accuracy of GPR may be affected by soil type and moisture
distribution, which require adjusting parameters and optimizing algorithms for different
soil types. Moreover, environmental factors such as weather and terrain may also impact
the applicability and reliability of GPR technology, necessitating more field experiments
for validation. Therefore, it is crucial to comprehensively consider and systematically
optimize and adjust the technology to ensure its effectiveness and practicality in real-world
applications. In future research, we will use more GPR data and corresponding farmland
VSWC data to further improve the neural network model so that GPRSW can be applied to
many different types of cultivated land VSWC measurements, which will help farmers to
scientifically deploy farmland water content to increase crop yields.

5. Conclusions

In this paper, a neural network framework GPRSW for rapid inversion of VSWC by
GPR was constructed to solve the difficulties of VSWC inversion using the common-offset
GPR method at the field scale. After training the GPRSW model, the performance of
GPRSW was tested in synthetic experiments by using four 2D VSWC models. The results
show that GPRSW can accurately identify different boundaries of VSWC in the model
in time depth, with a maximum error between the predicted VSWC and the true value
of less than 0.10 cm3 × cm−3. Subsequently, the performance of GPRSW was tested in a
Gongzhuling experimental field. The results show that there is little difference between the
predicted value of GPRSW and the field soil sampling value, which is consistent with the
overall change trend of the TDR detection values, with a maximum difference of less than
0.03 cm3 × cm−3. The overall study shows that GPRSW has the potential to be applied to
the soil water content inversion by using GPR data on farmland.
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