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Abstract: The brightness temperature (TB) features extracted from Chang’e-2 Lunar Microwave
Sounder (CELMS) data represent the passive microwave thermal emission (MTE) from the lunar
regolith at different depths. However, there have been few studies assessing the importance and
contribution of each TB feature for mapping mare basalt units. In this study, a unified framework of
TB features analysis is proposed through a case study of Mare Fecunditatis, which is a large basalt
basin on the eastern nearside of the Moon. Firstly, TB maps are generated from original CELMS
data. Next, all TB features are evaluated systematically using a range of analytical approaches. The
Pearson coefficient is used to compute the correlation of features and basalt classes. Two distance
metrics, normalized distance and J-S divergence, are selected to measure the discrimination of basalt
units by each TB feature. Their contributions to basalt classification are quantitatively evaluated by
the ReliefF method and out-of-bag (OOB) importance index. Then, principal component analysis
(PCA) is applied to reduce the dimension of TB features and analyze the feature space. Finally, a
new geological map of Mare Fecunditatis is generated using CELMS data based on a random forest
(RF) classifier. The results will be of great significance in utilizing CELMS data more widely as an
additional tool to study the geological structure of the lunar basalt basin.

Keywords: Mare Fecunditatis; brightness temperature; feature assessment; mare basalt; machine
learning; dimension reduction

1. Introduction

Accurate mapping of the mineral composition of the lunar surface is crucial for under-
standing the thermal evolution of the Moon and the formation of its mare and mascons [1,2].
However, the presence of nanophase iron (np-Fe0) particles resulting from space weather-
ing, as well as the lunar soil cover, introduce significant uncertainties in the retrieval of the
lunar surface mineral composition using multispectral remote sensing data [3].

Up to now, several studies on mare geological structure and chemistry components
were conducted, mainly based on FTA (FeO + TiO2 abundance) data, moon mineralogy
mapper (M3) data, UV/VIS (ultraviolet-visible spectroscopy) data, the crater size-frequency
distribution (CSFD) technique and so on [4–11]. For instance, Karthi et al., mapped the Mare
Orientale impact basin using Chandrayaan-1 M3 data and Lunar Reconnaissance Orbiter
(LRO)—Wide Angle Camera (WAC) images [4]. Kramer et al., mapped the basalt units
of the map of Mare Moscoviense and Mare Nectaris based on FTA data and Clementine
UV-VIS data [5]. Thiessen et al., mapped Mare Imbrium basalt units using M3 data [6].
Hiesinger et al. studied the ages and stratigraphy of lunar mare basalts in Mare Frigoris
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and other nearside maria based on CSFD measurement [7]. Liu et al., researched the
basalt and volcanism chronology of Orientale Basin using CCD (charge-coupled device)
imaging [8]. Bugiolacchi et al., used near-infrared (NIR) data to gain new geological maps
in several lunar areas, such as Mare Imbrium and Tycho Crater, and study mineralogy in
the Copernicus Crater [9,10]. These studies use visual and multispectral information (from
which the mineral data are also derived), which only reflects the condition of lunar surface
regolith and limits the acquisition of deep-layer lunar structure information. Bugiolacchi
et al. detected the deep lunar structure near the landing site of the Chang’e-4 satellite
by lunar penetrating radar (LPR) on board the Yutu-2 rover [12–15] and acquired the
subsurface geological structure on the farside of the Moon for the first time, but these
studies were only conducted on a small range of areas on the route of the Yutu-2 rover due
to the payload’s limitation.

Chang’e Lunar Microwave Sounder (CELMS), which is a unique passive microwave
remote sensing device, has provided a complementary tool for investigating the lunar
geological structure using brightness temperature (TB) data obtained by passive microwave
radiation from the deep surface and subsurface lunar regolith. The information contained
in the brightness temperature is related to the physical and chemical properties of the
detected material [16,17]. The potential of CELMS data in studying mare basin and crater
structures has been demonstrated in many studies. Meng et al. discovered some brightness
temperature anomalies in craters and basins based on CELMS data that had not been
discovered in traditional optical remote sensing data [18–23]. This is because CELMS can
distinguish the characteristics in different depths of the lunar regolith structure. The causes
of some anomalies are still uncertain. Researchers have ruled out the influence of rock
abundance (RA), FTA or topography for the origin of these anomalies and hypothesized that
they may be originated from some unknown material. However, these pathbreaking works
mainly relied on visual interpretation. Most of the research areas were manually analyzed,
resulting in time-consuming work. Moreover, these studies lacked quantitative analysis,
and few of them provided exquisite geological maps, which limited the significance of
these discoveries.

Machine learning models have demonstrated remarkable performance in the surface
mapping of the Earth [24–26]. However, they were seldom applied in mapping mare basalt
units. The reason may be the complex feature characteristics and insufficient ground truth
data of the lunar basalt units. The number of CELMS brightness temperature channels is
much larger, which makes machine learning models well-suited for CELMS data because
machine learning techniques are designed for multichannel-input tasks. Manual interpreta-
tion of multichannel remote sensing data is both challenging and inefficient for making
comprehensive analyses, whereas machine learning techniques can effectively leverage
information from all the feature channels to make informed decisions.

In addition, the specific contribution of each brightness temperature feature to mare
basalt units classification is still ambiguous. Hence, this study proposes a unified feature
assessment framework for CELMS data, which comprehensively evaluates the features
from various perspectives, including feature redundancy, feature separability and degree of
contribution to classification. This approach provides a more comprehensive and accurate
assessment of the individual features, which can help identify the most informative and
discriminative features for mare basalt unit classification.

In brief, the main contributions of this study include the following.

1. A unified framework for assessing CELMS brightness temperature features is pro-
posed to quantitatively analyze the influence of each feature on mare basalt classifica-
tion. To the best of our knowledge, this is the first systematic framework for assessing
CELMS brightness temperature features for lunar basalt unit classification.

2. The effectiveness of dimension reduction for brightness temperature features is
demonstrated by analyzing the vector projection and data distribution in the fea-
ture space.
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3. A new geological map of Mare Fecunditatis is generated based on the random forest
algorithm using CELMS data.

Overall, this study represents a valuable addition to the field of lunar geology, and the
proposed framework and methodology can be applied to other regions for further investigation.

The rest of this paper is organized as follows. Section 2 introduces the data used in
this study and research area. The methodology is briefly explained in Section 3. Section 4
presents the experimental results. Section 5 discusses the discoveries in Section 4. Finally, a
conclusion is drawn in Section 6.

2. Dataset and Study Area
2.1. Dataset

Chang’e 2 satellite, the second lunar orbiter in China’s Lunar Exploration Program, was
launched on 1 October 2010. A microwave radiometer is one of the payloads of the Chang’e-
2 satellite, which receives multiband microwave radiation signals from the lunar surface and
subsurface. Its operation frequency includes 3.0 GHz, 7.8 GHz, 19.35 GHz and 37.0 GHz,
with the bandwidths of 100 MHz, 200 MHz, 500 MHz and 500 MHz, respectively [16,17].
The corresponding depths of penetration on the Lunar surface are 1–2 m at 3.0 GHz,
38.5–75 cm at 7.8 GHz, 15.5–31 cm at 19.35 GHz and 8.1–16.2 cm at 37 GHz, respectively [23].
The original data used in this research are the 2C level (the system correction, geometric
positioning and brightness temperature inversion are completed), with the acquisition time
ranging from 15 October 2010 08:50:02 to 20 May 2011 12:51:50. The error margins of all
the frequencies are less than 0.5 K. The original CELMS data can be obtained on request
from the Lunar and Planetary Data Release System (https://moon.bao.ac.cn, accessed on
30 March 2022).

2.2. Study Area

Mare Fecunditatis, centered at 7.8◦S, 53.7◦E, is a low-latitude basin on the eastern
nearside of the Moon, to the southeast of Mare Tranquillitatis, which is filled with upper
Imbrian basalt material, covering an area of approximately 310,000 km2. The largest span
of Mare Fecunditatis is about 909 km. The basin of Mare Fecunditatis was excavated
in the pre-Nectarian period, while the mare basalts infills occurred during the Imbrian
period. The volcanic activity continued until the early Eratosthenian period [27–29]. Ac-
cordingly, research on the geological units of Mare Fecunditatis will be of great significance
to understanding the history of volcanic activity and promoting lunar exploration.

The location and a wide-angle camera (WAC) image of the Mare Fecunditatis is shown
in Figure 1. They are obtained from the QuickMap website (https://quickmap.lroc.asu.
edu, accessed on 13 October 2022) and by JMARS software (https://jmars.mars.asu.edu,
accessed on 13 October 2022).

In this paper, we utilized the original CELMS data in the time spans from 13 to
14 o’clock as the noon brightness temperature TB

noon and 0 to 1 o’clock data as the midnight
brightness temperature TB

midnight to generate brightness temperature maps. These time
periods correspond to the highest and lowest temperatures on the lunar surface, respec-
tively, and are therefore ideal for capturing the special microwave thermal emission (MTE)
characteristics and thermophysical features of the basaltic units [23]. In addition, due to the
limitation of the satellite orbit, only at this time can enough data points be obtained to sup-
port the study. The spatial resolution of CELMS data is 0.25◦ × 0.25◦, about 7.5 × 7.5 km
in Mare Fecunditatis. In our previous work, it was proposed that the difference between
the noon and midnight brightness temperatures (written as dTB) has great potential for
observing mare units [18–23]:

dTB = Tnoon
B − Tmidnight

B (1)

https://moon.bao.ac.cn
https://quickmap.lroc.asu.edu
https://quickmap.lroc.asu.edu
https://jmars.mars.asu.edu
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where TB
noon and TB

midnight denote the noon and midnight brightness temperatures of the
same frequency channel, respectively. The heatmaps of all brightness temperature features
in Mare Fecunditatis are shown in Figure 2.
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Figure 1. Location and WAC image of Mare Fecunditatis. (a) WAC image of nearside of the Moon, 
where the location Mare Fecunditatis is indicated by a green ellipse; (b) WAC image of Mare Fecun-
ditatis. 
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Figure 1. Location and WAC image of Mare Fecunditatis. (a) WAC image of nearside of the Moon, where
the location Mare Fecunditatis is indicated by a green ellipse; (b) WAC image of Mare Fecunditatis.

Kramer et al., divided Mare Fecunditatis into five units, according to the FTA (FeO
+ TiO2 abundance) [30]—Ihtm (a late(?) Imbrian, mid- to high-Ti, high-Fe mare basalt),
Chtr (high-Ti spread), Iltm (an Imbrian-age, low-Ti, mid-Fe mare basalt), Im (an early(?)
Imbrian-age, very low Ti, low-Fe mare basalt) and Cc (crater ejecta)—which is illustrated in
Figure 3. Ihtm, Chtr, Iltm and Im can be considered as four phases of mare basalt. Cc is the
ejecta of the craters, such as the Langrenus Crater and the Taruntius Crater, over the basalt
units. Unlike other mare basins, Mare Fecunditatis is affected by a large crater—Langrenus.
The ejecta of Langrenus spreads over the east part of Mare Fecunditatis and covers the
mare basalt. In other words, this part combines crater ejecta and mare basalt.

According to the class proposed by Kramer et al. [30], in this paper, we divided the
basalt and ejecta units into five parts. As shown in Figure 4, the red, green, blue, cyan
and yellow labels stand for the sample area of Ihtm, Chtr, Iltm, Im and Cc, respectively.
The black line represents the boundary of geological units by Kramer et al. To map Mare
Fecunditatis and its vicinity comprehensively in the following sections, we also labeled an
individual class named “Non-Mare Basalt Units”, which includes non-basalt components,
such as highland and Copernican craters.
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3. Methodology
3.1. Overall Framework

The overall framework of this paper is illustrated in Figure 5. The procedure include
the following.

1. Preprocessing and brightness temperature feature exaction

The noon and midnight TB maps of Mare Fecunditatis with the frequencies of 3.0 GHz,
7.8 GHz, 19.35 GHz and 37.0 GHz are generated based on original CELMS data, and dTB
maps are generated based on the difference between TB

noon and TB
midnight.



Remote Sens. 2023, 15, 1910 7 of 27

2. Feature analysis

All brightness temperature features for distinguishing five mare geological units are
evaluated in three aspects, including correlation analysis, distance metrics and contribution
to classification. The Pearson coefficient is employed to assess feature redundancy and
class linear separability. Normalized distance (ND) and J-S (Jensen–Shannon) divergence
measure the Euclidean distance between two classes in the feature space and histogram
separation, respectively. ReliefF and the out-of-bag (OOB) importance represent the contri-
bution to classification for machine learning in different terms.
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3. Dimension reduction and classification

The random forest (RF) classifier is used to map Mare Fecunditatis. Principal com-
ponent analysis (PCA) is conducted on 12 original features to reduce the dimension and
analyze the feature space. A new geological map of Mare Fecunditatis is generated by
CELMS data, based on the supervised machine learning method.

3.2. TB and dTB Feature Extraction

The TB
noon, TB

midnight and dTB features with different frequencies are generated based
on CELMS data (12 features in total), which were introduced and displayed in Section 2.2.

3.3. Pearson Coefficient

In this study, we utilize the Pearson coefficient to quantify the level of correlation
between each feature and the linear separability among classes.

The Pearson coefficient measures the degree of linear correlation, defined as the
quotient of covariance and the standard deviation between two variables [31]:

ρ(X, Y) =
Cov(X, Y)

σXσY
(2)

where Cov is the covariance between variables X and Y, and σ denotes the standard
deviation. The Pearson coefficient ranges from −1 to 1, and its absolute value close to
1 reflects high correlation, and close to 0 means an uncorrelated relation.

From a feature engineering perspective, a high correlation coefficient typically indi-
cates feature redundancy, while a low correlation coefficient suggests independent features.
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In terms of class-by-class correlation, a higher correlation coefficient indicates that the
corresponding classes are more difficult to classify.

3.4. Distance Metrics

Two distance metrics, normalized distance [32] and J-S divergence [33], are considered
to quantitatively evaluate the degree of separation among TB features. Typically, a higher
degree of separation indicates better classification performance in machine learning.

3.4.1. Normalized Distance

Normalized distance is defined as:

dnorm =
|µ1 − µ2|
σ1 + σ2

(3)

where µ and σ denote the mean and standard deviation of class 1 and class 2, respec-
tively. Normalized distance measures the Euclidean distance between two classes with-
out the influence of standard deviation, representing the separation of centers between
different classes.

3.4.2. J-S Divergence

J-S divergence, an improved version of K-L divergence, indicates the separability of
the two histograms. K-L divergence is also called relative entropy, which is defined as:

KL(p||q) = ∑ p(x)log
p(x)
q(x)

(4)

where p and q represent the probability density of two classes. From Equation (3), it can
be recognized that the order of p and q influences the result of the K-L divergence. J-S
divergence solves this problem by using a symmetrical weighting operation:

JS(p||q) = 1
2

KL(p|| p + q
2

) +
1
2

KL(q|| p + q
2

) (5)

The larger J-S divergence value means a higher degree of separation between two
histograms or probability density distributions, as well as better classification capability. It
has been proved that the J-S divergence value equals ln2 (approximately 0.6931) when two
histograms are completely separated [34].

3.5. Contribution to Classification

To further understand the contribution and importance of brightness temperature
features in the mare basalt classification process using machine learning methods, we
employed two feature selection approaches—ReliefF and out-of-bag importance—to assess
the contribution.

3.5.1. ReliefF

Relief (Relevant Features) is a filtering feature selection algorithm, in which a kind of
weighting statistic method is designed before the features are inputted into the classifier [35].
Suppose a training set D:

D = {(x1, y1), (x2, y2), ..., (xm, ym)} (6)

where x and y represent the training data and its label, m, denotes the number of train
data. For each xi, the nearest samples xi,nh in the same class of xi are chosen and named
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“near-hit”, then the nearest samples xi,nm in the different class of xi are chosen and named
“near-miss”, and the weight of the corresponding statistic is updated by:

δj = ∑i −di f f
(

xj
i − xj

i,nh

)2
+ di f f

(
xj

i − xj
i,nm

)2
(7)

where xa
j is the value of sample xa in class j. For continuous data, diff () is defined as:

di f f
(

xj
a, xj

b

)
=
∣∣∣xj

a − xj
b

∣∣∣ (8)

From Equation (6), it can be observed that if the distance between xi,nm, and xi is
larger than that between xi,nh, and xi, the whole weight will increase and the corresponding
feature will benefit the classification. On the contrary, this feature does not contribute much
to the classification process.

The Relief method was designed for binary classification. For multiclass classification,
its variant ReliefF was proposed. Suppose the samples are from |υ| classes. ReliefF finds
the nearest-hit of xi in class k as xi,nh, then finds the nearest-miss in each class, except class
k, and is written as xi,l,nm (l = 1,2, . . . ,|υ|; l 6= k). The weight of ReliefF is updated as:

δj = ∑i −di f f
(

xj
i − xj

i,nh

)2
+ ∑l 6=k(pl × di f f

(
xj

i − xj
i,nh

)2
) (9)

where pl is the proportion of samples in class l.

3.5.2. OOB Importance

The OOB error is used for assessing the feature or variable importance in the Random
Forest classifier [36,37]. It evaluates the change of classification performance by adding
noise to features or variables. For a Random Forest classifier [38], not all data are input
into each decision tree, but part of the data is randomly drawn. The remainder is called
out-of-bag data. If a feature is added in stochastic noise that results in a decrease in accuracy,
it can be considered that this feature is important for classification. The OOB importance of
a decision tree is defined as the difference between OOB errors, with and without adding
stochastic noise:

V = |err1 − err2| (10)

where err1 and err2 are out-of-bag errors with and without adding noise. Suppose there are
N trees in the Random Forest, the OOB importance of this Random Forest is:

VI =
1
N ∑i Vi (11)

The higher OOB importance value of a feature means that noise impacts more on the
classification process, indicating this feature is more contributory, and vice versa [39]. The
details of the Random Forest classifier will be introduced in Section 3.7.

3.6. Principal Component Analysis

Principal component analysis (PCA) is a dimension reduction method [35,40] via
linearly projecting original data into low-dimension space, whose goal is to find a new
feature space with the largest variance so that highly related features are compressed and
effective ones can be enhanced.

Suppose the data Xn×p contains p variables and n samples, then the covariance matrix Σ is:

Σp×p = XXT (12)

And the eigenvalue matrix is calculated by:

Λp×p = UTΣU (13)



Remote Sens. 2023, 15, 1910 10 of 27

where U = [u1, u2, ..., up] contains the eigenvectors of X. (12) can be detailed written as:
λ1

λ2
. . .

λp

 =


u1
u2
...

up

Σ
(
u1 u2 . . . up

)
(14)

where λ1, λ2, ..., λp are eigenvalues of X. Note that eigenvalues correspond with eigenvec-
tors. Then PCA data matrix is defined as:

Y = XUm = X
(
u1 u2 . . . um

)
(15)

where 1 ≤ m ≤ p. m stands for top m principal components (PC). By this step, the data can
be reduced to m dimensions [41]. The criterion of choosing m is:

∑m
i=1 λi

∑
p
i=1 λi

≥ t (16)

Commonly, t can be set as 80% to 95% according to the situation.
PCA has been widely used in remote sensing image processing to extract effective

information from multiple feature inputs [41–43]. For CELMS brightness temperature data,
it consists of different frequencies and acquisition times, forming multiple features. So,
introducing PCA is necessary to reduce the feature dimension in this study.

3.7. Random Forest

Random Forest (RF) is an ensemble learning method that integrates several decision
trees to derive the classification result [38,44]. Each decision tree in a random forest is
independently established and not related to each other. Once the forest is established,
each input sample is judged separately and assigned to a class. Then, majority voting is
used to combine all the outputs and predict the class of the input sample. The illustration
of RF is shown in Figure 6.
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Till now, the random forest classifier outperforms other ones in remote sensing image
classification owing to its ensemble learning approach [33,45–47]. Consequently, we have
chosen RF as the supervised classifier to automatically map Mare Fecunditatis in this study.

4. Experimental Results
4.1. Statistic Analysis

To understand the distribution of brightness temperatures for each basalt unit in
different channels, the normalized histograms of each feature, also named the probability
density function (PDF), are shown in Figure 7. In Figure 8, boxplots of the study samples
in all features are demonstrated to further visualize and compare the difference in data
distribution. From a general perspective, the classes {Ihtm, Chtr} vs. {Iltm, Im, Cc} can
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be easily distinguished in TB
noon features and dTB features. In TB

midnight features, all
classes are confused, while Iltm, Im, Cc can be separated to some degree. Iltm, Im and Cc
may be confused in TB

noon features and dTB features, and Ihtm and Chtr are confused in
TB

midnight features.
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noon features; (2) TB
midnight features; (3) dTB features.
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noon

features; (2) TB
midnight features; (3) dTB features.
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4.2. Pearson Coefficient

We use the Pearson coefficient to calculate the feature correlation and class correlation.
From the point of view of machine learning, a high correlation between two features

(coefficient approximates 1 or −1) indicates redundancy, while a coefficient around zero
suggests independence. To study the extent of feature redundancy, the feature-by-feature
correlation is calculated, and the corresponding heatmap is generated in Figure 9, which
reveals the relation among all the brightness temperature features.
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Generally, dTB features have a high positive correlation. TB
noon features also have

a high positive correlation, but it decreases as the frequency (corresponding with the
penetration depth) increases. The correlation between dTB features and TB

noon features
increases with the frequency. Particularly, all 19.35 GHz and 37.0 GHz TB

noon features
have a high positive correlation with all dTB features. Features among TB

midnight and
between TB

midnight and dTB show the tendency of transitioning from a positive correlation
to uncorrelation and then to negative correlation. What is more, features with a closer
frequency exhibit a higher correlation. Overall, a significant redundancy exists among
these brightness temperature features.

The class-by-class correlation coefficient is also analyzed and shown in Figure 10. We
found that an extremely high correlation exists among Iltm, Im and Cc, indicating that
distinguishing these three basalt units in CELMS data would be challenging. In addition,
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the correlation decreases in the order of Ihtm→ Chtr→ Iltm→ Im→ Cc, which is highly
consistent with the phase of the mare basalt eruption and formation.
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4.3. Distance Metrics

Table 1 presents the normalized distance results calculated class by class. In general,
TB

noon features tend to be appropriate for classifying the majority of basalt units, except
for Iltm, Im and Cc. On the other hand, TB

midnight features are effective in distinguishing
these three units (except high-frequency TB

midnight features for Im-Iltm). dTB features are
generally not suitable for distinguishing basalt units among Iltm, Im, Cc and Ihtm-Chtr,
while they are quite effective for other classes. Especially, dTB 37.0 GHz is suitable for
distinguishing Cc-Iltm and Im-Iltm, and dTB 3.0 GHz is not quite adept at classifying
Iltm-Cc and Cc-Im. Moreover, for all features, the normalized distance values between Ihtm
and Chtr are all smaller than that between other classes, indicating that they are difficult
to distinguish.

In Table 2, J-S divergence results are presented. Unlike normalized distance, J-S
divergence measures the separability of the histogram. Note that the J-S divergence equal
to 0.6931 means the histograms are completely separated [34], which was introduced in
Section 3.4.2. For TB

noon features, their J-S divergence values are higher than TB
midnight

features for most classes, which further demonstrated the effectiveness of TB
noon. For

TB
midnight features, their separability of Cc-Im and Cc-Iltm performs significantly better

than TB
noon and dTB features. dTB features show their unique superiority for distinguishing

most of the basalt classes, except Cc, Im and Iltm. In addition, high-frequency dTB features
are fit to classify Cc-Iltm and Im-Iltm.
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Table 1. Normalized distance between mare basalt units.

Ihtm-Chtr Ihtm-Iltm Ihtm-Cc Ihtm-Im Chtr-Cc

TB
noon 3.0 GHz 1.7681 5.2957 3.8921 4.6364 2.2106

TB
midnight 3.0 GHz 0.4359 2.9701 0.7508 2.6762 0.2153

TB
noon 7.8 GHz 1.3369 3.5749 3.7136 4.1268 2.8956

TB
midnight 7.8 GHz 0.036 0.9322 0.505 1.6014 0.3954

TB
noon 19.35 GHz 1.3695 3.9769 4.3095 4.6374 3.4245

TB
midnight 19.35 GHz 0.3077 0.7197 1.7936 0.149 1.2652

TB
noon 37.0 GHz 1.1526 3.58 4.5245 4.2696 3.4361

TB
midnight 37.0 GHz 0.379 0.8739 1.785 0.5133 1.311

dTB 3.0 GHz 0.9973 3.3257 3.956 4.3936 2.9824
dTB 7.8 GHz 0.8105 2.9752 3.8382 3.7549 2.7194
dTB 19.35 GHz 0.9793 3.2783 4.348 3.8826 3.4246
dTB 37.0 GHz 0.8763 2.8073 3.9062 3.5237 2.9714

Chtr-Iltm Chtr-Im Cc-Im Cc-Iltm Im-Iltm

TB
noon 3.0 GHz 3.2082 3.4352 1.6866 0.6263 1.3345

TB
midnight 3.0 GHz 1.6539 2.1064 2.0517 1.4952 1.5721

TB
noon 7.8 GHz 2.795 3.5374 1.1723 0.098 1.0304

TB
midnight 7.8 GHz 0.5765 1.2583 1.7858 1.3758 1.2378

TB
noon 19.35 GHz 3.0387 3.8945 0.8558 0.3573 1.1619

TB
midnight 19.35 GHz 0.2149 0.4174 1.7645 1.8195 0.827

TB
noon 37.0 GHz 2.471 3.3264 0.7214 0.9547 1.3622

TB
midnight 37.0 GHz 0.324 0.0563 1.5546 1.5847 0.3357

dTB 3.0 GHz 2.4309 3.3622 0.1706 0.2735 0.4443
dTB 7.8 GHz 1.9428 2.5358 0.7682 0.883 0.351
dTB 19.35 GHz 2.2734 2.8893 1.0139 1.5864 0.7089
dTB 37.0 GHz 1.7945 2.5356 0.9093 1.9156 1.1222

Table 2. J-S divergence between mare basalt units.

Ihtm-Chtr Ihtm-Iltm Ihtm-Cc Ihtm-Im Chtr-Cc

TB
noon 3.0 GHz 0.6280 0.6931 0.6931 0.6931 0.6931

TB
midnight 3.0 GHz 0.2166 0.6931 0.3860 0.6931 0.2027

TB
noon 7.8 GHz 0.5734 0.6931 0.6931 0.6931 0.6931

TB
midnight 7.8 GHz 0.2560 0.4774 0.3550 0.6931 0.2791

TB
noon 19.35 GHz 0.6124 0.6931 0.6931 0.6931 0.6931

TB
midnight 19.35 GHz 0.3463 0.5061 0.6675 0.4610 0.6143

TB
noon 37.0 GHz 0.6125 0.6931 0.6931 0.6931 0.6931

TB
midnight 37.0 GHz 0.4194 0.5490 0.6814 0.5226 0.6344

dTB 3.0 GHz 0.5051 0.6931 0.6931 0.6931 0.6931
dTB 7.8 GHz 0.5550 0.6931 0.6931 0.6931 0.6931
dTB 19.35 GHz 0.6059 0.6931 0.6931 0.6931 0.6931
dTB 37.0 GHz 0.6114 0.6931 0.6931 0.6931 0.6931

Chtr-Iltm Chtr-Im Cc-Im Cc-Iltm Im-Iltm

TB
noon 3.0 GHz 0.6931 0.6931 0.6872 0.4556 0.6291

TB
midnight 3.0 GHz 0.6180 0.6931 0.6931 0.6280 0.6931

TB
noon 7.8 GHz 0.6931 0.6931 0.6108 0.3519 0.6086

TB
midnight 7.8 GHz 0.4154 0.6527 0.6872 0.6178 0.5968

TB
noon 19.35 GHz 0.6931 0.6931 0.5052 0.4863 0.6233

TB
midnight 19.35 GHz 0.3324 0.4716 0.6931 0.6781 0.4348

TB
noon 37.0 GHz 0.6931 0.6931 0.5477 0.6146 0.6321

TB
midnight 37.0 GHz 0.3858 0.3521 0.6598 0.6367 0.4399

dTB 3.0 GHz 0.6931 0.6931 0.2056 0.3098 0.3632
dTB 7.8 GHz 0.6931 0.6931 0.4425 0.5139 0.4346
dTB 19.35 GHz 0.6931 0.6931 0.5481 0.6529 0.5507
dTB 37.0 GHz 0.6898 0.6931 0.5790 0.6806 0.6542

4.4. Contribution to Classification

In this section, two feature selection methods—Relief(F) and OOB importance—are
applied to quantitatively evaluate the features’ contribution to classification. Their princi-
ples are quite different: ReliefF is a filtering selection method, measuring the contribution
based on the average Euclidean distance, while OOB importance is a wrapper selection
method, indirectly assessing the feature importance by adding stochastic perturbation.
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All brightness temperature features are assessed in two ways, namely, class-by-class
and all-classes calculations. Tables 3 and 4 present the class-by-class contribution, and
all-classes contribution results are illustrated in Figure 11. The results of ReliefF largely
agree with the conclusion in Section 4.3, which proves that TB

noon features are suitable for
distinguishing classes of Ihtm-Chtr, Ihtm-Iltm, Ihtm-Cc, Ihtm-Im, Chtr-Cc, Chtr-Iltm and
Chtr-Im compared with TB

midnight features, and TB
midnight features show their advantages

in classifying Cc-Im, Cc-Iltm and Im-Iltm, while dTB features are appropriate for classifying
most classes. Because the TB

noon features present the superiority of distinguishing more
classes, their all-classes contribution weights for TB

noon features are higher than those for
TB

midnight features. The 19.35 GHz and 37.0 GHz dTB features show their superiority for
distinguishing Cc-Iltm, which also accords with the conclusion drawn in Section 4.3.

Table 3. ReliefF analysis results.

Ihtm-
Chtr Ihtm-Iltm Ihtm-Cc Ihtm-Im Chtr-Cc

TB
noon 3.0 GHz 0.2617 0.6005 0.5269 0.5810 0.3344

TB
midnight 3.0 GHz 0.1834 0.5539 0.2790 0.5017 0.1079

TB
noon 7.8 GHz 0.1007 0.4689 0.4941 0.5164 0.3406

TB
midnight 7.8 GHz 0.0743 0.2492 0.1504 0.3322 0.0847

TB
noon 19.35 GHz 0.1242 0.5080 0.5359 0.5422 0.4316

TB
midnight 19.35 GHz 0.0560 0.1488 0.3260 0.2437 0.2063

TB
noon 37.0 GHz 0.0860 0.4647 0.5448 0.5204 0.4402

TB
midnight 37.0 GHz 0.0541 0.1724 0.3348 0.2304 0.2431

dTB 3.0 GHz 0.0769 0.4535 0.5005 0.5255 0.3051
dTB 7.8 GHz 0.0443 0.4281 0.4872 0.5049 0.2644
dTB 19.35 GHz 0.0754 0.4711 0.5491 0.5198 0.3946
dTB 37.0 GHz 0.0618 0.4338 0.5373 0.4891 0.4055

Chtr-Iltm Chtr-Im Cc-Im Cc-Iltm Im-Iltm

TB
noon 3.0 GHz 0.4202 0.4467 0.2770 0.1603 0.1775

TB
midnight 3.0 GHz 0.3173 0.3540 0.3516 0.2850 0.2773

TB
noon 7.8 GHz 0.3272 0.3867 0.1665 0.0922 0.1008

TB
midnight 7.8 GHz 0.0684 0.2131 0.2622 0.2381 0.1800

TB
noon 19.35 GHz 0.4049 0.4487 0.1130 0.1122 0.0981

TB
midnight 19.35 GHz 0.0631 0.0815 0.2647 0.2717 0.1413

TB
noon 37.0 GHz 0.3525 0.4106 0.1209 0.1528 0.1280

TB
midnight 37.0 GHz 0.0816 0.0806 0.1953 0.2282 0.1100

dTB 3.0 GHz 0.2696 0.3432 0.0919 0.0892 0.1030
dTB 7.8 GHz 0.2243 0.2713 0.1304 0.1545 0.1164
dTB 19.35 GHz 0.3214 0.3704 0.2319 0.2705 0.0756
dTB 37.0 GHz 0.2971 0.3435 0.1631 0.2616 0.1021

However, interestingly, the class-by-class OOB importance values of TB
midnight features

are equal to 0 in most cases. Nonetheless, the all-classes OOB importance values (shown in
Figure 11) of TB

midnight features are higher than those of TB
noon features. This phenomenon

can be attributed to the superior ability of the TB
midnight features to distinguish Iltm, Im

and Cc. In other words, other than distance metrics-based methods, such as ReliefF, OOB
importance takes the “unique contribution” (a contribution that cannot be provided by any
other features) into consideration to a larger degree. For the class pairs Ihtm-Iltm, Ihtm-Cc,
Chtr-Cc and Chtr-Iltm assessed by OOB importance, the TB

noon features perform better than
TB

midnight features, proving that TB
noon features have advantages over TB

midnight features
in classifying these classes, while TB

midnight features are more suitable for distinguishing
Cc-Im and Cc-Iltm. Especially, dTB 37.0 GHz performs best for distinguishing Cc-Iltm, and
dTB 37.0 GHz contributes little to the classification of Cc-Im.

In summary, from a comprehensive perspective of Sections 4.3 and 4.4, we can draw a
conclusion that TB

noon features and dTB features are suitable for classifying Ihtm-Iltm, Ihtm-
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Cc, Ihtm-Im, Chtr-Cc, Chtr-Iltm and Chtr-Im, but distinguishing Iltm, Im and Cc mostly
depends on TB

midnight features, and dTB features are unsuitable for distinguishing Cc-Im,
especially at 3.0 GHz. Plus, Ihtm and Chtr units have similar components and structures,
so they are not easy to separate in terms of most features. However, it should be noted that
the 3.0 GHz TB

noon feature has a significant and unique advantage in distinguishing them.

Table 4. OOB importance.

Ihtm-
Chtr Ihtm-Iltm Ihtm-Cc Ihtm-Im Chtr-Cc

TB
noon 3.0 GHz 1.7061 0.4062 0.4338 0.2920 0.3154

TB
midnight 3.0 GHz 0.9363 0.3378 0.0000 0.3389 0.0000

TB
noon 7.8 GHz 0.5535 0.3098 0.3777 0.2936 0.4470

TB
midnight 7.8 GHz 0.5513 0.0000 0.0000 0.3371 0.0000

TB
noon 19.35 GHz 0.8381 0.2934 0.3818 0.2606 0.3538

TB
midnight 19.35 GHz 0.5077 0.0000 0.0000 0.0000 0.0000

TB
noon 37.0 GHz 0.4638 0.3233 0.3809 0.4326 0.4071

TB
midnight 37.0 GHz 0.5961 0.0000 0.0000 0.0000 0.0898

dTB 3.0 GHz 0.5101 0.3655 0.3949 0.4341 0.3391
dTB 7.8 GHz 0.2783 0.3802 0.2760 0.2235 0.4152
dTB 19.35 GHz 0.6427 0.3368 0.4450 0.3091 0.3486
dTB 37.0 GHz 0.4503 0.3947 0.2936 0.3527 0.3815

Chtr-Iltm Chtr-Im Cc-Im Cc-Iltm Im-Iltm

TB
noon 3.0 GHz 0.3516 0.2935 0.4245 0.4342 0.6948

TB
midnight 3.0 GHz 0.0898 0.4073 0.6291 0.5936 1.5168

TB
noon 7.8 GHz 0.4440 0.2933 0.1457 0.2564 0.2530

TB
midnight 7.8 GHz 0.0000 0.0000 0.5193 0.2846 0.5149

TB
noon 19.35 GHz 0.3807 0.3401 0.0987 0.2485 0.2450

TB
midnight 19.35 GHz 0.0000 0.0000 0.8019 0.8644 0.2346

TB
noon 37.0 GHz 0.4075 0.3816 0.0000 0.3949 0.3381

TB
midnight 37.0 GHz 0.0994 0.0000 0.3027 0.5368 0.2598

dTB 3.0 GHz 0.3238 0.3089 0.0000 0.2807 0.3729
dTB 7.8 GHz 0.3652 0.3676 0.2381 0.2672 0.4341
dTB 19.35 GHz 0.5299 0.4346 0.1358 0.8144 0.1770
dTB 37.0 GHz 0.0898 0.3244 0.0989 0.9041 0.3668
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4.5. Dimension Reduction and Classification

To map the basalt phase distribution in Mare Fecunditatis, the Random Forest clas-
sifier, which has been widely used for remote sensing image classification [33,45–47], is
employed to map Mare Fecunditatis based on the above-mentioned Chang’e-2 brightness
temperature features. The only hyper-parameter in RF is the number of trees, which is set
as 125 empirically. The training set is the same as the study sample depicted in Figure 4.
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We input all original brightness temperature features into a Random Forest classifier,
and the result is presented in Figure 12, which is highly consistent with the geological map
presented by Kramer et al. [30] shown in Figure 2. The boundary of geological units by
Kramer et al. are marked by black lines. In our result, Ihtm, Chtr, Iltm, Im and Cc are
colored red, green, blue, cyan and yellow, respectively. The Ihtm, Chtr, Iltm and Cc units
mapped by us and Kramer et al. are quite similar, while the Im unit is different to some
extent. The other difference is that in our mapping result, the Taruntius Crater is filled with
Iltm basalt, which is out of discussion in the map by Kramer et al [30].
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Generally, the basalt phase in Mare Fecunditatis exhibits a ring-shaped distribution.
Ihtm is concentrated in the center, and Chtr and Iltm form the outer rings. Im distributes
to the south of Mare Fecunditatis, while Cc surrounds the Langrenus Crater and the
Taruntius Crater. This is completely in accordance with the volcanic eruption period and
the igneous process [30].

In the above sections, it was demonstrated that both redundant and irrelevant in-
formation exists in TB and dTB features. To make full use of Chang’e-2 CELMS data,
reduce computational complexity and avoid the “curse of dimensionality”, PCA, a classical
dimension-reduction method, is considered before applying the RF classifier. We conducted
the PCA algorithm on all 12 brightness temperature features. The data after PCA still have
12 dimensions. In Figure 13, the contribution rate of PCs, which is the variance of each
PC (equivalent to the eigenvalue of the covariance matrix) that has been introduced in
Equation (16), is shown by the blue bar. The cumulative contribution rate is shown in the
orange line. The top 2 PCs hold a cumulative contribution of 99.08%, which demonstrates
the strong redundancy that exists in the original features and explains the necessity of
applying PCA. After the 3rd PC, the contribution rates drop, indicating the 3rd to 12th PCs
hold so little effective information that their contribution is weak. Note that the variance of
the 5th to 12th PCs is so low that they can be ignored, so we do not display them there.



Remote Sens. 2023, 15, 1910 19 of 27

Remote Sens. 2023, 15, x FOR PEER REVIEW 20 of 29 
 

 

Generally, the basalt phase in Mare Fecunditatis exhibits a ring-shaped distribution. 
Ihtm is concentrated in the center, and Chtr and Iltm form the outer rings. Im distributes 
to the south of Mare Fecunditatis, while Cc surrounds the Langrenus Crater and the Ta-
runtius Crater. This is completely in accordance with the volcanic eruption period and the 
igneous process [30]. 

In the above sections, it was demonstrated that both redundant and irrelevant infor-
mation exists in TB and dTB features. To make full use of Chang’e-2 CELMS data, reduce 
computational complexity and avoid the “curse of dimensionality”, PCA, a classical di-
mension-reduction method, is considered before applying the RF classifier. We conducted 
the PCA algorithm on all 12 brightness temperature features. The data after PCA still have 
12 dimensions. In Figure 13, the contribution rate of PCs, which is the variance of each PC 
(equivalent to the eigenvalue of the covariance matrix) that has been introduced in Equa-
tion (16), is shown by the blue bar. The cumulative contribution rate is shown in the or-
ange line. The top 2 PCs hold a cumulative contribution of 99.08%, which demonstrates 
the strong redundancy that exists in the original features and explains the necessity of 
applying PCA. After the 3rd PC, the contribution rates drop, indicating the 3rd to 12th 
PCs hold so little effective information that their contribution is weak. Note that the vari-
ance of the 5th to 12th PCs is so low that they can be ignored, so we do not display them 
there. 

 
Figure 13. Contribution rate of each PC. 

To better interpret the results of PCA, we use biplots to express the PCA feature 
space, which consists of data scatter points and vector projection. The biplots of the top 
three PCs are shown in Figure 14. The 1st–2nd PCs plane (Figure 14a) is first visualized, 
where the main contribution is concentrated. The gray line indicates the feature vector 
projection in the PCA space, and the red, green, blue, cyan and yellow points stand for the 
data distribution of Ihtm, Chtr, Iltm, Im and Cc, respectively. The orientation and length 
of the vectors stand for the degree of relation between the original features and PCs. The 
projection length of the feature vectors on PCs is called the loading coefficient. Generally, 
the TBnoon and TBmidnight features point to the positive direction of the 1st PC and the negative 
direction of the 2nd PC, respectively. Hence, the TBnoon features are propitious to classify-
ing {Ihtm, Chtr} vs. {Iltm, Im, Cc} groups, while TBmidnight features are fit to distinguish Im 
and Cc. Especially, 37.0 GHz TBnoon greatly impacts the first PC, but hardly influences the 
second PC, and 37.0 GHz TBmidnight impacts the second PC greatly, but hardly affects the 

Figure 13. Contribution rate of each PC.

To better interpret the results of PCA, we use biplots to express the PCA feature space,
which consists of data scatter points and vector projection. The biplots of the top three PCs
are shown in Figure 14. The 1st–2nd PCs plane (Figure 14a) is first visualized, where the
main contribution is concentrated. The gray line indicates the feature vector projection
in the PCA space, and the red, green, blue, cyan and yellow points stand for the data
distribution of Ihtm, Chtr, Iltm, Im and Cc, respectively. The orientation and length of
the vectors stand for the degree of relation between the original features and PCs. The
projection length of the feature vectors on PCs is called the loading coefficient. Generally,
the TB

noon and TB
midnight features point to the positive direction of the 1st PC and the

negative direction of the 2nd PC, respectively. Hence, the TB
noon features are propitious

to classifying {Ihtm, Chtr} vs. {Iltm, Im, Cc} groups, while TB
midnight features are fit to

distinguish Im and Cc. Especially, 37.0 GHz TB
noon greatly impacts the first PC, but hardly

influences the second PC, and 37.0 GHz TB
midnight impacts the second PC greatly, but hardly

affects the first PC, demonstrating their strong ability on classification. These conclusions
mutually verify the findings drawn in the previous sections.

The angle between vectors reflects the correlation. Features among dTB, TB
noon and

TB
midnight have a strong correlation. Features between dTB and 19.75 GHz TB

noon, as
well as dTB and 37.0 GHz TB

noon, are also highly correlated. Moreover, the lower the
frequency, the stronger the correlation. These conclusions are all in accordance with the
analysis by Pearson coefficient as mutual-validation results. Ihtm and Chtr have similar
components and basalt phases, so part of their samples is confused, but most of them can
be distinguished in the 1st and 2nd PCs. In Figure 14b, the second PC has a relatively
poor capability for classification. It can only effectively separate Cc vs. {Ihtm, Chtr} and
Iltm vs. {Ihtm, Chtr}. Im can be easily classified from other classes in the 3rd PC. In
Figure 14c, it is obvious that the 3rd PC contributes quite weakly compared with the 1st
PC: the distribution interval of data in the 3rd PC is quite limited, and the direction of the
feature vector centralizes to the 1st PC.
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We classify the basalt units by jointly using PCA and RF. The top 2, 3, 4, 6, 8 and
12 PCs are selected for training the RF, and the classification results are shown in Figure 15.
Obviously, in the classification result of the top two PCs, the effect of the Im unit is
unsatisfactory, while the top three or four PCs produced good results, as the Im unit can be
effectively separated from the other units, which verified the previous analysis. However,
the results of the Taruntius Crater and its vicinity are largely different. The Taruntius Crater
and its ejecta were classified as Iltm and Cc units, which is consistent with the original
feature mapping result in the classification using the top two PCs. In other results, this
area is misclassified or incompletely mapped to a certain degree. The mapping result of the
Ihtm unit, Chtr unit and much of the Iltm unit are similar in the classification with all the
PCA results. Moreover, the results of the top 6, 8 and 12 PCs make nearly no difference for
their weak contribution.
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Based on the above analysis, we suppose that the optimal choice of the number of
dimensions in PCA is three, which is a good balance between low redundancy and high
classification accuracy.

The proportions of geological units in Mare Fecunditatis and its vicinity mapped by
each method are counted, and the corresponding bar charts are presented in Figure 16.
Generally, the proportion of the geological units listed in descending order is Chtr, Iltm,
Cc/Im, Ihtm.
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Ablation studies were designed and conducted to further understand the classification
capability of each feature. Classification experiments were conducted by using 3.0 GHz
features (3.0 GHz TB

noon, 3.0 GHz TB
midnight and dTB 3.0 GHz), 7.8 GHz features (7.8 GHz

TB
noon, 7.8 GHz TB

midnight and dTB 7.8 GHz), 19.35 GHz features (19.35 GHz TB
noon, TB

19.35 GHz TB
midnight and dTB 19.35 GHz) and 37.0 GHz features (37.0 GHz TB

noon, 37.0 GHz
TB

midnight and dTB 37.0 GHz), respectively, as shown in Figure 17. The results showed that
the 3.0 GHz and 7.8 GHz features misclassified a certain extent of Chtr and Iltm units as Cc.
The Taruntius Crater was almost entirely misclassified by the 3.0 GHz features group. In
contrast, the 19.35 GHz features and 37.0 GHz features outperformed the lower frequency
bands. Interestingly, the feature evaluation indices did not reveal significant contribution
differences in frequency, but in this experiment, the high-frequency features yielded the
best classification results.

Remote Sens. 2023, 15, x FOR PEER REVIEW 24 of 29 
 

 

  
(a) (b) 

  
(c) (d) 

 

Figure 17. Classification results with features of different frequencies. (a) 3.0 GHz features; (b) 7.8 
GHz features; (c) 19.35 GHz features; (d) 37.0 GHz features. 

We also used the combination of TBnoon features, TBmidnight features and dTB features to 
map Mare Fecunditatis, and the results are shown in Figure 18. For TBnoon features, their 
result confuses Cc and Iltm largely. The mapping result of TBmidnight features appears cha-
otic, with a large-scale misclassification of the Chtr unit. Yet, the Cc and Im units are well-
classified, which confirms the conclusions drawn in Sections 4.3 and 4.4. For dTB features, 
the Im and Cc units are confused to some degree. Overall, our analysis demonstrates that 
each feature has its unique strengths and limitations in mapping mare units. 

Figure 17. Classification results with features of different frequencies. (a) 3.0 GHz features;
(b) 7.8 GHz features; (c) 19.35 GHz features; (d) 37.0 GHz features.



Remote Sens. 2023, 15, 1910 23 of 27

We also used the combination of TB
noon features, TB

midnight features and dTB features
to map Mare Fecunditatis, and the results are shown in Figure 18. For TB

noon features,
their result confuses Cc and Iltm largely. The mapping result of TB

midnight features appears
chaotic, with a large-scale misclassification of the Chtr unit. Yet, the Cc and Im units are well-
classified, which confirms the conclusions drawn in Sections 4.3 and 4.4 For dTB features,
the Im and Cc units are confused to some degree. Overall, our analysis demonstrates that
each feature has its unique strengths and limitations in mapping mare units.
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5. Discussions

In this paper, a unified framework of assessing CELMS data for mapping mare basalt
units is proposed, followed by a case study on Mare Fecunditatis. To the best of our
knowledge, this is the first study that systematically analyzes the brightness temperature
features of Chang’e-2 CELMS data for each mare basin unit. Based on the experimental
results, some conclusions can be drawn:

1. TB
noon and TB

midnight features demonstrate different capabilities in distinguishing
various basalt units. TB

noon features are good at distinguishing most class pairs, except
those involving Cc, Im and Iltm, compared with TB

midnight features, while TB
midnight

features showed their superiority in distinguishing Cc-Im and Cc-Iltm from TB
noon

features. The possible explanation is that the different Ti and Fe content lead to
varying cooling rates during the lunar night.

2. The frequency range of the observation influences the capabilities in distinguishing
different basalt units. High-frequency features with a shallow penetration depth,
especially 19.35 GHz, can better map Mare Fecunditatis with fewer classification
errors in Cc, Im and Iltm units. The possible explanation is that Im and Iltm are
early-age(?) mare basalt, and together with the crater ejecta Cc, contain less Ti and are
highly dielectric. Yet, 37.0 GHz features may be influenced by the lunar dust from
the regolith, leading to a slightly poorer result. Low-frequency features (especially
3.0 GHz) may classify certain parts of mare basalt as Cc units. We suppose that
the possible reason is that the deep layer of Mare Fecunditatis is the impact basin
(interpreted as Cc unit) and was not filled by magma when the Mare Fecunditatis was
formed (may be in the Imbrian period 3.2~3.85 Ga before) [27].
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3. The advantage of utilizing the dTB features proposed in our previous researches [18–23]
in distinguishing most classes in CELMS data is confirmed in this study. dTB features
are verified for their strong ability to eliminate the latitude difference and strengthen
the difference of cooling effects of various basalt units. We also discovered that dTB
features have a stronger ability to distinguish mare basalt, especially between early(?)-
and late(?)-aged basalt, in certain aspects.

4. Redundancy exists universally in CELMS features. This study points out the need
to conduct dimension reduction on CELMS features. We discovered that only 3 PCs
in the PCA feature space can represent almost all 12 original features for the first
time. After dimension reduction, the difficult-to-identify Im unit hidden in the
south part of Mare Fecunditatis is better classified. The scatterplots in PCA sup-
port this phenomenon.

5. A new geological map of Mare Fecunditatis is generated in this study based on
CELMS data by using the supervised machine learning method, which largely agreed
with the previous mapping results by other researchers based on Clementine UV/VIS
data [30,48–50], proving that CELMS data are effective in mapping mare basalt units.

6. Conclusions

In this paper, a framework is proposed to systematically assess the brightness tem-
perature features of Chang’e-2 CELMS in Mare Fecunditatis. As far as we know, this is
the first time Chang’e-2 CELMS TB data have been systematically analyzed, and based on
this, a new geological map of Mare Fecunditatis was generated by using machine learning
techniques. The basalt map derived from CELMS data demonstrates many similarities with
the previous geological map provided by Kramer et al., while providing some new hints
for understanding the vertical structure of the lunar surface regolith.

This study quantitatively analyzed the effect of each brightness temperature feature
in mapping the mare basin from various perspectives. In future studies, an analysis will
be conducted on more lunar regions of research interest, including the landing site of
Chang’e-5, where the surface regolith ground truth is obtained by in situ measurements
and returned sample analysis [51].

Furthermore, machine learning methods have proved their great feasibility for CELMS
data. However, up to now, studies on CELMS data still mainly relied on manual interpreta-
tion. Recently, machine learning models have been gradually introduced into lunar and
planetary research [52–54]. Further studies will explore the potential of more advanced
machine learning models with regard to lunar brightness temperature analysis [55–57].

Additionally, fusing optical (such as WAC images and Clementine UV/VIS data) and
microwave remote sensing for mapping the mare basin could be beneficial, as many studies
on planetary surfaces mapping have proven that multisource remote sensing is helpful for
improving classification accuracy [33,53,58–61].
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