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Abstract: Existing architecture semantic modeling methods in 3D complex urban scenes continue
facing difficulties, such as limited training data, lack of semantic information, and inflexible model
processing. Focusing on extracting and adopting accurate semantic information into a modeling
process, this work presents a framework for lightweight modeling of buildings that joints point clouds
semantic segmentation and 3D feature line detection constrained by geometric and photometric
consistency. The main steps are: (1) Extraction of single buildings from point clouds using 2D-3D
semi-supervised semantic segmentation under photometric and geometric constraints. (2) Generation
of lightweight building models by using 3D plane-constrained multi-view feature line extraction
and optimization. (3) Introduction of detailed semantics of building elements into independent 3D
building models by using fine-grained segmentation of multi-view images to achieve high-accuracy
architecture lightweight modeling with fine-grained semantic information. Experimental results
demonstrate that it can perform independent lightweight modeling of each building on point cloud
at various scales and scenes, with accurate geometric appearance details and realistic textures. It also
enables independent processing and analysis of each building in the scenario, making them more
useful in practical applications.
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Zhang and Li Li semantic modeling of buildings is particularly necessary for 3D scene perception because
the architectures occupy a large proportion of urban scenes. However, existing main-
stream 3D semantic modeling methods, such as PointNet by Qi et al. [1] and PointNet++
by Qi et al. [2], rely heavily on a large amount of semantic labeled training data, which
are severely lacking in urban 3D point cloud scenes. In addition, the lack of fine-grained
semantic information of buildings cannot meet the requirements of high-precision scene

localization and perception (the robots need to be parked accurately in front of a specific
unit door of a building). Furthermore, the number of point clouds in a real urban scene is
generally beyond the million level. Even if accurate semantic information can be extracted,
the vast amount of discrete point cloud data need to occupy large storage resources, which
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in the mesh is connected and indistinguishable, thereby interrupting the generation of fine-
grained semantics for the target building. None of them can directly generate lightweight
models with semantic information and smooth building edges. In summary, the existing
methods cannot achieve high-precision building lightweight modeling with fine-grained
semantic information. Hence, they are still far from being used in practical applications.
Focusing on the above issues, this paper proposes a fine-grained segmentation-based
lightweight semantic modeling framework. Combining the semantic information of multi-
view images with the geometric structure of the 3D point cloud, a complex urban scene is
first segmented coarse-grained to extract each building point cloud in the scene. Second,
constrained by 3D feature lines, a vectorized 3D model that contains building element
details is generated by using the multi-view fine-grained segmentation-based lightweight
modeling method. In practical applications, our lightweight fine-grained semantic model
cannot only significantly reduce the storage load but also improve the understanding of
semantic details of 3D architecture. The main contributions can be summarized as follows:

1.  Joint 2D-3D Semi-supervised Semantic Object Segmentation: The existing dataset
that can be applied to the semantic segmentation of large-scale complex urban scenes is
extremely limited, thus seriously affecting the generalization ability and segmentation
accuracy of networks. Moreover, urban scene data sets are accompanied by a large
number of manual semantic annotations, and constructing new data sets is also highly
labor intensive. To solve the aforementioned issues, we propose a semi-supervised
2D-3D joint semantic segmentation method that learns robust 3D scene semantic
representations without requiring semantic labeling of the point cloud. Our method
enforces multi-view consistency and geometric co-planarity constraints, ensuring
that pixels obtained by projecting the same 3D point or belonging to the same plane
onto multiple views have the same semantics. Using only a limited amount of image
semantic labeling, our semi-supervised method effectively trains a robust semantic
segmentation model. Our approach effectively addresses the problem of limited
labeled data and outperforms complex 3D or KNN convolutions, as it relies on more
efficient 2D convolutions.

2. Plane Constrained Multi-view Accurate 3D Feature Lines Extraction and Optimiza-
tion: For vectorization modeling, a highly accurate plane fitting of the building point
cloud should be constrained by an accurate geometric boundary. However, 3D point
cloud data are discrete and sparse, and are not smooth enough to extract the boundary
directly. In addition, boundaries extracted from 2D images are smooth but discontin-
uous due to occlusions and shadows. To solve the above problems, we project the
multi-view edge information to the 3D reference plane to generate continuous and
smooth 3D feature lines of the building based on the edge detection of multi-view
images and point cloud reference plane parameters. Among them, the introduction
of multi-view image consistency not only ensures the smooth edge but also solves
the boundary discontinuity caused by occlusion. Finally, point clouds are replaced
with vector planes generated by the shortest loop algorithm, which achieves a highly
accurate 3D vector modeling of building targets in complex scenes.

3. Lightweight Semantic Modeling Framework in Fine-grained Elements Segmenta-
tion Level: The existing semantic modeling approach for the urban scene is a global
meshing of the overall scene, where each element (e.g., buildings, road, trees, etc.)
mesh is interconnected and indistinguishable. However, this kind of modeling cannot
process and analyze individual objects separately, thereby significantly limiting the
flexibility of semantic modeling. The worst factor is that more complex geometric
representations and a large number of planes and points are required, which will
waste more storage resources and are not suitable for practical applications. To solve
the above problems, we propose a novel semantic modeling framework for buildings.
Neglecting the fact that we use the plain modeling method, the accurate building
models are generated provided with the aforementioned precise point cloud segments
and 3D feature lines.In the building modeling stage, multi-view images and 3D point
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cloud clustering information are referenced to extract each building and vectorized in-
dividually. This not only guarantees the accuracy of the 3D geometric structure of the
building but also reduces modeling complexity. Finally, a feature line that constraints
fine-grained element segmentation method is proposed to obtain detailed semantics
of building elements (doors and windows) and integrated with the lightweight model
to achieve a highly accurate 3D vectorization modeling of individual buildings with
fine-grained semantic information.

2. Related Work

We explore generate accurate point cloud segmentation and detect precise 3D feature
lines to aid semantic and lightweight architecture modeling. Given the emphasis on
building modeling and semantic segmentation, we view the related works on two main
aspects: lightweight modeling and semantic segmentation of buildings.

2.1. Vectorized Modeling

Building modeling is a popular research topic because of its various applications and
development of point cloud generation techniques.

Several early works concentrate on robust and accurate modeling. Kazhdan and Hoppe [3]
proposed a faster and higher-quality surface reconstruction method by extending the Pois-
son surface reconstruction algorithm. Driven by geometric error, Cohen-Steiner et al. [4]
and Garland and Heckbert [5] tended to simplify surface mesh to reduce model complexity.
However, relying on accurate surface meshes, these methods are sensitive to outliers.

Considering that building models are composed of fixed geometric primitives, several
works use bounding boxes to represent building models under the Manhattan World
assumption. Li et al. [6] fitted buildings with bounding boxes and formulated building
modeling as a linear integer programming problem. Nan et al. [7] adopted a similar strategy
and solved the building modeling problem in a way that minimized energy.

Viewing the building modeling reconstruction as a labeling problem, Li et al. [8]
selected a subset of candidate boxes in Markov random field formulation, which could be
easily solved by the graph-cut algorithm. Although most buildings can be reconstructed by
the above-mentioned bounding box-based methods, modeling for buildings with complex
architecture remains a challenge.

To solve this problem, few works emphasized the modeling of complex building
roofs. Zhou and Neumann [9], under the hypothesis of vertical walls, extended classic dual
contour into a 2.5D method to recover buildings with a complex roof structure. By solving
an energy minimization problem of 2.5D roof section arrangement, Lafarge and Mallet [10]
modeled complex roof and vertical walls with a hybrid representation that is combined
with mesh patches and regular geometric primitives. Nevertheless, under the vertical
wall assumption, building facade details, which are important in building modeling,
are neglected.

PolyFit [11], which was developed by Nan and Wonka [11], proposed a method for
modeling random building surfaces that were composed of planes. In PolyFit, taking
organized point clouds as input, the building surface is composed of faces that are selected
from a large set of face candidates by solving an energy minimization problem using binary
linear programming. In spite of its robustness on most building models, the time cost of
binary linear programming is unacceptable for buildings with a large number of faces.

2.2. Semantic Segmentation

Semantic segmentation has been a popular topic in computer vision, robotics, and re-
mote sensing for decades and plays a vital role in building reconstruction. Segmentation
on point clouds is a common method to reconstruct buildings with semantic information,
and most algorithms can be categorized into supervised and unsupervised formula.
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2.2.1. Unsupervised Point Cloud Semantic Segmentation

Region growing [12] was first proposed to segment 2D images and is widely used
in point cloud segmentation today. It grows regions from seed points and determines
whether near points belong or not to the region according to the criteria that combine
features between two points to measure distances among points. Gorte [13] applied the
region-growing algorithm to clustering LiDAR generating building point clouds into planar
facets. Vo et al. [14] proposed a building point cloud segmentation algorithm, which first
applied a region-growing step and then refined cluster in a coarse to fine manner, based on
voxelized point clouds.

Random sample consensus (RANSAC) by Fischler and Bolles [15] is a popular model-
ing fitting method. Considering that buildings are made up of parameterized 3D geometric
primitives, RANSAC-based algorithms are suitable for segment building point clouds.
In application, RANSAC-based algorithms are widely used to detect planar building faces.
Efficient RANSAC developed by Schnabel et al. [16] aims to detect basic geometric prim-
itives from unorganized point clouds and show fine robustness in the presence of many
outliers and a high degree of noise. Adam et al. [17] took point clouds produced by over-
lapped images as inputs and leveraged RANSAC on 3D geometry and 2D segmentation to
achieve more accurate results.

Even for unsupervised segmentation algorithms, determining the semantic label of
point clouds directly is difficult, and it can be applied in the preprocessing step in building
semantic segmentation and modeling.

2.2.2. Supervised Point Cloud Segmentation

Compared with unsupervised point cloud segmentation algorithm that focuses on
cluster points with co-geometric primitives, supervised segmentation methods aim to
classify point clouds into different semantic labels.

Traditional machine learning has been commonly used in point cloud semantic seg-
mentation. Wang et al. [18] and Lodha et al. [19] applied Adaboost classifier to segment
point clouds. Chehata et al. [20] used random forest algorithm to classify urban LiDAR
point clouds. These classifiers depend on hand-crafted features and neglect contextual
information, which is useful for classification. Additionally, these methods take point
clouds whose ground is in parallel with the x—y plane as inputs. This approach is unusual
for multi-view generating point clouds. In contrast to the above classifiers, conditional
random field (CRF) can capture more specific relations of object classes and model con-
textual information. Niemeyer et al. [21] adopted CRF classifier in complex urban LiDAR
point clouds. To speed up the problem solving of CRF, Lim and Suter [22] over-segmented
and classified point clouds into supervoxels. Restricted by domain-specific parameters
of CRF, these methods show fine robustness in LiDAR point clouds, yet failed to hold
generalization on multi-view generated point clouds.

With the increasing popularity of deep learning techniques, a growing number of works
have been leveraging deep learning models on the point cloud segmentation task. PointNet,
which was proposed by Qi et al. [1], incorporated non-local information into point cloud seg-
mentation by maxpooling operation on point feature vectors. Based on PointNet, Qi et al. [2]
used hierarchical network to capture more local features and proposed PointNet++. To recover
the topological connection between points, DGCNN, which was developed by Wang et al. [23],
leveraged EdgeConv for point cloud segmentation. Our closest related work is Genova et al. [24],
who generated sparse 3D point cloud semantic labels by combining image semantic labeling
with pose information, and densified scene semantics further using 3D convolutions. How-
ever, this approach still requires a significant amount of labeled image data to obtain a robust
semantic segmentation model, and its multi-stage segmentation method poses deployment
challenges in practical applications. Deep-learning-based methods are enjoying increasing
popularity on point cloud segmentation. However, limited by the need for massive training
data, applying deep learning techniques in building point cloud segmentation is difficult.
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3. Methodology
3.1. Overview

We propose a unified framework for producing accurate segmentation results and
extracting precise 3D feature lines for building models from complex urban scenes. Notably,
the input data, including 2D multi-view images and 3D dense point cloud, are multi-source
and heterogeneous, and the output is a lightweight building model with fine-grained
semantic annotations. To address the challenges of extracting object-level segmentation
results from noisy and cluttered point clouds, we propose a novel joint 2D-3D semi-
supervised object segmentation algorithm. Our approach leverages the complementary
strengths of multi-view images and 3D point clouds by combining photometric consistency
with geometric consistency. However, the point cloud is memory costly. To generate
lightweight 3D building models, we generate a lightweight contour for each building
facet based on the 3D plane constrained multi-view accurate feature line extraction and
optimization algorithm. Finally, to enrich the fine-grained semantic information of the
acquired lightweight model, we designed a lightweight semantic modeling framework
to produce lightweight models with fine-grained and lightweight semantic annotations.
The detailed pipeline of our framework is shown in Figure 1.

1. Heterogeneous Data

4. Vectorized Semantic
Modeling

2. Semantic
Segmentation

3. Facet Contour

3D Feature .. Fine-grained

.. Semantic

m Target

= Background

Figure 1. Overview of the proposed framework. Heterogeneous Data: Different from traditional
methods, which take sparse pure LiDAR point clouds as input, our method leverages heterogeneous
data including dense point clouds and multi-view images to generate vectorized fine-grained seman-
tic models. Semantic Segmentation: To eliminate background and noise point clouds, coarse-level
segmentation of point clouds is created from heterogeneous data in this step. Under the multi-view
photometric consistency constraints and 3D co-planar geometric consistency constraints, our method
is robust to common challenges in point cloud semantic segmentation, such as occlusion, dense
clouds, and complex structures. Facet Contour: To represent architecture in a lightweight model
instead of memory costly dense point cloud, polygon facet contour is generated from 3D feature
lines which are detected from multi-view images and optimized jointly with dense point clouds of
architecture. Vectorized Semantic Modeling: Aiming to produce vectorized fine-grained semantics
with a lightweight model, fine-grained semantic pixels were detected from multi-view images and
back-projected to the architecture surface. For a lightweight semantic representation, 3D feature lines
with fine-grained pixels are leveraged to optimize the vectorized fine-grained semantic annotation.

3.2. Joint 2D-3D Semi-Supervised Semantic Object Segmentation

Previous works mainly focus on segment point clouds by supervised learning methods,
which require a large amount of labeled training data [18-22,25,26]. However, constructing
a training dataset for urban scene semantic segmentation is labor intensive for the complex-
ity and discreteness of urban scene point clouds. When confronted with dense and complex
urban point cloud semantic segmentation tasks, no methods are deemed effective yet.

A joint 2D-3D semi-supervised semantic object segmentation method for dense point
clouds is designed to overcome the aforementioned issues. To extract target building pixels
from multi-view images, we utilize the HRNet [27] as our backbone for object segmenta-
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tion. Additionally, we employ the unsupervised clustering algorithm proposed in [28] to
perform coplanar clustering of point clouds. This approach enables us to obtain coplanar
image pixels through multiview projection of coplanar point clouds. These pixels are
then bounded by semantic consistency during the training process. To ensure multi-view
photometric consistency, we enforce the constraint that the projections of the same point
cloud on different images belong to the same semantic class. By combining the constraints
of multi-view segmentation information and point cloud clustering information, we effec-
tively reduce the errors that may arise from discrete point clouds. This approach improves
the accuracy and quality of the segmentation results and enables us to obtain more reli-
able and robust segmentation output for various downstream applications. Notably, 2D
multi-view segmentation only needs to provide a handful of labeled 2D images as the
training set, which reduces the dependence on semantic annotation of the point cloud
greatly. Meanwhile, it can provide photometric consistency to reduce the occlusion problem.
Then, co-planar geometric consistency from point cloud clustering can also guarantee the
details of the accuracy of the dense point cloud segmentation, which does not need any
supervised information.

Notably, we propose a semi-supervised high-accuracy architecture modeling frame-
work. To achieve more accurate building modeling, segmentation and meshing modules in
our framework, not limited by methods in this work, are upgradeable and alternative.

3.2.1. Multi-View Image Segmentaion

A lack of training data remains one of the main challenges of existing segmentation
methods. Most open-source segmentation datasets are captured in front views. However,
the input images in our tasks are mostly bird-eye views, which cannot directly utilize
the existing data set for training. To overcome this problem, we use some manually
annotated images from Dataset I to train an HRNet [27] from scratch. We annotated
collected images with two categories, namely, building, and background clutter. Given an
image as input, our network outputs a probability P(I|p) for every pixel p € image i, where
I € {building, background clutter}. Thus, our loss function can be defined as follows:

Ligbeted = ) CrossEntropy(P(p),y) ¢y
pEi

y is the ground truth label represented by a vector of 0 or 1.

3.2.2. Photo-Metric Semantic Constraint

By providing image location and point visibility information, we can easily incorpo-
rate photometric consistency and semantic constraints from multi-view images into the
training framework. This intuitive approach enhances the accuracy and reliability of the
segmentation results and allows for more effective training of the algorithm. With known
image intrinsic matrix K;, rotation matrix R; and translation vector #;, projection matrix
is defined as M; = K;[R;[t;], i denotes the image from image sets S, 2D images pixel p; ,
location v; , on image 7 according to x as:

Oix = MX, (2

where X, is the location of x. X, and v; , are the homogeneous coordinates. Visibility is
denote as an image set H, for each 3D point x. The photometric loss is computed as:

Ephotometric = 2 ”P(pi,x) - P(p],x)H (3)

i,j€EHy
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3.2.3. Co-Planar Geometric Constraint

The simplest way to decide the final classification for point clouds is by fetching the
label I, with max probability P(I|x) for point x. Nevertheless, these methods neglect the
facts that multi-view image segmentation results are inevitably noisy. As such, the training
framework can be further improved combined with 3D geometric consistency constraints.
Building on the assumption that co-planar points belong to the same object, we introduce a
novel loss function that is based on self-supervised signals. Our proposed loss function
enhances the performance of the algorithm by enforcing the constraint that co-planar points
are assigned to the same semantic class.

Clustering point clouds with similar geometric features is an unsupervised segmenta-
tion problem that has been heavily researched for decades. Commonly used algorithms for
segmentation point clouds include region-growing-based [12] and RANSAC-based [15]
approaches. These methods are efficient for detecting clusters with similar features. How-
ever, these algorithms are designed to neglect hypothesized outliers, and the segmentation
completeness is not ensured. Our inputs are noisy multi-view generated point clouds,
and segmentation completeness is critical to this task. For consideration, we adopt a newly
proposed method called pairwise-linkage by Lu et al. [28], which can detect co-planar
segmentation and guarantee the segmentation completeness.

We used the pairwise-linkage algorithm to segment point clouds into different co-planar
clusters. For each cluster ¢ and projected image i, we compute geometric loss as follows:

£geometric = Z Hp(pi,x) - P(i,Z)H (4)

Z,XEC

Thus, our final training loss is a linear combination of the above three losses, expressed
as follows:

L = Ligpered + ‘Cphotometric + Egeometric &)

In this way, the background and noise point clouds can be removed in the later facet
plane fitting and facet contour generating steps. In addition, after removing the background
point clouds, the connection among different target buildings is eliminated, which is more
beneficial to model and generate fine-grained semantics for target building independently.

3.3. Plane Constrained Multi-View Accurate 3D Feature Line Extraction and Optimization

After determining the architecture point clouds, our target in this step is to generate
lightweight architecture polygon contour to replace the original point cloud architecture
facet. In this way, we can avoid the use of memory costly point cloud on lower energy
cost applications. Several early works focus on lightweight modeling based on point
clouds. Cohen-Steiner et al. [4] and Kazhdan and Hoppe [3] attempted to detect build-
ing edges from 3D point clouds. However, for the discrete and noise of point clouds,
the obtained building edges are generally jagged and non-smooth. The building edges
extracted from the images are smooth but discontinuous and hence cannot compose valid
3D building edges. In summary, generating accurate and smooth edges and being robust
to noisy point clouds are the main challenges on the architecture modeling of urban dense
point cloud scenes.

To relieve the aforementioned issues, we proposed a 3D plane constrained multiview
accurate feature line extraction and optimization algorithm. In our methods, architecture
facet contour is constrained and generated from 3D feature lines. First, leveraging multi-
view image information to extract edges can avoid the generation of architecture facet
contour from point clouds, which eliminates the noise of major edges. Second, multi-
view images have more 3D edge details than point clouds, which can considerably boost
robustness and precision on architecture modeling.
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3.3.1. Ground Calibration

In the urban scene segmentation stage, point clouds are classified into coplanar clus-
ters and labeled with different classes. Before extracting architecture facets, the world
coordinates of point clouds must be calibrated to satisfy the Manhattan-world assumption.
We take point clouds belonging to ground and use RANSAC [15] to estimate the normal
of ground point clouds. Given the estimated ground normal vector n; and center point
Xcen, We generate two vectors, namely, np, n3 and {n1,n, n3} are pair-wise orthogonal.
The rotation matrixR ., and translation vector t.,; is defined as:

Reg = [an nZT n3T] (6)

tear = —RegiXcen )

By applying rotation and translation, point clouds are calibrated to the Manhattan-
world coordinate.

3.3.2. Inner 3D Feature Line Generation

The parameterization of roof facets is implemented using RANSAC [15]. We define
inner 3D feature edges as the intersection line segments of parameterized architecture
facets. To determine the intersection line segments of facets, hypothesis intersection lines
are computed on the basis of parametrized facets. After obtaining a hypothesis line, we
select two sets of intersection facet points, which are under the distance threshold ¢ to
the intersection line. A line segment can be acquired by reprojecting one set of points to
an intersection line and fetching endpoints. Intersection line segments are obtained by
computing the common interval of two line segments. Considering that most facets have
common intersection points, we refine the endpoint intersection segments to the common
intersection point.

3.3.3. Multi-View 2D Feature Line Detection

In this stage, our main goal is to extract edge line segments of facets on 2D images.
We apply LSD Von Gioi et al. [29] to detect candidate 2D feature lines. For each facet, two
steps must be followed to obtain the final facet contour, view selection, and multi-view
segment fusion.

1.  View Selection: For each architecture facet, a subset of visible images H is selected
according to the visibility file. With known visibility image set H, for each point x,
we define visibility set H for each facet f as:

Hy = {i|Count(i) > 0.5}

- 7 L () ®

Count (i)

2. Multi-view 2D Feature Line Fusion: We use LSD to extract a large amount of candi-

date line segments from H. Aiming to transfer 2D line segments to 3D facet plane,

end points of the line segments extracted from image i are projected to 3D roof facet
using projection Matrix M; and parametrized facet plane equation p(f) as:

p(floe” =0 )
e = M;v,

where e is the endpoint of the line segment, and v, is the 3D coordinate location of

projected e. Through this projection method, the 2D line segments from different
images are gathered to the target facet 3D plane.

3. 3D Feature Line Filtering: However, most of these line segments are not valid contour

of the target facet, and the filtering process is essential to reduce the solving time of
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contour arrangement optimization. In common sense, edge line segments are always
close to point clouds, and the point cloud densities between two sides of the line
segment have a huge difference. Based on the two aforementioned assumptions,
we design a robust and simple strategy to filter out invalid line segments. Facet
point clouds are projected to the facet plane. Given a line segment with length L, we
construct a bounding box parallel to the line segment and centered on the middle
point of the line segment with an aspect ratio of /L : 1. All points located in the

bounding box are counted and divided into the negative side Xneg and positive side
pos| ) > 2and |xpos U Xpeg| > T are retained.

’ |xneg‘

. . ‘xneg
Xpos- Line segments with maX(lxp—oS| > 2

The intuitive explanation is shown in Figure 2.
3D Feature Line Merging: Although the majority of invalid 3D feature lines are

filtered out, a large number of candidate edge line segments of target facet is conserved
yet. To further speed up the 2D contour arrangement optimization problem, merging
is vital to duplicate line segments. When determining whether line segments are
duplicated, parallel and proximity are our main considerations. Given two line
segments Linej, Line, with middle points dy, dz, and direction vector n1 and ny,

parallel is defined as:
In1Tna| > 0.95 (10)

The defined Line; and Line, are parameterized by a1, by, c1 and ay, by, c3. Proximity

can be defined as:

m ap
d," | by di’ | b,
a 2l o1m (11)

JVE+B+G B ++3

With the definition of parallel and proximity, we cluster all the duplicated segments.
We determine the direction and middle point of the new line segment merged from segment
clusters as the average direction and middle point of original segment clusters. Moreover,
the endpoints of the new segment are the max interval of endpoints of original segment
clusters. With the average operation, the noise is eliminated, and boundary precision

is improved.
~~ .

Figure 2. Three common situations when filtering line segments. Line segments are represented

by green line. Search bounding boxes are red. Points of facet outside bounding box are green.
Points located inside bounding box are participated into xyeg and positive xpos and displayed in red
and blue, respectively. The left situation meets the reservation condition. In the middle situation,

Xneg  Xpos

max(%, xmg) < 2. In the right situation, xpeg + Xpos < T-
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3.3.4. Geometric-Based Contour Optimization

In this step, our main goal is to construct a complete facet polygon contour from
inner intersection line segments and outer candidate edge line segments for each facet.
We emphasize the generation of low complexity polygons and fitted the shape to the
real roof facet. Viewing the contour arrangement problem as the shortest circle path
problem of directed graph which is natural to roof contour, we developed an efficient
algorithm to solve it.

We define the Graph as G.

1. Node definition: Given the inner and edge line segments, we define their intersection
points as node g.

2. Edge definition: After generating nodes, we define the directed edge e between two
nodes located on the same line segment [ in the same direction. To determine the
edge direction, we extract the rough 2D contour of target facet using the alpha-shape
algorithm implemented by CGAL [30]. Then, a simplified contour B¢, based on
the extracted contour is computed by Douglas-Peucker algorithm. For each edge
in Byy,gn, We select a direction to guarantee that only one circular path exist. The
direction of the line segment I, in G is consistent with the direction of the edge e; in
B;ougn with maximum matching score. The matching score between edge I and ey, is
defined as:

‘”ngb|

— 12
ldg — dyll2 12

where ng and n;, are the normal vectors of Iy and e, respectively. Moreover, dg
and dy, are the middle points of I, and ey, respectively. See Figure 3 for a straight-
forward explanation.

3. Edge weight definition: Edge weight definition is auxiliary for guiding the algorithm
to solve the correct contour shape of the roof facet. Edges with accurate contour,
compact, and edge preserving have two main features. For compactness, we designed
a factor to measure the compactness reduction for adding the edge e to the contour,
1+ «|le|| where||e|| s the length of edge e. Edge e located on line le is defined. For edge
preserving, line segments with more confidence semantic boundary will be detected
in more images. We calculate ﬁmas the edge-preserving factor. Because line I

is merged from a number line segments Line,, || Line,|| is the number of set Line,.
The final edge weight for edge e is defined as:

1
ioht, =1 —_— 1
weight, + ale]| +'B|\Linee|| (13)

4.  Contour Rearrangement: We view the contour arrangement as the shortest circular
path algorithm. The algorithm to solve this problem is described as Algorithm 1.

With the building facet contour composed of 3D feature lines, the smoothness and
lightweight of the building edge are guaranteed, thereby avoiding the use of dense point
clouds or complex mesh to represent the building model. Further, lightweight models
are the fundamental of lightweight fine-grained semantic representation of buildings.
In practice, lightweight models can reduce computation and storage consumption of
applications significantly and is beneficial to energy conservation.
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Algorithm 1 Shortest Circular Path Algorithm

Input: Graph G(V, E), Adjacent Table adjacent(V')
Output: Shortest Circular Path
Initialization: Set dist[i][j] <— oo for each i,j, dist[i][i] < O for each i, dist[i][j] is the shortest
distance from node i to node j.
Step 1. Use Floyd-Warshall Algorithm to compute dist[i][j].
Step 2. length,;, <— oo, u < 0,00
for ein E do:
i,j, w = start node of e, end node of e, weight of e.
if w + dist[jl[i] < length,,;, then:
lengthy, =w + dist[j][i]
U<j
Vi
Step 3. path < {}
while u # v do:
for g, w in adjacent(u) do:
if dist[g][v] + w = dist[u][v] then:
path = path + g
TR
break;
path = path + v
Return path

————— .

® (3] Directed Line Segments -
—_—

Figure 3. Line Segment Direction Acquisition. To assign line segments with proper direction, each

Detected Line Segments

detected line segment is matched with a directed edge in the facet rough boundary. As shown above,
the matched pair is tagged with the same number. After the matching process, line segments are
assigned with the direction of the matched edges in the rough boundary.

3.4. Light Weight Semantic Modeling Framework in Fine-Grained Element Segmentation Level

Currently, many applications not only require accurate 3D building model parameters
but also fine-grained building semantic information. However, to be utilized by lower-cost
devices, a lightweight representation of semantic information is necessary. Therefore, our
main goal is to generate lightweight fine-grained semantics of the target building. To enrich
the semantic information of building models, we proposed a lightweight semantic modeling
framework with fine-grained element segmentation.

The majority of recent works [3,4,11] on modeling building mainly produce a unified
mesh of the whole scene where each target building is inseparable. Recently proposed
methods [31-33] for segmentation of building facades show excellent results. However,
the outputs of these works are pixel-wise, which is not compact enough for vectorized
model representation. To eliminate these disadvantages, we train a DeepLabv3 [34] network
to output pixel-wise labeled results and adopt Algorithm 1 to achieve the polygonal seg-
mentation. Finally, we combine the polygonal segmentation with the obtained lightweight
model to generate lightweight semantic models.
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3.4.1. Candidate View Selection

A candidate image must be selected for each architecture facet to detect fine-grained
semantic instances. To extract complete fine-grained semantics, we attempt to select the
image that contains the majority of points of the target architecture facet. The candidate
view image iy for facet f is defined as follows.

iy = argmax Count(i)s (14)
iGHf

3.4.2. Fine-Grained Semantic Instance Detection

We first detect fine-grained semantic instance k on candidate view i using a trained
neural network. p, is defined as the 2D semantic pixel belonging to k, the 3D back projection
location X to facet f of p; can be computed as follows. v is the 2D location of pixel p.

p(f) Xy = (15)
vpk = Ml'ka (16)

After obtaining the fine-grained semantic 3D point cloud X}, we use the method
in Section 3.3.3 to collect the 3D feature lines and apply algorithm in Section 3.3.4 to
generate light weight polygonal fine-grained semantic representation.

3.4.3. Framework Designation

The designed framework can solve the fine-grained semantic modeling problem
for urban scenes. The concise data stream and independent modules of our framework
bring fine extensibility and utility. For utility, our framework can take reconstruction
results of most multi-view stereo algorithms as input data. For extensibility, our current
fine-grained semantic elements can extend to more classes, such as stairs and balconies,
by replacing the fine-grained segmentation network. Based on our framework, developing
more semantic modeling applications, such as indoor semantic modeling or urban street
semantic modeling, is possible.

Through the above steps, the semantic and 3D structure of the produced model is
lightweight, thereby extending the application range and enabling the lower-cost devices
to process fine-grained building semantics effectively.

4. Results

We have applied our methods on several datasets of real-world buildings and con-
ducted qualitative and quantitative measurements of the proposed method. It should be
noted that we use the vanilla modeling approach to show the superior benefits of point
cloud segmentation and 3D feature line detection for architecture modeling. Evaluation
Dataset I is a collection of multi-view images captured from an unmanned aerial vehicle
(UAV). The point clouds are generated using COLMAP [35-37]. The dataset [38] used is
an open dataset for fine-grained building facade image segmentation. The point clouds
inputted to our methods are noisy with incomplete building facades and uneven densities.
Results show that our method is robust to complex building structures and meanwhile
with fine-grained semantic information. We evaluate our methods around our three tasks,
namely, object-level point cloud semantic segmentation, elements level vectorized semantic
segmentation and vectorized building modeling.

4.1. Point Cloud Segmentation

In these experiments, we test point cloud semantic segmentation performance in differ-
ent models. We compare our results with the SOTA method, PointNet [1], PointNet++ [2],
and RandLA-Net [39] on our test data. The test scenes are selected from Dataset I with
an average of million points. We selected 9 scenes from Dataset I, and 6 of them were
selected as the training data of PointNet [1], PointNet++ [2], RandLA-Net [39], Point Trans-
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former [40] and PointNeXt [41], and three of them were selected as the test data. For our
methods that take multi-view images as input data, we manually annotated 40 images to
train HRNet [42] to produce segmentation results on 2D images.

Table 1 shows the accuracy and IoU of our multi-view fusion model, PointNet, Point-
Net++, RandLA-Net, Point Transformer and PointNeXt. We achieve the best performance
and dense semantic segmentation results (Figure 4).

As shown in Figure 5, the top left and bottom left of the figure is the collected multi-
view images and generated dense scene point clouds, and the bottom right of the figure is
the semantic segmentation result of the scene point clouds where redpoint clouds denote
building, and blue point clouds denote background. Finally, the top right of the figure
corresponds to the produced fine-grained semantic included vectorized building models
after extracting the building point clouds from the scene point clouds.

Table 1. Comparison of different point cloud segmentation methods for PointNet [1], PointNet++ [2],
RandLA-Net [39], Point Transfromer [40], PointNeXt [41] and our method on Dataset I.

Metric PointNet PointNet++ RandLA-Net PointFormer PointNeXt Our
Background 0.917 0.475 0.887 0.880 0.953 0.973

Acc Building 0.583 0.975 0.903 0.992 0.937 0.967
Overall 0.712 0.828 0.893 0.958 0.945 0.971
Background 0.552 0.449 0.671 0.866 0.844 0.916

TIoU Building 0.554 0.800 0.697 0.936 0.914 0.951
Mean 0.553 0.625 0.685 0.901 0.879 0.931

Figure 4. Comparison of different semantic segmentation methods on Dataset I. (a) Origin PointCloud
(b) Ground Truth (c) PointNet (d) PointNet++ (e) RandLANet (f) PointFormer (g) PointNeXt (h) Our.
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Raw Point Clou

Semantic Segmentation

Figure 5. Dataset I, large urban area, used in our experiments. The urban scene of Dataset I, which
includes 52 million points were reconstructed from 1705 images collected by unmanned aerial vehicle.
The original multi-view images are shown in the top left of the image. We can reconstruct and
segment the scene point cloud in the bottom left with multi-view images. The point cloud semantic
segmentation results generated by our algorithm are shown in the bottom right of the image. After
extracting the building point clouds, the building models can be optimized and vectorized. The
produced vectorized semantic models are shown in the top right.

4.1.1. Fine-Grained Semantic Segmentation

We mainly focus on generating precise and lightweight fine-grained semantic contour
from pixel-wise segmentation results, combined with the lightweight architecture model.

In this experiment, we set DeepLabv3+ [34] as our base model and train it on Dataset
from the 3D Semantic Segmentation and Procedural Modelling Challenge [38] to detect
pixel-wise segmentation results on 2D images.

In Table 2, we train our models using the training set labeling information of dataset [38],
including windows and doors. The results in the table correspond to the performance of our
model on the test set of the dataset. We show that we can generate more accurate contour and
improve the segmentation accuracy based on rough pixel-wise segmentation results with the
geometric-based contour optimization algorithm. As shown in Figure 6, through our fine-
grained segmentation-based lightweight semantic modeling framework, the architecture
model can be enhanced with richer and more lightweight fine-grained semantic annotation.
Figure 7 shows that the fine-grained semantic contour generated by our optimization is
more lightweight and compact than the neural network segmentation result.

Table 2. Overview of fine-grained semantic segmentation results of PSPNet [43], DANet [44],
DeepLabv3+ [34] and our GCO optimization based on DeepLabv3+ on Dataset [38].

Metric PSPNet DANet DeepLabv3+ After GCO
mean Acc 81.1 83.14 83.68 85.01
mean IoU 72.03 73.17 73.35 74.59

Figure 7 shows that our boundary optimization algorithm can extract accurate and
compact semantic contour from raw pixel-wise segmentation results. After applying our
optimization algorithm, the semantic segmentation can be represented by a polygon which
is more lightweight than pixel-wise information. Simultaneously, the edge of the optimized
segmentation is smoother and more similar to the true semantic annotation.
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@

(a) (b)

Figure 6. Visualization of fine grained models. The models generated by our algorithm before the
process of fine-grained semantic generation are shown in (a). The models after applying fine-grained

semantic parsing are displayed in (b).

Figure 7. Visualization of fine-grained semantic segmentation on Dataset [38]. (a) Selected images
from the dataset. (b) Results generated from the DeepLabv3+ [34] before Geometric-based Contour
Optimization(GCO). After applying GCO, the final results are presented in (c). Compared with
pixel-wise segmentation result, the edges of the segmentation are more lightweight and smoother
after optimization.
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4.1.2. Vectorized Modeling

In this section, our main goal is to evaluate the generated model in terms of accuracy
and lightweight. We selected Dataset I as the test data. In our model generation experiments,
weight parameters & and 8 are set to 1.0 and 1.0, thresholds ¢ and T are set to 0.001 and 200
for both datasets, respectively. We conduct our experiment in terms of quality and quantity.
For quantity evaluation, we select six scenes from dataset I and compute the errors and
facet numbers of the model among different methods.

Table 3 shows that our results, which are combined with few lightweight facets, are
more compact than models generated from PolyFit [11], VSA [4], and QEM [5]. Two main
metrics are e, the distance from the origin point cloud to the building mesh, and n, the facet
number of the building mesh. Generally, smaller e represent higher modeling precision. As
an indicator of lightweight, n should be smaller under the constraint of accurate modeling
(smaller e). Considering the complex structure and limited precision of the point cloud,
the e should be less than 0.1, and 7 should range from 50 to 200. Furthermore, our algorithm
is robust to simple and complex roof structures. Nevertheless the raw point clouds with
sparse and incomplete walls can still acquire good vectorized models using our algorithm.

In Figure 5, we show the modeling results applied on Dataset I, large downtown area.
Compared with the original point clouds, the models produced by our method are more
lightweight, and each facet of the buildings can be described by a polygon. Besides, the edge
of the generated model is smooth, and no intersection exists between different buildings.
We also extend our experiment to Dataset [38]. Figure 8 shows the model reconstruction
results on Dataset [38] with vectorized semantic segmentation. Compared with the original
mesh, our reconstruction result is preferable with lightweight architecture facades.

Fine-grained Semantics Vectorized Semantics

Figure 8. Visualization of our model reconstruction in Dataset [38]. The top of the figure is shows
the multi-view images, and the middle of the the figure is the image segmentation produced by
GCO optimization based on DeepLabv3+ [34] segmentation results, and the bottom is the vectorized
semantics with pseudo building model.
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Table 3. Modeling results on Dataset I for our method, PolyFit [11], VSA [4], and QEM [5]. For each
modeling result, the mean Hausdorff distance e(m) is computed from the output to the original point
cloud. Furthermore, the 1 is the number of facets in the generated model. For the largely missing
point clouds in our datasets, PolyFit failed to generate the model on several buildings, which are

marked with green cross.

N
-

Our ‘
e/n 0.0437/33 0.0900/167 0.1183/70 0.0821/70 0.0192/52 0.0461/54
PolyFit
e/n 0.2610/44 0.0821/14 - -
( q ﬁ
‘/ —
VSA )
e/n 0.0707 /254 0.1248/521 0.4935/336 0.0447 /425
QEM
e/n 0.0549 /544 0.1739/581 0.5162/619 0.0944 /523 0.0968/466 0.0333/753

5. Discussion

Regarding the segmentation results, we observed that PointNet [1] and PointNet++ [2]
performed poorly in semantic segmentation experiments of building point clouds. The net-
works failed to obtain effective semantic information of the buildings, possibly due to heavy
downsampling during the segmentation process (Figure 4). However, our approach, which
combines multi-view information and 2D convolutional neural networks, outperformed
PointNeXt [41] and RandLANet [39] in the segmentation of building geometric corners,
producing more precise and sharper segmentation results (Figure 4, highlighted in orange).

PointFormer showed clear segmentation results of building corners. However, this was
based on a global attention mechanism that required O(n?) computational complexity and
consumed large amounts of memory. In contrast, our approach achieved good segmentation
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results even in cases of severe point cloud loss. For example, in Figure 4 highlighted in
green, most of the building points were not reconstructed, and only a corner of the building
was visible. However, our approach accurately segmented these points into buildings,
showing its robustness to loss and occlusion. This robustness could be attributed to the
complementary nature of the missing parts in multi-view images.

Regarding the lightweight modeling results (Table 3), our approach outperformed
other methods in terms of modeling accuracy. The high accuracy was due to the extraction
of multi-view 3D feature lines, which avoided direct surface fitting on the point cloud,
leading to better results than methods based on pure point clouds. In terms of modeling
lightweightness, our approach was comparable to the PolyFit [11] method, while the
VSA [4] and QEM [5] methods did not consider prior knowledge about building modeling,
such as the fact that buildings are typically composed of geometric planes. Our approach
effectively utilized this prior knowledge, strengthening the 3D plane constraint during
building face generation, resulting in more lightweight models.

Concerning the smoothness of the models, our approach and PolyFit [11] outper-
formed the other methods. However, it is important to note that PolyFit [11] generated
building models that did not match real building shapes. This was due to the optimization
problem of constructing a watertight geometry, which requires complete point clouds
without significant occlusion or loss; otherwise, the optimization problem becomes ill-
conditioned. However, buildings reconstructed using multi-view geometry collection
methods are usually incomplete and occluded, making our approach more suitable for
lightweight modeling.

6. Conclusions

In this paper, a novel lightweight semantic modeling framework is designed to achieve
a highly accurate 3D vectored modeling of buildings with fine-grained semantic informa-
tion. A joint 2D-3D semi-supervised semantic object segmentation framework is proposed
to improve the semantic accuracy and richness of buildings through 2D segmentation and
unsupervised clustering. Meanwhile, semi-supervised building semantic segmentation
can also reduce the labeling work of training data without affecting the quality of seg-
mentation significantly. Subsequently, a 3D plane-constrained multi-view accurate feature
line extraction and optimization method is proposed to achieve continuous, multi-view,
consistent, and smooth 3D lines of the buildings. The introduction of multi-view image con-
sistency not only solves the boundary discontinuity caused by occlusion but also improves
the accuracy of single building surface vector modeling. Finally, a lightweight semantic
modeling framework with fine-grained element segmentation is designed carefully. Each
building in complex urban scenes will be extracted accurately and finely vectorized in-
dependently, thereby not only improving the details of the 3D geometric structure of the
building but also solving the issue of buildings in urban scene mesh models that cannot
be processed and analyzed separately. A feature line that constraints fine-grained element
segmentation is also introduced into the modeling framework to achieve a highly accurate
3D vectorization modeling of individual buildings with fine-grained semantic information
(doors and windows). Of course, our framework has shortcomings.

In the current reconstruction process, we only make use of segmentation and 3D
feature lines by using a plain approach to generate 3D building mesh. By extending our
framework to a more complex and well-designed modeling method, we may attain better
meshing results. Another interesting problem is that the piece-wise planar roof structure
assumption becomes overly restrictive when dealing with atypical architectures. More-
over, the point clouds used in this work, mostly generated by multi-view reconstruction,
have some missing parts, which will slightly affect the meshing process. Furthermore,
the 3D feature line detection also requires high-accuracy camera poses from multi-view
reconstruction. In future work, we would like to enhance our method to incorporate more
types of geometric primitives, such as cylinders and spheres, to describe more complex
and diverse building vector models. We also expect to extend our framework to more
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fine-grained semantic elements, such as exterior building decorations, geometric structural
details of doors, windows, balconies and others, and apply our method to more practical
applications, such as animation, movie making, and autonomous driving.
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