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Abstract: Adding an attention module to the deep convolution semantic segmentation network
has significantly enhanced the network performance. However, the existing channel attention
module focusing on the channel dimension neglects the spatial relationship, causing location noise to
transmit to the decoder. In addition, the spatial attention module exemplified by self-attention has a
high training cost and challenges in execution efficiency, making it unsuitable to handle large-scale
remote sensing data. We propose an efficient vector pooling attention (VPA) module for building
the channel and spatial location relationship. The module can locate spatial information better
by performing a unique vector average pooling in the vertical and horizontal dimensions of the
feature maps. Furthermore, it can also learn the weights directly by using the adaptive local cross-
channel interaction. Multiple weight learning ablation studies and comparison experiments with the
classical attention modules were conducted by connecting the VPA module to a modified DeepLabV3
network using ResNet50 as the encoder. The results show that the mIoU of our network with the
addition of an adaptive local cross-channel interaction VPA module increases by 3% compared
to the standard network on the MO-CSSSD. The VPA-based semantic segmentation network can
significantly improve precision efficiency compared with other conventional attention networks.
Furthermore, the results on the WHU Building dataset present an improvement in IoU and F1-score
by 1.69% and 0.97%, respectively. Our network raises the mIoU by 1.24% on the ISPRS Vaihingen
dataset. The VPA module can also significantly improve the network’s performance on small
target segmentation.

Keywords: adaptive local cross-channel interaction; vector average pooling; attention mechanism;
remote sensing imagery; semantic segmentation; deep learning

1. Introduction

By analyzing an image at the pixel level, semantic segmentation provides more
nuanced identification than object detection and image classification, allowing for the
output of complete scene information. Urban planning, land resource management,
marine monitoring, and transportation assessment benefit significantly from semantic
segmentation processing of remotely sensed imagery [1,2]. However, remote sensing
images present unique processing challenges due to the abundance of feature information
such as shape, location, and texture, as well as the high intra-class variance and high
inter-class similarity exhibited by ground objects in the images [3].

Conventional semantic segmentation approaches emphasize manual feature ex-
traction [4]. The feature vectors can be obtained based on hand-crafted rules of certain
application scenarios. Once the scenario has been modified, it is challenging to reuse
these extracted feature vectors. The extraction of repeated features is a laborious and
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time-consuming process. In addition, the hand-crafted rules of traditional semantic
segmentation depend on complex mathematical models that are not data-driven such
as the current methods. Therefore, there are constraints on the comprehensibility and
generalizability of the conventional semantic segmentation approaches. More recently,
deep learning-based semantic segmentation techniques have demonstrated significant
potential. For instance, FCN [5] implements a fully convolutional semantic segmen-
tation network, which is the baseline for the current popular semantic segmentation
approaches. U-Net [6] introduces the skip connection between the shallow and deep
layers to effectively reconstruct the low-level spatial information for advanced semantic
objects to solve the issue of inaccurate object edge segmentation. The encoder–decoder
architecture encourages researchers to concentrate on ways to represent pixel features
in the encoder better to boost network performance. ResNet [7] is one such work that
expands the network depth to extract more advanced abstract features. Atrous or dilated
convolutional networks such as the ones developed by the DeepLab community [8–11]
can accomplish multi-scale tasks by enlarging the receptive field. HRNet [12,13] main-
tains dense multi-layer interaction between the shallow and deep feature maps. Similarly,
U-Net++ [14] enhances the accuracy of semantic segmentation by substituting dense
connections for regular skip connections between the encoder and the decoder. These
efforts have led to growth in the use of deep learning for semantic segmentation. Re-
searchers then began to optimize the performance of baseline semantic segmentation
networks by introducing an attention mechanism, enabling them to capitalize on the
critical feature information and eliminate the redundancy of feature maps or pixels to
reinforce the feature representation.

The effectiveness of the attention mechanism has been demonstrated for a vari-
ety of tasks [15,16] including object detection [17–19] and image classification [20–22].
Based on the principle of the attention mechanism, researchers in the field of seman-
tic segmentation have developed several attention modules, such as the channel and
spatial attention modules. These modules are often incorporated into the semantic
segmentation architecture to aid in extracting significant features in certain channels and
pixels, thereby raising the segmentation accuracy [23]. Generally, the attention modules
mentioned above are built separately and only capture features along certain channels
or spatial dimensions. The CBAM [24] attention module combines channel and spatial
attention using a tandem mode for the first time, significantly improving segmentation
accuracy [25]. However, the module constructed using the tandem integration might
cause errors transmitting from the channel attention to the spatial attention side, con-
fining the further improvement in semantic segmentation performance. Researchers
also designed attention modules focusing on the relationship of channels and pixels
based on the self-attention mechanism, which represents the core information by the
weighted sum of each channel-spatial dimension [26]. In other words, the network can
use a self-attention mechanism to raise the overall accuracy of the semantic segmentation
network by establishing a long-range contextual relationship [27]. Nevertheless, the
complicated structure of a self-attention module remains challenging regarding training
cost and execution efficiency, making it constrained to support a large-scale remote
sensing application [28]. This paper focuses on the effect of the lightweight and efficient
attention module on the semantic segmentation network.

We propose an innovative and lightweight vector pooling attention module (VPA)
to solve the issues mentioned above. The module is constructed as an independent
component, coupling the qualities of the channel and spatial attention to implement
channel and spatial relation reinforcement. Compared to the module with tandem
integration, our module possesses lower inter-module dependency. Furthermore, our
proposed VPA module aims to preserve and localize the spatial information characterized
by the pixels and learns weights directly via adaptive local cross-channel interaction.
That is to say, it facilitates the effect of channel attention and spatial attention at the
same time, with a low cost to pay in terms of dependency. Furthermore, an improved
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pooling operation called vector average pooling has been designed to fuse the vertical
and horizontal dimensions of the feature maps. We incorporate our module into the
classical baseline semantic segmentation network. We conduct multiple weight learning
ablation experiments using the WHU Building dataset, the ISPRS Vaihingen dataset,
and the MO-CSSSD to provide an optimized solution for the attention-based, large-scale
remote sensing application-oriented semantic segmentation network. Therefore, the
main contributions of this paper are as follows:

1. By analyzing the pooling method of current mainstream attention modules for
feature maps, we propose an efficient vector average pooling method to realize
the construction and retention of spatial information of feature maps by attention
modules.

2. By comparing the weight mapping methods of the existing mainstream attention
modules, we introduce the most efficient weight mapping method of adaptive local
cross-channel interaction to achieve lightweight and efficient attention modules.

3. We build VPA modules with vector average pooling and adaptive local cross-
channel interaction methods to realize the functions of the channel attention mod-
ule and spatial attention module simultaneously with a single attention module,
avoiding the dependency between modules caused by the coupling
between modules.

2. Related Work
2.1. Attention Mechanism

The attention mechanism can enhance the capacity of deep CNNs to obtain more
discriminative features. By creating a global dependency between channels to determine
the corresponding weights, the channel attention module SE [29] successfully improved
the network’s representation of significant features using the attention mechanism in the
channel dimension for the first time. Yet, the spatial context was not taken into account.
The effectiveness of the channel attention network was further enhanced by adding the
ECA [30] module that established the dependency of local channels to learn the critical
weights. To better capture spatial information and generate spatial consequences with a
wider convolutional field, the spatial attention module in CBAM performs feature map
channel pooling and dimension reduction. As a result of its reliance on convolution,
the spatial attention module has certain limitations, as it can only capture the local
dependency in position and not establish a long-range dependency. In addition, the
pixel-relational self-attention mechanism represented by Transformer [31] has become a
new SOTA in the current computer vision field and is widely recognized and applied.
In DANet [26], the feature map generates Query, Key, and Value matrices via three
convolutions. These matrices are then employed to calculate weights for each local
and global location to build contextual information. OCRNet [32] creates a description
region for each category in advance and constructs the global contextual information
by calculating the similarity of each pixel to the description region of the respective
category. The self-attention mechanism effectively establishes a global connection but
requires excessive computation, affecting the network inference efficiency. Specifically,
the process of computing the weight map with the Query and Key matrices of the feature
map imposes O(N2) (N = H ×W × C, H, W, and C denote the height, width, and number
of channels of the feature map, respectively) time and space complexity on the self-
attention module, which leads to a large burden on the semantic segmentation network
when processing large remote sensing images. Our research aims to design a lightweight
and efficient attention module by coupling spatial information to the channel attention
module to further enhance the effect of the attention mechanism focusing on the channel
level on the semantic segmentation network.
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2.2. Attention in Semantic Segmentation for Remote Sensing

By integrating attention modules, a semantic segmentation network for image inter-
pretation can better represent features, reduce noise and build contextual information to
increase the network’s overall segmentation accuracy. As an example, in ENet [33], the
SE module is added to the upsampling stage of the network to generate a weight for each
channel to refine the segmentation accuracy of remote sensing images. In SE-UNet [34],
the convolution block is altered from two convolutions with the size of 3 × 3 per layer
in the standard UNet to one convolution plus one SE module for strengthening the
representation of the feature maps, thereby enhancing the capacity of UNet on extracting
the road from the satellite and aerial imagery. An efficient channel attention (ECA)
module is proposed and integrated into the UNet encoder in [35], which optimizes
the segmentation and raises the encoder performance on feature extraction. Denoising
remote sensing images with the RSIDNet proposed in [36] is made more accessible by
adding an ECA module to the shortcut block connecting the shallow layer with the deep
layer. It augments the feature representation of the shallow feature maps, reducing the
noise brought by the layers and enhancing the segmentation accuracy. It is discussed
in SCAttNet [25] that the CBAM module is employed to integrate channel and spatial
attention. The network first adopts the ResNet to extract features to strengthen its
segmentation capability for high-resolution remote sensing imagery. It then outputs
them into the CBAM module to construct local contextual information and optimize the
learned feature map weights at channel and pixel levels. RAANet [37] constructs a new
residual ASPP module by embedding a CBAM module and a residual structure as a way
to improve the accuracy of the semantic segmentation network. In [38], an SCA attention
module containing spaces and channels is designed by using a spatial attention module
in the CBAM in parallel with a coordinate attention module that constructs channels and
spaces to enhance the detection of remote sensing images by the lightweight model. In
order to improve the ability of convolutional neural networks to represent potential rela-
tionships between different objects and surrounding features, MQANet [39] introduces
position attention, channel attention, label attention, and edge attention modules into the
model as a way to expand the perceptual field of the network and introduce background
information in labels to obtain global features. Furthermore, the self-attention mecha-
nism has been used for remote sensing image semantic segmentation. As an illustration,
a region-attention RSA module is constructed using the self-attention mechanism in
RSANet [40]. Firstly, the module creates several soft object regions for each category
distributed in the image, followed by region descriptors. Then, it evaluates the similarity
between pixels of the feature maps and all-region descriptors. Those values measured in
the parallel will be treated as weights of the initial feature maps. In [41], a self-attention
module that concerns channels and spaces is constructed to generate a weight map of all
spatial locations and channel relationships by multiplying the Query and Key matrices
of the feature map to obtain global information. The network may achieve more accurate
segmentation results, but the complexity and the high hardware resource needs make it
non-economical in actual deployment.

2.3. ECA Module

The ECA is an improved version of the SE module that seeks to minimize the
inadequacy of lightweightness and effectiveness of the SE module. Figure 1 illustrates
the structure of the SE module.
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The module learns the weights from the initial feature maps and then produces new
one-to-one weighted feature maps. The process can be expressed as follows:

Fse : X → X̃ (1)

where X = [x1, x2, ..., xc] ∈ RH×W×C denotes the initial feature maps; xc indicates the channel
c of the feature maps, i.e., the cth feature map; and H, W, and C denote the height, width, and
number of channels of the feature maps, respectively. X̃ = [x̃1, x̃2, ..., x̃c] ∈ RH×W×C denotes
the new weighted feature maps after the attention operation. x̃c denotes channel c of the
weighted feature maps. Z = [z1, z2, ..., zc] ∈ R1×1×C is generated by a two-dimensional
global average pooling operation on the feature map X. The process can be formulated as

zc =
1

H ×W

H

∑
i=1

W

∑
j=1

xc(i, j) (2)

where zc is the output of global averaging pooling on the cth channel, and xc(i, j) is the
pixel representation of the location on the cth channel. Subsequently, Z will be fed as input
to two fully connected layers to learn the channel weight based on the global information
interaction. The weights learned via the first fully connected layer can be defined as

ω1 = δ(Z×W1) (3)

where ω1 is the channel weight generated from the first fully connected layer; W1 ∈ RC× C
r

is the parameter of the first fully connected layer; r is the hyperparameter, which is used to
decrease the number of channels and parameters; and δ denotes the activation function
ReLU. The weight learned by the second fully connected layer can be formulated as

ω2 = σ(ω1 ×W2) (4)

where W2 ∈ R
C
r ×C is the parameter of the second fully connected layer, which converts the

current channel count back to the initial count again; σ is the Sigmoid activation function;
and ω2 is the weight corresponding to the channel obtained by the SE module. The new
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weighted feature map X̃ is generated based on the element-wise product between the
output ω2 and the initial feature map X. It can be described as

X̃ = ω2 × X (5)

The channel is first mapped to the lower dimensional space in the SE module depend-
ing on the hyperparameter r and the first fully connected layer. Then, the output is mapped
back to the initial channel via another fully connected layer (the weight learning can be
denoted as MLPr). The weight learning approach can decrease the number of parameters in
the module. However, it ends up using ω2 rather than ω1, which implies that the channel
weights’ mapping in the SE module behaves indirectly. In terms of experimental results,
it is not as precise as direct weight mapping. Additionally, the global average pooling
operation of the SE module on the feature map causes the module to ignore the spatial
information of the feature map.

Since the input Z to the fully connected layer in the SE module has the shape of
1 × 1 × C, it performs similarly to the convolution operation with the kernel size of
1 × 1, which allows for global cross-channel information interaction during the learning
of channel weights in Equation (3). Generally, several convolutional designs contribute to
both parameter reduction and efficiency improvement in learning. We list the conventional
convolution operations as follows and illustrate their notations:

• Depthwise Separable Convolution(DW) [42]. When the weights in Equation (3) are
learned directly using a 1 × 1 depthwise separable convolution (note: the hyper-
parameter r is no longer used for dimensionality reduction), W1 can be defined
as follows:

W1 =

ω1,1 · · · 0
...

. . .
...

0 · · · ωC,C

 (6)

Then, W1 has just C in terms of parameters. Despite having fewer parameters, the
convolution design only adopts a single-channel weight mapping and dismisses the
inter-channel dependency.

• Standard Convolution(SC) [43]. When the weights in Equation (3) are learned directly
using a 1 × 1 standard convolution, W1 is written as follows:

W1 =

ω1,1 · · · ω1,C

...
. . .

...
ωC,1 · · · ωC,C

 (7)

Currently, the number of parameters of W1 is C2. Although it is superior to the
depthwise separable convolution in terms of performance and implements interaction
between global channels, the standard convolution performs well at the expense of
introducing additional parameters.

• Group Convolution(GC) [44]. Considering the compromise, convolution design ca-
pable of achieving a small number of parameters and high learning performance is
necessary. When the weights in Equation (3) are learned by using a 1 × 1 group
convolution, the expression of W1 can be written as follows:

Wi
1 =

 ωi,i · · · ωi,i+k−1

...
. . .

...
ωi,i+k−1 · · · ωi+k−1,i+k−1

 i ∈
[
1, C

k

]

W1 =


W1

1 · · · 0
...

. . .
...

0 · · · W
C
k

1


(8)
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The number of parameters in W1 is k ∗ C, where k is the number of channels within
each convolution group. Regarding the number of parameters, the approach of group
convolution is more lightweight than the standard convolution. When considering
the efficiency, it is more efficient than depthwise separable convolution because it
implements the interaction between channels within the group.

Nevertheless, since each group operates separately, no interaction occurs. As a result,
there is still room for development in the approach concerning the weight learning effect.
When the weight learning is performed in Equation (3) using a one-dimensional convolu-
tion with a convolution kernel of size k (C1Dk), the tensor expression of W1 can be written
as follows:

W1 =



ω1,1 0 · · · 0
... ω2,2 · · · 0

ωk,1 ...
. . .

...
0 ωk+1,2 · · · ωC,C

...
...

. . .
...

0 0 . . . ωC+k,C+k


(9)

The strategy above can be considered an interaction between each channel and the
(k− 1)th channel adjacent to it. It assists in achieving an adaptive local cross-channel
interaction weight learning, which addresses the issue of lower connectedness in group
convolution. When done, the module is proven efficient in learning channel weights
and lightweight.

The ECA module is an efficient channel attention module built with the adaptive local
cross-channel interaction described above, as shown in Figure 2.
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Adaptive local cross-channel interaction is first computed by pooling in Equation (2),
followed by a one-dimensional convolution on Z with a convolution kernel of size k. The
process can be described as

X̃ = X× σ(C1Dk(Z)) (10)

where C1Dk denotes a one-dimensional convolution with a kernel of size k, and σ denotes
the Sigmoid function. In the group convolution, it is demonstrated that more channels
per group are expected when there are more channels in total. Therefore, there exists a
mapping between k and the number of channels. It defines the relationship between k and
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the number of channels, distinguished from the conventional linear mapping relationship,
as in the equation

C = 2a∗k−b (11)

where C is the number of channels, and, when given C, k in Equation (11) can be esti-
mated by

k =

∣∣∣∣ log2(C) + b
a

∣∣∣∣
odd

(12)

where |n|odd is denoted as the largest odd number less than or equal to n. To guarantee a
channel attention module with few parameters and good performance, ECA maps the local
channel interaction and weight directly through a layer of one-dimensional convolution
of adaptive size k proportional to the number of channels. However, the efficient weight
mapping method in the ECA module is only performed on one-dimensional vectors, which
limits the effect of the attention module.

In contrast to the SE and ECA, our proposed VPA module takes spatial information
into account appropriately. It seeks to address the dependency concern between the channel
and spatial attention of the CBAM with the tandem integrating mode and to minimize
the complexity, such as in the self-attention module. More specifically, the VPA module
can establish a long-range spatial dependency by employing transposed vector pooling
rather than global pooling. It also encodes the channel in multidimensional coordinates
and locates the critical pixel within the channel of the feature maps. Furthermore, the VPA
module can obtain a significant channel relationship by introducing local interaction.

3. Methodology
3.1. Vector Average Pooling

The conventional channel attention modules such as SE and ECA use the global
average pooling output of each channel of the feature map to highlight the noteworthy
channel feature. However, such an operation causes the loss of the spatial information of the
feature map, making the effect of the attention module somewhat restricted. Therefore, we
propose a vector average pooling method for the attention module to retain and construct
the spatial information of feature maps. The vector average pooling executes the calculation
of the average pooling of size (1, W) and (H, 1) along the vertical and horizontal pixel lines of
the feature map, respectively (wherein W and H denote the width and height of the feature
map). As shown in Figure 3, it is the processing procedure of vector average pooling of
one channel included in the feature map. The representation of one channel on the feature
map by two crossed vectors can make the feature map retain more local spatial information.
More specifically, the feature map will generate a vector of size (H, 1) after vector average
pooling in the horizontal direction, then the ith value in the vector represents the spatial
information of the ith row of the feature map. The same is true for vector average pooling
in the vertical direction. Using vector average pooling instead of global average pooling in
the channel attention module can further enhance the effectiveness of the channel attention
module by preserving and locating the spatial information of the outputted feature map.

3.2. VPA Module

For the channel attention module to better retain spatial information and establish a
long-range dependency, we propose the VPA module, as shown in Figure 4.

In Figure 4, Pool (H, 1) represents the average pooling of all pixels in the range (H, 1)
in the feature maps. P is the dimensional substitution. C2D(k, 1) is a two-dimensional
convolution using a convolution kernel of size k × 1 to achieve adaptive local cross-
channel interaction in the channel dimension.
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Firstly, the VPA performs vector average pooling on the feature map, which can
effectively construct and preserve long-range dependency on the feature map space both
vertically and horizontally and thus learn the location weights on the space. The pooling
along the vertical direction can be described as

ZH
c (h) =

1
W

W

∑
i=1

xc(h, i) (13)

where ZH
c (h) is denoted as the output of the vector average pooling of the row h via

(1, W) on channel c. Likewise, the average pooling of the column w via (H, 1) on the
horizontal channel c can be expressed as

ZW
c (w) =

1
H ∑H

j=1 xc(j, w) (14)
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Then, it learns the position weights on Z(H) and Z(W) and chooses the efficient
adaptive local cross-channel interaction inspired by the ECA module to learn the chan-
nel weights. Unlike the one-dimensional weight mapping on channels of the ECA
module, the VPA module extends the one-dimensional weight mapping method to a
two-dimensional pattern by implementing the adaptive local cross-channel interaction
weight learning with a k × 1 two-dimensional convolution, as in the equation

ω(H) = σ
(

C2D(k, 1)(P(Z(H)))
)

(15)

and
ω(W) = σ

(
C2D(k, 1)(P(Z(W)))

)
(16)

where P in Equations (15) and (16) denotes the dimensional substitution function that
converts ZH

c (h) and ZW
c (w) to the plane of C× H × 1 and C×W × 1. The optimization

objective of the operation is to easily enable the VPA to implement adaptive local cross-
channel interaction on Z (C2D(k, 1)), as shown in Figure 5. The weights are mapped by
sliding the two-dimensional convolution of the convolution kernel of size (k, 1) over the
dimension of the feature map channels. The feature maps are multiplicatively weighted
after being converted back to their initial dimensions once the weights have been learned.
The proposed VPA module, analogous to executing the pooling operation shaped like the
cross-coordinate axis, creates the long-range dependency in one direction and precisely
locates each pixel with specific weights. For instance, assume that the fourth-column
feedback on the feature maps possesses a greater weight in the horizontal direction and
that the fifth-row response has a greater weight in the vertical direction. Then, more
emphasis is put on the pixel at coordinates (5, 4) on the final weighted feature maps to
gain precise spatial localization. Localization in this manner is particular to each channel,
bringing spatial and channel attention characteristics to our proposed module.
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4. Experiments and Results
4.1. Datasets

The experiments in this paper use three datasets: Multi-object Coastal Supervision
Semantic Segmentation Dataset (MO-CSSSD) [45], WHU Building [46], and ISPRS Vai-
hingen [47]. Based on different scenarios and different objectives, they are used to ver-
ify the effects of the VPA module and other classical attention modules on semantic
segmentation networks.
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4.1.1. MO-CSSSD

This dataset is derived from aerial imagery of coastal areas in southern China and is
used for coastal ecosystem supervision. The dataset has a training set with 8734 samples, a
validation set with 1100 samples, and a test set with 1100 samples. The size of the sample
images is 256 × 256, and the spatial resolution is 0.58 m for RGB images. The dataset has
four categories, i.e., mangrove, aquaculture raft, aquaculture pond, and background.

4.1.2. WHU Building Dataset

This dataset is derived from aerial imagery of Christchurch city, New Zealand, which
has been downsampled to RGB images with a spatial resolution of 0.3 m by researchers
from Wuhan University in China. The images are further cropped without overlap into
8189 patches containing 187,000 buildings in total. The size of each patch is 512 × 512. The
dataset includes a training set with 4736 samples, a validation set with 1036 samples, and a
test set with 2416 samples.

4.1.3. ISPRS Vaihingen Dataset

This dataset produced by ISPRS, is derived from the airborne imagery of Vaihingen in
Germany, with 33 true orthophoto (TOP) images of different sizes. Each image is from a
larger TOP with an average size of about 2494× 2064. It contains three bands, near-infrared,
red, and green, and possesses a spatial resolution of 0.09 m. There are six categories, i.e.,
building, low vegetation (low veg), tree, car, impervious surface (imp. surfaces), and
background. In our research, 16 images with manual annotation have been selected as the
training set and another 17 images from the test set. The initial large images were cropped
into 817 patch samples in the training set and 2219 in the test set based on the cropping
method in [48]. The size of each patch in the dataset is 384 × 384. Data augmentation has
also been applied, e.g., vertical and horizontal flipping, noise addition, etc.

4.2. Evaluation Metrics and Experimental Setting

In the research, Precision, Recall, F1-score, Intersection over Union (IoU), Overall
Accuracy (OA), and mean Intersection over Union (mIoU) are adopted to evaluate the
experimental results for comparing the effectiveness of our proposed VAP module and
the conventional attention modules. The Precision represents the number of correctly
classified positive samples as a percentage of the total number of positive samples classified
(correctly or incorrectly) by the classifier. In contrast, the Recall represents the number of
correctly classified positive samples as a percentage of the total number of positive samples.
Precision and Recall may contradict one another in certain circumstances. Therefore, we
also use the F1-score, an average reconciliation function of Precision and Recall. Below are
the formulas for each evaluation metric:

Precision =
TP

TP + FP
(17)

Recall =
TP

TP + FN
(18)

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(19)

IoU =
TP

TP + FP + FN
(20)

OA =
TP + TN

TP + TN + FP + FN
(21)
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where true prediction on a positive sample (TP), false prediction on a positive sample (FP),
true prediction on a negative sample (TN), and false prediction on a negative sample (FP)
are notated in the above formulas.

In the study, all experiments were conducted in the same system environment based
on Windows 10, Python 3.9, TensorFlow 2, and NVIDIA GeForce RTX 3090. The initial
learning rate is set to 0.001, and the Adam optimizer and cross-entropy loss function are
used to train the model in 200 epochs. The batch size is set to 14 for experiments on the
MO-CSSSD and ISPRS Vaihingen datasets and to 6 for experiments on the WHU Building
dataset. The reduced-dimensional convolution (MLPr) is used in the VPA_ MLPr and
SE modules, and we set r to 16 to ensure the best module complexity and effect. The
hyperparameter values given in [30] have been adopted by setting the a and b in Equation
(12) to 2 and 1, respectively.

4.3. Experimental Architecture

The VPA module aims to improve the feature extraction capability of the encoder
of the semantic segmentation network. The vector average pooling in the vertical and
horizontal directions of the feature maps builds the channel and spatial relationship and
learns the weights through adaptive local cross-channel interaction, as depicted in Figure 4.
To compare the effectiveness of our proposed attention module with another classical
baselined SE and ECA, we inserted them into a ResNet block according to [29,30]. ResNet50
with a specific attention module is designed as the backbone of DeepLabV3. It is employed
to evaluate the performance of these attention modules, as shown in Figure 6. In the
architecture, the downsampling component in stage 4 of ResNet50 is replaced with an
atrous convolution whose dilation rate is set to 2, resulting in a stride of 16 at the network’s
output. We chose the DeeplabV3 model in Figure 6 because it uses the residual blocks of
ResNet in its backbone part, and the fused use of the residual blocks of Resnet with the
attention module is a classical way to compare the effects of different attention modules.
Meanwhile, the ASPP module in DeeplabV3 can also effectively solve the multi-scale
problem in remote sensing datasets.
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4.4. Experimental Results
4.4.1. Ablation Study

An ablation study for the VPA module is first performed on the MO-CSSSD. The
VPA module is designed by using the single-channel depthwise separable convolution
(DW), group convolution (GC), standard convolution (SC), dimension-reduced convolution
(MLPr), and adaptive local cross-channel convolution (C2D(k, 1)) to evaluate the effectiveness
of various convolution strategies on the attention modules performance.

The results of the ablation experiments on MO-CSSSD are shown in Table 1. Compared
to the network without any attention module, more than a 1% increase in OA and a
2% increase in mIoU can be obtained using the DeepLabV3 network with the various
modified VPA modules. It highlights the capacity of our proposed VPA module to enhance
the accuracy of semantic segmentation networks. According to the results of the VPA
modules constructed in various convolution strategies, the standard convolution (SC)
implemented in all-channel interaction has a 1.1% increase in OA and a 2.5% increase in
mIoU. However, it leads to a double increase in the number of parameters and 1.39 G for the
number of FLOPs. Although the dimension-reduced convolution (MLPr) can significantly
decrease the number of parameters, the OA and mIoU are also reduced by 0.13% and
0.74%, respectively, compared to the SC. It demonstrates that the indirect mapping of
weights impacts weight learning. The single-channel depthwise separable convolution
(DW) and group convolution (GC) decrease the number of parameters and FLOPs and
significantly raise the OA and mIoU. Furthermore, our suggested adaptive local cross-
channel convolution C2D(k, 1) outperforms the baseline by a 3% increase in mIoU and a 1.3%
increase in OA while only introducing 0.01 M parameters to the network. In contrast to GC
and DW, where there is no interaction between the local channels, our proposed C2D(k, 1)
achieves the interaction between local channels and reinforces the information swapping
between channels. The module enhances the capacity for channel weight learning, which
indicates that the adaptive local cross-channel interaction might provide an optimized
effect in contrast to the global channel interaction.

Table 1. Comparison of VPA achieved by different weight learning methods. The bold indicates the
best data.

Method FLOPs (G) Parameters (M) OA (%) mIoU (%)

Baseline 30.37 37.26 91.61 79.43
+VPA_DW 30.41 37.32 92.95 82.39

+VPA_GC16 30.49 39.69 92.72 81.50
+VPA_SC 31.80 75.67 92.73 81.96

+VPA_MLPr 30.58 40.89 92.60 81.22
+VPA_C2D(k, 1) 30.41 37.27 92.96 82.43

4.4.2. Comparison Experiment

Several comparison experiments have been established on the MO-CSSSD, WHU
Building dataset, and ISPRS Vaihingen dataset using the architecture depicted in Figure 6.
They are used to evaluate the enhancement effect gained by the SE, ECA, CBAM, SCA [38],
and our VPA module.

Table 2 shows the changes in the number of parameters and FLOPs after the baseline
incorporation of other classical attention modules on the MO-CSSSD dataset. As can be
seen in Table 2, SE, ECA, CBAM, SCA, and our VPA module bring a relatively small
number of parameters and computations to the baseline, which shows their lightweight
property. The greatest burden on the baseline is placed on the CBAM and SCA modules,
which increase the number of parameters in the baseline by 4.8 M and FLOPs by 0.23 G,
respectively. The ECA module places the least burden on the baseline, adding only 0.01 M
parameters and 0.02 G FLOPs. However, the ECA module focuses only on the channel
dimension. Our VPA module, on the other hand, is concerned with both channel and space
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dimensions, but it also only gives the baseline of about 0.01 M counts of parameters and
0.04 G FLOPs, which is much lighter than the CBAM module.

Table 2. The burden that different attention modules add to the Baseline. The bold indicates the
best data.

Baseline +SE +CBAM +ECA +SCA +VPA

Parameters(M) 37.26 39.66 42.06 37.27 40.89 37.27
FLOPs(G) 30.37 30.39 30.42 30.39 30.60 30.41

The experimental results on MO-CSSSD are shown in Table 3. The OA, mIoU, Precision,
and IoU for each category are included in Table 3. The OA and mIoU of the network are
not significantly better with the addition of the channel attention SE module under the
same experimental settings. After incorporating the CBAM module with a channel spatial
tandem integration, the OA and mIoU of the network increased by over 1%. This highlights
the significance of spatial information in semantic segmentation networks. The advantage
of the ECA module weight learning strategy is that both OA and mIoU increased by 0.82%
and 1.77%, respectively, as opposed to the addition of the SE module. The addition of
the SCA module also results in a better segmentation capability of the baseline network,
with a 2.53% improvement in mIoU. However, it imposes larger FLOPs on the network. In
contrast to the aforementioned attention modules, our VPA module introduces only 0.01 M
parameters to the network while increasing the mIoU by 3% and the OA by 1.3%. By a small
margin, the VPA module is more efficient than the ECA module. This demonstrates the
effectiveness of the VPA module on the attention mechanism for the spatial dimension. In
addition, the network with the VPA module shows a 1.43% increase in mIoU compared to
the network with the CBAM module. The evidence might prove that vector average pooling
is superior to local convolution when building spatial information. A multidimensional
independent attention module could outperform the one combined in a tandem mode with
a single dimension.

Table 3. Experimental results on the MO-CSSSD. The table shows Precision(%)/IoU(%) for each class.
The bold indicates the best data.

Method Mangrove Aquaculture
Raft

Aquaculture
Pond Background OA

(%)
mIoU

(%)

Baseline 81.36/76.04 80.75/70.62 92.10/85.98 92.90/85.07 91.61 79.43
+SE 84.95/78.96 80.67/70.50 93.20/85.94 91.75/84.98 91.66 80.10

+CBAM 82.66/77.23 80.76/71.45 93.44/88.29 94.00/87.02 92.78 81.00
+ECA 86.47/80.61 83.57/73.28 93.12/87.20 93.11/86.42 92.48 81.87
+SCA 87.43/80.82 82.36/72.43 93.61/87.78 93.16/86.82 92.73 81.96
+VPA 89.24/82.30 81.87/72.06 94.02/88.18 93.15/87.19 92.96 82.43

The results of the experiments on the WHU Building dataset are shown in Table 4.
Four evaluation metrics have been adopted for measuring the experimental results, i.e., IoU,
Precision, Recall, and F1-score, frequently used for binary classification tasks. After being
fed the additional attention modules, the network significantly outperforms the baseline on
some evaluation metrics. IoU and F1 increased by 1.03% and 0.6%, respectively, after the
SE module was added to the baseline network. As opposed to the boost generated by the
independent channel attention module SE, the IoU and F1 increased by 0.59% and 0.35%
when the CBAM module with channel spatial tandem integration was implemented. This
indicates that the tandem integration of the channel attention and spatial attention module
influences the overall effect of the CBAM module. Accurate spatial location in the SCA
module allows for the highest accuracy in baseline segmentation. However, the weight
mapping method in the SCA module is indirect. As an alternative, our suggested VPA mod-
ule integrates channel and spatial attention into a single component, thereby preventing the
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dependency issue arising from the modules’ tandem integration. Consequently, compared
to adding other attention modules in the baseline, adding the VAP module results in the
most substantial improvement in IoU, Recall, and F1-score of the network, with increases
of 1.69%, 1.79%, and 0.97%, respectively.

Table 4. Experimental results on the WHU Building dataset. The bold indicates the best data.

Method IoU (%) Precision (%) Recall (%) F1-Score (%)

Baseline 86.23 93.32 91.90 92.60
+SE 87.26 92.40 94.02 93.20

+CBAM 86.82 91.72 94.20 92.95
+ECA 87.64 93.35 93.47 93.41
+SCA 87.42 93.64 92.94 93.29
+VPA 87.92 93.41 93.73 93.57

Table 5 shows the results of experiments conducted on the ISPRS Vaihingen dataset.
The IoU for each category and the OA and mIoU are listed in Table 5. With the addition
of the attention module, the IoU of each class is significantly improved. The IoU of the
car category, with a rise of 1.92%, has shown the most significant improvement. With the
addition of the SCA module, the baseline is most effective in segmenting larger categories
of shapes, due to the precise localization of spatial information by the SCA module. This
shows that the attention module can optimize the network’s capacity to detect small targets.
Our VPA module offers a tremendous advancement in segmentation for the car category,
with a 2.82% increase in IoU. This further implies that the VPA module is the best of the
attention modules in Table 4 for improving the network’s capacity for extracting small
targets. The mIoU of the baseline increased by 1.24% with the addition of the VPA module.
This is the best result of the networks with attention modules. It indicates that the VAP
module outperforms the other attention modules and it might significantly improve the
segmentation performance of the network on the ISPRS Vaihingen dataset, despite the high
resolution and detailed categories present in the dataset.

Table 5. Experimental results on the ISPRS Vaihingen dataset. The table shows IoU(%) for each class.
The bold indicates the best data.

Method Imp. Surfaces Building Low Veg Tree Car OA (%) mIoU (%)

Baseline 76.65 82.60 72.21 61.70 47.67 84.60 68.17
+SE 77.81 83.50 72.40 62.23 49.77 85.10 69.15

+CBAM 77.05 82.50 72.37 61.46 49.33 84.68 68.54
+ECA 78.23 83.40 72.87 62.54 49.17 85.26 69.24
+SCA 77.92 84.32 73.04 62.92 48.43 85.52 69.33
+VPA 77.86 83.44 72.84 62.45 50.49 85.21 69.41

5. Discussion

In the ablation experiments, we achieve the VPA module with five different weight
mapping methods and compare the improvement in complexity and segmentation accuracy
they bring to the network. The final results show that the VPA module constructed with
adaptive local cross-channel interaction has significant advantages in terms of complexity
and effectiveness. Adaptive local cross-channel interaction is the process of sliding over
channel dimensions using a convolutional kernel of size (k, 1), both between a single
channel and its adjacent k-1 channels, which ensures channel interaction mapping while
also reducing the parameters involved in weight mapping.

Figure 7 depicts the visual prediction results in Table 3. It presents three examples from
the MO-CSSSD dataset, containing all the categories in the dataset. As shown in Figure 7,
the VPA module results in a sharpened edge of the prediction target. The results are more
in line with ground truth than those generated by adding the other attention modules to
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the baseline. This happens due to the vector average pooling of the VPA module in the
spatial dimension and its adaptive local cross-channel interaction in the channel dimension.
By improving the segmentation accuracy on the MO-CSSSD dataset after incorporating the
VPA module, we can see that it has the potential to similarly improve the segmentation
accuracy of the conventional semantic segmentation network on multi-target datasets.
Additionally, in Sample c for the division of a small aquaculture pond, the VAP module is
superior to other attention modules.
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Figure 8 depicts visual prediction samples on the WHU Building dataset. As examples,
we present the test samples with various sizes, colors, and shapes of buildings. Sample a
demonstrates that the baseline network with the VPA module has greater robustness to
features such as shape and color and can effectively divide small buildings. Hence, the
extracted buildings are closer to the ground truth. Only the baseline network with the VPA
module can identify the tiny buildings contained in Sample b. This indicates that adding the
VPA module to the network can enhance its capacity to segment small targets. As seen in
Sample c, the VPA module improves the image extraction for large buildings and decreases
the pixel-level incorrect predictions.
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Figure 9 displays the prediction results on the ISPRS Vaihingen dataset. In each of the
three instances, there are considerable variances in size, shape, and texture between the
related categories. Multiple misclassifications can be observed in the prediction samples
when the baseline network is used. However, the misclassifications are minimized when
utilizing the baseline network with various attention modules. The network containing
a VPA module is by far the most effective at mitigating classification errors. Integrating
a VPA module into the baseline network improved its capability to extract small targets,
bringing it closer to the ground truth than adding the SE, ECA, CBAM, or SCA.
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6. Conclusions

The research presents an improved approach to building the attention module by com-
bining vector average pooling with adaptive local cross-channel interaction. Our proposed
attention module VPA achieves a significant effect on channel and spatial attention with
a single module, thereby addressing the issue of disregarding the spatial information in
a standard channel attention module. Our module minimizes the dependency produced
in the tandem integration of multidimensional attention modules. The VPA module ex-
cludes the non-local attention mechanism when creating the spatial relationship of the
feature maps, which makes it efficient and lightweight. It has been demonstrated that
the VPA module might outperform the other attention modules. We showed that it can
better enhance the segmentation capability of the network through the comparison with
the other classical attention modules on the MO-CSSSD, the WHU Building dataset, and
the ISPRS Vaihingen dataset. The VPA module has many potential application scenes
and generalizations. Significantly, the experimental findings presented in the research
indicate that adding the VPA module can improve the network’s capability to distinguish
and extract small targets and can boost the improvement of the segmentation edge and
completeness. To summarize, the efficiency and lightweightness of the VPA module make
it a valuable semantic segmentation network for dealing with large-scale remote sensing
imagery. It might also spark innovative ideas for the design of attention modules in other
computer vision applications.
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