China’s Largest City-Wide Lockdown: How Extensively Did Shanghai COVID-19 Affect Intensity of Human Activities in the Yangtze River Delta?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.3. Methods
3. Results
3.1. Spatio-Temporal Changes of MNLR in the Yangtze River Delta under Largest Lockdown
3.2. Spatio-Temporal Changes of MNLR before Outbreak of COVID-19
3.3. Comparison of MNLR Changes before and after Outbreak of COVID-19
3.4. Comparison of MNLR Changes in Major Agglomerations in China
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sah, R.; Reda, A.; Lashin, B.I.; Mohanty, A.; Abdelaal, A.; Rodriguez-Morales, A.J. Public health emergencies of international concernin the 21st century. Ann. Med. Surg. 2022, 81, 104417. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, D. The influence and enlightenment of five public health emergencies on public psychology since new century: A systematic review. Int. J. Soc. Psychiatry 2021, 67, 878–891. [Google Scholar] [CrossRef] [PubMed]
- Palacios Cruz, M.; Santos, E.; Cervantes, M.V.; Juárez, M.L. COVID-19, a worldwide public health emergency. Rev. Clín. Esp. Engl. Ed. 2021, 221, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Bi, M. Impact of COVID-19 on environmental regulation and economic growth in China: A Way forward for green economic recovery. Econ. Anal. Policy 2023, 77, 1001–1015. [Google Scholar] [CrossRef]
- Wu, J.; Zhan, X.; Xu, H.; Ma, C. The economic impacts of COVID-19 and city lockdown: Early evidence from China. Struct. Chang. Econ. Dyn. 2023, 65, 151–165. [Google Scholar] [CrossRef]
- Cai, Y.T.; Mason, K.A. Why they willingly complied: Ordinary people, the big environment, and the control of COVID-19 in China. Soc. Sci. Med. 2022, 309, 115239. [Google Scholar] [CrossRef]
- Zhang, Z.; Fu, D.; Liu, F.; Wang, J.; Xiao, K.; Wolshon, B. COVID-19, traffic demand, and activity restriction in China: A national assessment. Travel Behav. Soc. 2023, 31, 10–23. [Google Scholar] [CrossRef]
- Abid, M.; Gheraia, Z.; Abdelli, H.; Sekrafi, H.; Diaw, A. COVID-19 pandemic and economic impacts in Arab countries: Challenges and policies. Res. Glob. 2022, 5, 100103. [Google Scholar] [CrossRef]
- Alalawi, S.; Issa, S.T.; Takshe, A.A.; ElBarazi, I. A review of the environmental implications of the COVID-19 pandemic in the United Arab Emirates. Environ. Chall. 2022, 8, 100561. [Google Scholar] [CrossRef]
- Murugesan, M.; Venkatesan, P.; Kumar, S.; Thangavelu, P.; Rose, W.; John, J.; Castro, M.; Manivannan, T.; Mohan, V.R.; Rupali, P. Epidemiological investigation of the COVID-19 outbreak in Vellore district in South India using Geographic Information Surveillance (GIS). Int. J. Infect. Dis. 2022, 122, 669–675. [Google Scholar] [CrossRef]
- Filonchyk, M.; Hurynovich, V.; Yan, H. Impact of COVID-19 lockdown on air quality in the Poland, Eastern Europe. Environ. Res. 2021, 198, 110454. [Google Scholar] [CrossRef] [PubMed]
- Masters, N.B.; Zhou, T.; Meng, L.; Lu, P.-J.; Kriss, J.L.; Black, C.; Omari, A.; Boone, K.; Weiss, D.; Carter, R.J.; et al. Geographic Heterogeneity in Behavioral and Social Drivers of COVID-19 Vaccination. Am. J. Prev. Med. 2022, 63, 883–893. [Google Scholar] [CrossRef] [PubMed]
- Mărgărint, M.C.; Kovačić, S.; Albulescu, A.-C.; Miljković, Đ. Natural multi-hazard risk perception and educational insights among Geography and Tourism students and graduates amid the COVID-19 pandemic. Int. J. Disaster Risk Reduct. 2023, 86, 103549. [Google Scholar] [CrossRef] [PubMed]
- Wen, W.; Li, Y.; Song, Y. Assessing the “negative effect” and “positive effect” of COVID-19 in China. J. Clean. Prod. 2022, 375, 134080. [Google Scholar] [CrossRef]
- Ning, H.; Li, Z.; Qiao, S.; Zeng, C.; Zhang, J.; Olatosi, B.; Li, X. Revealing geographic transmission pattern of COVID-19 using neighborhood-level simulation with human mobility data and SEIR model: A case study of South Carolina. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103246. [Google Scholar] [CrossRef]
- Guo, F.; Huang, Y.; Wang, J.; Wang, X. The informal economy at times of COVID-19 pandemic. China Econ. Rev. 2022, 71, 101722. [Google Scholar] [CrossRef]
- Gaisie, E.; Oppong-Yeboah, N.Y.; Cobbinah, P.B. Geographies of infections: Built environment and COVID-19 pandemic in metropolitan Melbourne. Sustain. Cities Soc. 2022, 81, 103838. [Google Scholar] [CrossRef]
- Wadhwa, A.; Thakur, M.K. Rapid surveillance of COVID-19 by timely detection of geographically robust, alive and emerging hotspots using Particle Swarm Optimizer. Appl. Geogr. 2022, 144, 102719. [Google Scholar] [CrossRef]
- Louw, A.S.; Fu, J.; Raut, A.; Zulhilmi, A.; Yao, S.; McAlinn, M.; Fujikawa, A.; Siddique, M.T.; Wang, X.; Yu, X.; et al. The role of remote sensing during a global disaster: COVID-19 pandemic as case study. Remote Sens. Appl. Soc. Environ. 2022, 27, 100789. [Google Scholar] [CrossRef]
- Argentiero, A.; Cerqueti, R.; Maggi, M. Outdoor light pollution and COVID-19: The Italian case. Environ. Impact Assess. Rev. 2021, 90, 106602. [Google Scholar] [CrossRef]
- Wang, Z.; Román, M.O.; Kalb, V.L.; Miller, S.D.; Zhang, J.; Shrestha, R.M. Quantifying uncertainties in nighttime light retrievals from Suomi-NPP and NOAA-20 VIIRS Day/Night Band data. Remote Sens. Environ. 2021, 263, 112557. [Google Scholar] [CrossRef]
- Zheng, Q.; Weng, Q.; Zhou, Y.; Dong, B. Impact of temporal compositing on nighttime light data and its applications. Remote Sens. Environ. 2022, 274, 113016. [Google Scholar] [CrossRef]
- Miller, P.W.; Reesman, C.; Grossman, M.; Nelson, S.; Liu, V.; Wang, P. Marginal warming associated with a COVID-19 quarantine and the implications for disease transmission. Sci. Total Environ. 2021, 780, 146579. [Google Scholar] [CrossRef] [PubMed]
- Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Hsu, F.C.; Ghosh, T. VIIRS night-time lights. Int. J. Remote Sens. 2017, 38, 5860–5879. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Xiu, T.; Li, X.; Liang, X.; Jiao, L. Lockdown induced night-time light dynamics during the COVID-19 epidemic in global megacities. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102421. [Google Scholar] [CrossRef]
- Beyer, R.C.M.; Jain, T.; Sinha, S. Lights out? COVID-19 containment policies and economic activity. J. Asian Econ. 2023, 85, 101589. [Google Scholar] [CrossRef] [PubMed]
- Jamei, E.; Jamei, Y.; Seyedmahmoudian, M.; Horan, B.; Mekhilef, S.; Stojcevski, A. Investigating the impacts of COVID-19 lockdown on air quality, surface Urban Heat Island, air temperature and lighting energy consumption in City of Melbourne. Energy Strategy Rev. 2022, 44, 100963. [Google Scholar] [CrossRef]
- Roberts, M. Tracking economic activity in response to the COVID-19 crisis using nighttime lights—The case of Morocco. Dev. Eng. 2021, 6, 100067. [Google Scholar] [CrossRef]
- Ma, S.; Li, S.; Zhang, J. The impacts of the built environment factors and population mobility on the spread of COVID-19 during its initial stage of the COVID-19 pandemic: A case of China. In Transportation Amid Pandemics; Zhang, J., Hayashi, Y., Zhang, J., Hayashi, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; Chapter 4; pp. 37–45. [Google Scholar]
- Rowe, F.; Robinson, C.; Patias, N. Sensing global changes in local patterns of energy consumption in cities during the early stages of the COVID-19 pandemic. Cities 2022, 129, 103808. [Google Scholar] [CrossRef]
- Beyer, R.C.M.; Franco-Bedoya, S.; Galdo, V. Examining the economic impact of COVID-19 in India through daily electricity consumption and nighttime light intensity. World Dev. 2021, 140, 105287. [Google Scholar] [CrossRef]
- Çelïk, D.; Meral, M.E.; Waseem, M. The progress, impact analysis, challenges and new perceptions for electric power and energy sectors in the light of the COVID-19 pandemic. Sustain. Energy Grids Netw. 2022, 31, 100728. [Google Scholar] [CrossRef]
- Yu, Y.; Brady, D.; Zhao, B. Digital geographies of the bug: A case study of China’s contact tracing systems in the COVID-19. Geoforum 2022, 137, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Hasnain, A.; Sheng, Y.; Hashmi, M.Z.; Bhatti, U.A.; Ahmed, Z.; Zha, Y. Assessing the ambient air quality patterns associated to the COVID-19 outbreak in the Yangtze River Delta: A random forest approach. Chemosphere 2023, 314, 137638. [Google Scholar] [CrossRef]
- Li, W.; Chen, Z.; Li, M.; Zhang, H.; Li, M.; Qiu, X.; Zhou, C. Carbon emission and economic development trade-offs for optimizing land-use allocation in the Yangtze River Delta, China. Ecol. Indic. 2023, 147, 109950. [Google Scholar] [CrossRef]
- Shen, L.; Wang, H.; Zhu, B.; Zhao, T.; Liu, A.; Lu, W.; Kang, H.; Wang, Y. Impact of urbanization on air quality in the Yangtze River Delta during the COVID-19 lockdown in China. J. Clean. Prod. 2021, 296, 126561. [Google Scholar] [CrossRef]
- Wu, C.; Wang, H.-W.; Cai, W.-J.; He, H.-D.; Ni, A.-N.; Peng, Z.-R. Impact of the COVID-19 lockdown on roadside traffic-related air pollution in Shanghai, China. Build. Environ. 2021, 194, 107718. [Google Scholar] [CrossRef]
- Jiang, S.; Cai, C. Unraveling the dynamic impacts of COVID-19 on metro ridership: An empirical analysis of Beijing and Shanghai, China. Transp. Policy 2022, 127, 158–170. [Google Scholar] [CrossRef]
- Zhong, H.; Wang, K.; Wang, W. Spatiotemporal pattern recognition and dynamical analysis of COVID-19 in Shanghai, China. J. Theor. Biol. 2022, 554, 111279. [Google Scholar] [CrossRef]
- Wu, J.; Yang, H.; Qin, Y.; Wu, J.; Yan, H.; Xu, Y.; Sun, X.; Zhang, L.; Liu, X. Change of daily life and depression among adults under stringent lockdown restrictions during COVID-19 pandemic in Shanghai, China. Asian J. Psychiatry 2023, 79, 103327. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Zhizhin, M.; Ghosh, T.; Hsu, F.C.; Taneja, J. Annual time series of global VIIRS nighttime lights derived from monthly averages:2012 to 2019. Remote Sens. 2021, 13, 922. [Google Scholar] [CrossRef]
- Deng, M.; Lai, G.; Li, Q.; Li, W.; Pan, Y.; Li, K. Impact analysis of COVID-19 pandemic control measures on nighttime light and air quality in cities. Remote Sens. Appl. Soc. Environ. 2022, 27, 100806. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, N.; Yang, S.; Jia, P. Associations between nighttime light and COVID-19 incidence and mortality in the United States. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102855. [Google Scholar] [CrossRef] [PubMed]
- Kim, D. Assessing regional economy in North Korea using nighttime light. Asia Glob. Econ. 2022, 2, 100046. [Google Scholar] [CrossRef]
- Li, J.; He, S.; Wang, J.; Ma, W.; Ye, H. Investigating the spatiotemporal changes and driving factors of nighttime light patterns in RCEP Countries based on remote sensed satellite images. J. Clean. Prod. 2022, 359, 131944. [Google Scholar] [CrossRef]
- Zheng, Q.; Weng, Q.; Wang, K. Characterizing urban land changes of 30 global megacities using nighttime light time series stacks. ISPRS J. Photogramm. Remote Sens. 2021, 173, 10–23. [Google Scholar] [CrossRef]
- Straka, W.; Kondragunta, S.; Wei, Z.; Zhang, H.; Miller, S.; Watts, A. Examining the Economic and Environmental Impacts of COVID-19 Using Earth Observation Data. Remote Sens. 2021, 13, 5. [Google Scholar] [CrossRef]
- Anand, A.; Kim, D. Pandemic Induced Changes in Economic Activity around African Protected Areas Captured through Night-Time Light Data. Remote Sens. 2021, 13, 314. [Google Scholar] [CrossRef]
- Li, C.; Li, X.; Zhu, C. Night-Time Skyglow Dynamics during the COVID-19 Epidemic in Guangbutun Region of Wuhan City. Remote Sens. 2022, 14, 4451. [Google Scholar] [CrossRef]
- Hayakawa, K.; Keola, S.; Urata, S. How effective was the restaurant restraining order against COVID-19? A nighttime light study in Japan. Jpn. World Econ. 2022, 63, 101136. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, J.; Wang, Y.; Huang, Q.; He, C. Quantifying spatiotemporal patterns of shrinking cities in urbanizing China: A novel approach based on time-series nighttime light data. Cities 2021, 118, 103346. [Google Scholar] [CrossRef]
- Xue, R.; Wang, S.; Zhang, S.; Zhan, J.; Zhu, J.; Gu, C.; Zhou, B. Ozone Pollution of Megacity Shanghai during City-Wide Lockdown Assessed Using TROPOMI Observations of NO2 and HCHO. Remote Sens. 2022, 14, 6344. [Google Scholar] [CrossRef]
- Ma, Q.; Wang, J.; Xiong, M.; Zhu, L. Air Quality Index (AQI) Did Not Improve during the COVID-19 Lockdown in Shanghai, China, in 2022, Based on Ground and TROPOMI Observations. Remote Sens. 2023, 15, 1295. [Google Scholar] [CrossRef]
- Tian, S.; Feng, R.; Zhao, J.; Wang, L. An Analysis of the Work Resumption in China under the COVID-19 Epidemic Based on Night Time Lights Data. ISPRS Int. J. Geo-Inf. 2021, 10, 614. [Google Scholar] [CrossRef]
Yangtze River Delta | |||||
---|---|---|---|---|---|
Shanghai | Jiangsu | Zhejiang | Anhui | ||
MNLR change classification | <−10 | 557.75 | 796.50 | 917.25 | 167.00 |
−10–−8 | 319.25 | 561.25 | 512.75 | 132.75 | |
−8–−6 | 472.50 | 1048.75 | 904.25 | 280.50 | |
−6–−4 | 654.00 | 2080.00 | 1710.00 | 646.00 | |
−4–−2 | 977.00 | 4720.25 | 3971.25 | 1562.50 | |
−2–0 | 4071.50 | 72,007.50 | 62,194.00 | 92,032.25 | |
>0 | 1006.25 | 21,326.00 | 34,740.00 | 45,275.75 | |
Total | 8058.25 | 102,540.25 | 104,949.50 | 140,096.75 |
Yangtze River Delta | |||||
---|---|---|---|---|---|
Shanghai | Jiangsu | Zhejiang | Anhui | ||
MNLR change classification | <−10 | 42.75 | 500.00 | 183.75 | 128.00 |
−10–−8 | 29.75 | 330.00 | 138.00 | 103.75 | |
−8–−6 | 66.50 | 633.25 | 277.75 | 213.75 | |
−6–−4 | 163.75 | 1185.75 | 669.00 | 439.75 | |
−4–−2 | 342.25 | 2712.00 | 1818.25 | 1114.25 | |
−2–0 | 1128.25 | 29,639.25 | 33,715.00 | 40,980.25 | |
>0 | 6285.00 | 67,540.00 | 68,147.75 | 97,117.00 | |
Total | 8058.25 | 102,540.25 | 104,949.50 | 140,096.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, L.; Liu, Y. China’s Largest City-Wide Lockdown: How Extensively Did Shanghai COVID-19 Affect Intensity of Human Activities in the Yangtze River Delta? Remote Sens. 2023, 15, 1989. https://doi.org/10.3390/rs15081989
Jiang L, Liu Y. China’s Largest City-Wide Lockdown: How Extensively Did Shanghai COVID-19 Affect Intensity of Human Activities in the Yangtze River Delta? Remote Sensing. 2023; 15(8):1989. https://doi.org/10.3390/rs15081989
Chicago/Turabian StyleJiang, Luguang, and Ye Liu. 2023. "China’s Largest City-Wide Lockdown: How Extensively Did Shanghai COVID-19 Affect Intensity of Human Activities in the Yangtze River Delta?" Remote Sensing 15, no. 8: 1989. https://doi.org/10.3390/rs15081989
APA StyleJiang, L., & Liu, Y. (2023). China’s Largest City-Wide Lockdown: How Extensively Did Shanghai COVID-19 Affect Intensity of Human Activities in the Yangtze River Delta? Remote Sensing, 15(8), 1989. https://doi.org/10.3390/rs15081989