A Near-Real-Time Flood Detection Method Based on Deep Learning and SAR Images
Abstract
:1. Introduction
- (1)
- As a data-driven algorithm, deep learning for flood detection lacks the support of big data;
- (2)
- Generation of training data for deep learning is currently a labor-intensive and time-consuming task. Discovering a method to efficiently generate representative training datasets for deep learning is an issue worth studying;
- (3)
- Most flood detection methods developed in the past are aimed at a single flood event, but they are difficult to transfer and reuse for other flood events.
- (1)
- An efficient and fast approach for generating a standard flood training dataset for flood detection with deep learning was proposed;
- (2)
- Two kinds of standard flood training datasets generated by the proposed approach, namely a strong and weak labeled dataset, were used to evaluate the performances of several CNNs;
- (3)
- Large-scale flood detection in the YRB was attempted with deep learning models.
2. Materials and Methods
2.1. Study Area and Data
2.2. Method
2.2.1. Dataset Production Method
2.2.2. Deep Learning Models Adopted for Experimental Studies
2.2.3. Evaluation Metrics and Experimental Parameters
3. Experimental Results
3.1. Model Comparison Experiment
3.2. Band Comparison Experiments
3.3. Near-Real-Time Flood Detection and Mapping
4. Discussion
4.1. Weak Label Datasets Experiments
- (1)
- Performances of the UNet and DeepResUNet were fairly close with each other, while FCN had the lowest flood detection accuracy;
- (2)
- The VH polarization band as input for the deep learning models performed the best in flood detection, while the DEM had a very minor affect on the results of flood detection.
4.2. Change Detection Method
- (1)
- The selection of areas with high classification accuracy to prevent noise interference;
- (2)
- Just like the weak label dataset, some of the unchanged data labels need to be eliminated;
- (3)
- The proportion of positive and negative training samples should be balanced, or a special loss function, such as dice loss, needs to be considered.
4.3. Novelty, Potential, and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Near-Real-Time Flood Detection Results
References
- EM-DAT. EM-DAT: The International Disaster Database. 2008. Available online: http://www.emdat.be/Database/Trends/trends.html (accessed on 22 November 2022).
- Tanoue, M.; Hirabayashi, Y.; Ikeuchi, H. Global-scale river flood vulnerability in the last 50 years. Sci. Rep. 2016, 6, 36021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willner, S.N.; Otto, C.; Levermann, A. Global economic response to river floods. Nat. Clim. Chang. 2018, 8, 594–598. [Google Scholar] [CrossRef]
- Zhang, X.; Chan, N.W.; Pan, B.; Ge, X.; Yang, H. Mapping flood by the object-based method using backscattering coefficient and interference coherence of Sentinel-1 time series. Sci. Total Environ. 2021, 794, 148388. [Google Scholar] [CrossRef]
- Yang, H.; Wang, H.; Lu, J.; Zhou, Z.; Feng, Q.; Wu, Y. Full lifecycle monitoring on drought-converted catastrophic flood using sentinel-1 sar: A case study of poyang lake region during summer 2020. Remote Sens. 2021, 13, 3485. [Google Scholar] [CrossRef]
- Martinis, S.; Kersten, J.; Twele, A. A fully automated TerraSAR-X based flood service. ISPRS J. Photogramm. Remote Sens. 2015, 104, 203–212. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Wu, J. Mapping spatio-temporal flood inundation dynamics at large riverbasin scale using time-series flow data and MODIS imagery. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 350–362. [Google Scholar] [CrossRef]
- Sakamoto, T.; Van Nguyen, N.; Kotera, A.; Ohno, H.; Ishitsuka, N.; Yokozawa, M. Detecting temporal changes in the extent of annual flooding within the Cambodia and the Vietnamese Mekong Delta from MODIS time-series imagery. Remote Sens. Environ. 2007, 109, 295–313. [Google Scholar] [CrossRef]
- Cian, F.; Marconcini, M.; Ceccato, P. Normalized Difference Flood Index for rapid flood mapping: Taking advantage of EO big data. Remote Sens. Environ. 2018, 209, 712–730. [Google Scholar] [CrossRef]
- McCormack, T.; Campanyà, J.; Naughton, O. A methodology for mapping annual flood extent using multi-temporal Sentinel-1 imagery. Remote Sens. Environ. 2022, 282, 113273. [Google Scholar] [CrossRef]
- Boni, G.; Ferraris, L.; Pulvirenti, L.; Squicciarino, G.; Pierdicca, N.; Candela, L.; Pisani, A.R.; Zoffoli, S.; Onori, R.; Proietti, C.; et al. A Prototype System for Flood Monitoring Based on Flood Forecast Combined with COSMO-SkyMed and Sentinel-1 Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2794–2805. [Google Scholar] [CrossRef]
- Mason, D.C.; Davenport, I.J.; Neal, J.C.; Schumann, G.J.P.; Bates, P.D. Near real-time flood detection in urban and rural areas using high-resolution synthetic aperture radar images. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3041–3052. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Martinis, S.; Plank, S.; Ludwig, R. An automatic change detection approach for rapid flood mapping in Sentinel-1 SAR data. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 123–135. [Google Scholar] [CrossRef]
- Martinis, S.; Twele, A.; Voigt, S. Unsupervised extraction of flood-induced backscatter changes in SAR data using markov image modeling on irregular graphs. IEEE Trans. Geosci. Remote Sens. 2011, 49, 251–263. [Google Scholar] [CrossRef]
- Wangchuk, S.; Bolch, T.; Robson, B.A. Monitoring glacial lake outburst flood susceptibility using Sentinel-1 SAR data, Google Earth Engine, and persistent scatterer interferometry. Remote Sens. Environ. 2022, 271, 112910. [Google Scholar] [CrossRef]
- Tsyganskaya, V.; Martinis, S.; Marzahn, P.; Ludwig, R. Detection of temporary flooded vegetation using Sentinel-1 time series data. Remote Sens. 2018, 10, 1286. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Pelich, R.; Hostache, R.; Matgen, P.; Wagner, W.; Chini, M. A large-scale 2005–2012 flood map record derived from ENVISAT-ASAR data: United Kingdom as a test case. Remote Sens. Environ. 2021, 256, 112338. [Google Scholar] [CrossRef]
- Chen, S.; Huang, W.; Chen, Y.; Feng, M. An adaptive thresholding approach toward rapid flood coverage extraction from sentinel-1 SAR imagery. Remote Sens. 2021, 13, 4899. [Google Scholar] [CrossRef]
- Liang, J.; Liu, D. A local thresholding approach to flood water delineation using Sentinel-1 SAR imagery. ISPRS J. Photogramm. Remote Sens. 2020, 159, 53–62. [Google Scholar] [CrossRef]
- Nakmuenwai, P.; Yamazaki, F.; Liu, W. Automated extraction of inundated areas from multi-temporal dual-polarization radarsat-2 images of the 2011 central Thailand flood. Remote Sens. 2017, 9, 78. [Google Scholar] [CrossRef] [Green Version]
- Qiu, J.; Cao, B.; Park, E.; Yang, X.; Zhang, W.; Tarolli, P. Flood monitoring in rural areas of the pearl river basin (China) using sentinel-1 SAR. Remote Sens. 2021, 13, 1384. [Google Scholar] [CrossRef]
- Martinis, S.; Twele, A. A hierarchical spatio-temporal Markov model for improved flood mapping using multi-temporal X-band SAR data. Remote Sens. 2010, 2, 2240–2258. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Giustarini, L.; Xiong, B.; Zhao, L.; Jiang, Y.; Kuang, G. Automated flood detection with improved robustness and efficiency using multi-temporal SAR data. Remote Sens. Lett. 2014, 5, 240–248. [Google Scholar] [CrossRef]
- Lin, L.; Di, L.; Tang, J.; Yu, E.; Zhang, C.; Rahman, M.S.; Shrestha, R.; Kang, L. Improvement and validation of NASA/MODIS NRT global flood mapping. Remote Sens. 2019, 11, 205. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Anagnostou, E.N.; Allen, G.H.; Robert Brakenridge, G.; Kettner, A.J. Near-real-time non-obstructed flood inundation mapping using synthetic aperture radar. Remote Sens. Environ. 2019, 221, 302–315. [Google Scholar] [CrossRef]
- Konapala, G.; Kumar, S.V.; Khalique Ahmad, S. Exploring Sentinel-1 and Sentinel-2 diversity for flood inundation mapping using deep learning. ISPRS J. Photogramm. Remote Sens. 2021, 180, 163–173. [Google Scholar] [CrossRef]
- Byun, Y.; Han, Y.; Chae, T. Image fusion-based change detection for flood extent extraction using bi-temporal very high-resolution satellite images. Remote Sens. 2015, 7, 10347–10363. [Google Scholar] [CrossRef] [Green Version]
- Chini, M.; Hostache, R.; Giustarini, L.; Matgen, P. A hierarchical split-based approach for parametric thresholding of SAR images: Flood inundation as a test case. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6975–6988. [Google Scholar] [CrossRef]
- Landuyt, L.; Van Wesemael, A.; Schumann, G.J.P.; Hostache, R.; Verhoest, N.E.C.; Van Coillie, F.M.B. Flood Mapping Based on Synthetic Aperture Radar: An Assessment of Established Approaches. IEEE Trans. Geosci. Remote Sens. 2019, 57, 722–739. [Google Scholar] [CrossRef]
- Tiwari, V.; Kumar, V.; Matin, M.A.; Thapa, A.; Ellenburg, W.L.; Gupta, N.; Thapa, S. Flood inundation mapping-Kerala 2018; Harnessing the power of SAR, automatic threshold detection method and Google Earth Engine. PLoS ONE 2020, 15, e0237324. [Google Scholar] [CrossRef]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, G.; Amankwah, S.O.Y.; Wei, X.; Hu, Y.; Feng, A. Monitoring the summer flooding in the Poyang Lake area of China in 2020 based on Sentinel-1 data and multiple convolutional neural networks. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102400. [Google Scholar] [CrossRef]
- Bonafilia, D.; Tellman, B.; Anderson, T.; Issenberg, E. Sen1Floods11: A georeferenced dataset to train and test deep learning flood algorithms for sentinel-1. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 835–845. [Google Scholar] [CrossRef]
- Bai, Y.; Wu, W.; Yang, Z.; Yu, J.; Zhao, B.; Liu, X.; Yang, H.; Mas, E.; Koshimura, S. Enhancement of detecting permanent water and temporary water in flood disasters by fusing sentinel-1 and sentinel-2 imagery using deep learning algorithms: Demonstration of sen1floods11 benchmark datasets. Remote Sens. 2021, 13, 2220. [Google Scholar] [CrossRef]
- Katiyar, V.; Tamkuan, N.; Nagai, M. Near-real-time flood mapping using off-the-shelf models with sar imagery and deep learning. Remote Sens. 2021, 13, 2334. [Google Scholar] [CrossRef]
- Zhang, L.; Xia, J. Flood detection using multiple Chinese satellite datasets during 2020 China summer floods. Remote Sens. 2022, 14, 51. [Google Scholar] [CrossRef]
- Li, Y.; Martinis, S.; Wieland, M. Urban flood mapping with an active self-learning convolutional neural network based on TerraSAR-X intensity and interferometric coherence. ISPRS J. Photogramm. Remote Sens. 2019, 152, 178–191. [Google Scholar] [CrossRef]
- Tian, H.; Li, W.; Wu, M.; Huang, N.; Li, G.; Li, X.; Niu, Z. Dynamic monitoring of the largest freshwater lake in China using a new water index derived from high spatiotemporal resolution sentinel-1A data. Remote Sens. 2017, 9, 521. [Google Scholar] [CrossRef] [Green Version]
- Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 640–651. [Google Scholar] [CrossRef] [PubMed]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. Computer U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015. [Google Scholar] [CrossRef]
- Yi, Y.; Zhang, Z.; Zhang, W.; Zhang, C.; Li, W.; Zhao, T. Semantic segmentation of urban buildings from VHR remote sensing imagery using a deep convolutional neural network. Remote Sens. 2019, 11, 1774. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Yuan, Z.; Du, Q.; Li, X. GETNET: A General End-To-End 2-D CNN Framework for Hyperspectral Image Change Detection. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Yue, P.; Tapete, D.; Jiang, L.; Shangguan, B.; Huang, L.; Liu, G. A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images. ISPRS J. Photogramm. Remote Sens. 2020, 166, 183–200. [Google Scholar] [CrossRef]
- Hou, X.; Bai, Y.; Li, Y.; Shang, C.; Shen, Q. High-resolution triplet network with dynamic multiscale feature for change detection on satellite images. ISPRS J. Photogramm. Remote Sens. 2021, 177, 103–115. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, Z.; Zhang, W.; Zhang, C.; Xu, Q. Learning Multiscale Temporal-Spatial-Spectral Features via a Multipath Convolutional LSTM Neural Network for Change Detection with Hyperspectral Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5529816. [Google Scholar] [CrossRef]
- Mallinis, G.; Gitas, I.Z.; Giannakopoulos, V.; Maris, F.; Tsakiri-Strati, M. An object-based approach for flood area delineation in a transboundary area using ENVISAT ASAR and LANDSAT TM data. Int. J. Digit. Earth 2013, 6, 124–136. [Google Scholar] [CrossRef]
- Landuyt, L.; Verhoest, N.E.C.; Van Coillie, F.M.B. Flood mapping in vegetated areas using an unsupervised clustering approach on sentinel-1 and-2 imagery. Remote Sens. 2020, 12, 3611. [Google Scholar] [CrossRef]
- Ovando, A.; Martinez, J.M.; Tomasella, J.; Rodriguez, D.A.; von Randow, C. Multi-temporal flood mapping and satellite altimetry used to evaluate the flood dynamics of the Bolivian Amazon wetlands. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 27–40. [Google Scholar] [CrossRef]
Flood Events | Flood Period | Image ID | Train or Test | |
---|---|---|---|---|
Dongting Lake | 9 June 2016–3 July 2016 | 011CB0_5A05 | 0127C5_F17D | Train and Test |
Poyang Lake | 30 May 2016–17 July 2016 | 011822_A928 | 012E7C_86E8 | Train and Test |
Middle Reaches of the Yangtze River | 11 June 2016–5 July 2016 | 011D9A_0801 | 0128B9_886D | Train and Test |
Poyang Lake | 12 June 2017–6 July 2017 | 00A8F1_7632 | 00B2FB_3091 | Train and Test |
Juzhang River | 5 July 2018–29 July 2018 | 02747C_139D | 027F52_9A16 | Train and Test |
Huaihe River | 7 August 2018–19 August 2018 | 02836E_FDCB | 028919_2CEB | Train and Test |
Middle Reaches of the Yangtze River | 2 July 2019–14 July 2019 | 032778_40DE | 032CC4_6DEF | Train and Test |
Ruan Jiang | 30 July 2020–11 August 2020 | 03E75D_6DAE | 03ED1D_5ADE | Test |
Dongting Lake | 4 June 2017–10 July 2017 | 01C150_503B | 01D14B_23A9 | Application |
Poyang Lake | 20 June 2020–26 July 2020 | 029F8B_298B | 02AF8A_BF3A | Application |
Chaohu Lake | 3 July 2020–27 July 2020 | 03DB5D_91FD | 03E612_6A3E | Application |
Fujiang River | 14 August 2020–19 September 2020 | 03EE9F_8BAF | 04012C_41B2 | Application |
Dongting Lake | 19 June 2020–25 July 2020 | 03D52B_49F4 | 03E52E_6E8E | Application |
Middle and Lower Reaches of the Yangtze River | 14 June 2020–8 July 2020 | 03D2E0_90D3 | 03DD85_0B97 | Application |
Middle and Lower Reaches of the Yangtze River | 14 June 2020–8 July 2020 | 03D2E0_261F | 03DD85_725A | Application |
Upper Reaches of the Yangtze River | 16 August 2021–21 September 2021 | 04A272_97F5 | 04B46E_4D61 | Application |
Confusion Matrix | |||
Prediction | Water | No-Water | |
Label | |||
Water | True Positive (TP) | False Negative (FN) | |
No-Water | False Positive (FP) | True Negative (TN) | |
Evaluation Metrics | |||
Overall Accuracy (OA) | |||
Precision (P) | |||
Recall (R) | |||
F1-score (F) |
Model | OA | Precision | Recall | F1_Score |
---|---|---|---|---|
Global Threshold Method | 0.958 | 0.977 | 0.795 | 0.877 |
0.953 | 0.969 | 0.774 | 0.860 | |
FCN-8 | 0.974 | 0.943 | 0.970 | 0.956 |
0.961 | 0.881 | 0.939 | 0.909 | |
SegNet | 0.983 | 0.991 | 0.953 | 0.971 |
0.975 | 0.981 | 0.897 | 0.937 | |
UNet | 0.986 | 0.980 | 0.973 | 0.976 |
0.978 | 0.951 | 0.942 | 0.947 | |
DeepResUNet | 0.986 | 0.985 | 0.967 | 0.976 |
0.979 | 0.970 | 0.927 | 0.948 |
UNet/Band | OA | Precision | Recall | F1_Score |
---|---|---|---|---|
VH | 0.986 | 0.980 | 0.973 | 0.976 |
0.978 | 0.951 | 0.942 | 0.947 | |
VV | 0.976 | 0.985 | 0.933 | 0.958 |
0.961 | 0.972 | 0.835 | 0.898 | |
VH + DEM | 0.986 | 0.976 | 0.975 | 0.976 |
0.978 | 0.941 | 0.952 | 0.947 | |
VV + DEM | 0.977 | 0.966 | 0.954 | 0.960 |
0.964 | 0.934 | 0.886 | 0.909 | |
VH + VV | 0.983 | 0.980 | 0.961 | 0.971 |
0.971 | 0.966 | 0.889 | 0.926 | |
VH + VV + DEM | 0.981 | 0.988 | 0.948 | 0.968 |
0.968 | 0.979 | 0.865 | 0.918 |
Model | OA | Precision | Recall | F1_Score |
---|---|---|---|---|
FCN-8 | 0.948 | 0.897 | 0.909 | 0.903 |
SegNet | 0.955 | 0.912 | 0.917 | 0.914 |
UNet | 0.958 | 0.930 | 0.911 | 0.920 |
DeepResUNet | 0.958 | 0.927 | 0.912 | 0.919 |
UNet/Band | OA | Precision | Recall | F1_score |
VH | 0.958 | 0.930 | 0.911 | 0.920 |
VV | 0.952 | 0.914 | 0.904 | 0.910 |
VH + DEM | 0.958 | 0.933 | 0.905 | 0.919 |
VV + DEM | 0.953 | 0.918 | 0.902 | 0.910 |
VH + VV | 0.957 | 0.928 | 0.910 | 0.919 |
VH + VV + DEM | 0.955 | 0.922 | 0.908 | 0.915 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Zhang, Z.; Xiong, S.; Zhang, W.; Tang, J.; Li, Z.; An, B.; Li, R. A Near-Real-Time Flood Detection Method Based on Deep Learning and SAR Images. Remote Sens. 2023, 15, 2046. https://doi.org/10.3390/rs15082046
Wu X, Zhang Z, Xiong S, Zhang W, Tang J, Li Z, An B, Li R. A Near-Real-Time Flood Detection Method Based on Deep Learning and SAR Images. Remote Sensing. 2023; 15(8):2046. https://doi.org/10.3390/rs15082046
Chicago/Turabian StyleWu, Xuan, Zhijie Zhang, Shengqing Xiong, Wanchang Zhang, Jiakui Tang, Zhenghao Li, Bangsheng An, and Rui Li. 2023. "A Near-Real-Time Flood Detection Method Based on Deep Learning and SAR Images" Remote Sensing 15, no. 8: 2046. https://doi.org/10.3390/rs15082046
APA StyleWu, X., Zhang, Z., Xiong, S., Zhang, W., Tang, J., Li, Z., An, B., & Li, R. (2023). A Near-Real-Time Flood Detection Method Based on Deep Learning and SAR Images. Remote Sensing, 15(8), 2046. https://doi.org/10.3390/rs15082046