An Erosion-Based Approach Using Multi-Source Remote Sensing Imagery for Grassland Restoration Patterns in a Plateau Mountainous Region, SW China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Sources
2.2. Grassland Distribution Identification Based on the Random Forest Algorithm
2.3. CSLE Model
2.4. Grassland Regrowth Capacity and Net Primary Productivity
2.5. Overlay Analysis for Grassland Restoration Zoning
3. Results
3.1. Grassland Distribution Identification at the Regional Scale in Zhaotong
3.2. Spatial–Temporal Quantification of Grassland Erosion Using the CSLE Model
3.2.1. Distribution Characteristics of Soil Erosion Factors of CSLE
3.2.2. Spatial Distribution of Grassland Erosion in Zhaotong
3.2.3. Interaction between Rainfall and Vegetation Coverage, and Its Impact on Erosion
3.3. Grassland Regrowth Rate and Restoration Potential
3.4. Grassland Restoration Patterns
4. Discussion
4.1. Quantitative Assessment of the Grassland Restoration Patterns
4.2. Uncertainties
4.3. Future Challenges
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suttie, J.M.; Reynolds, S.G.; Batello, C. Grasslands of the World; Food and Agriculture Organization of the United Nations: Rome, Italy, 2005. [Google Scholar]
- Dengler, J.; Janišová, M.; Török, P.; Wellstein, C. Biodiversity of Palaearctic grasslands: A synthesis. Agric. Ecosyst. Environ. 2014, 182, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Wang, Y.; Piao, S.; Liu, M.; Han, G.; Li, J.; Liang, E.; Lee, T.M.; Liu, G.; Wilkes, A.; et al. Toward a sustainable grassland ecosystem worldwide. Innovation 2022, 3, 100265. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, Z.; Wu, J. Grassland ecosystem services: A systematic review of research advances and future directions. Landsc. Ecol. 2020, 35, 793–814. [Google Scholar] [CrossRef]
- Abberton, M.; Conant, R.; Batello, C. Grassland Carbon Sequestration: Management, Policy and Economics; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010. [Google Scholar]
- Gibbs, H.K.; Salmon, J.M. Mapping the world’s degraded lands. Appl. Geogr. 2005, 57, 12–21. [Google Scholar] [CrossRef]
- Török, P.; Brudvig, L.A.; Kollmann, J.; N Price, J.; Tóthmérész, B. The present and future of grassland restoration. Restor. Ecol. 2021, 29, e13378. [Google Scholar] [CrossRef]
- Gang, C.; Zhou, W.; Chen, Y.; Wang, Z.; Sun, Z.; Li, J.; Qi, J.G.; Odeh, I. Quantitative assessment of the contributions of climate change and human activities on global grassland degradation. Environ. Earth Sci. 2014, 72, 4273–4282. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Bullock, J.M.; Lavorel, S.; Manning, P.; Schaffner, U.; Ostle, N.; Chomel, M.; Durigan, G.; Fry, E.L.; Johnson, D.; et al. Combatting global grassland degradation. Nat. Rev. Earth Environ. 2021, 2, 720–735. [Google Scholar] [CrossRef]
- Ren, J.Z. Current condition and productive potential of grasslands in southern China. Acta Pratacult. Sin. 1999, 8, 23–31. (In Chinese) [Google Scholar]
- Wang, Z.; Ma, Y.; Zhang, Y.; Shang, J. Review of remote sensing applications in grassland monitoring. Remote Sens. 2022, 14, 2903. [Google Scholar] [CrossRef]
- Pettorelli, N.; Schulte to Bühne, H.; Tulloch, A.; Dubois, G.; Macinnis-Ng, C.; Queirós, A.M.; Keith, D.A.; Wegmann, M.; Schrodt, F.; Stellmes, M.; et al. Satellite remote sensing of ecosystem functions: Opportunities, challenges and way forward. Remote Sens. Ecol. Conserv. 2018, 4, 71–93. [Google Scholar] [CrossRef]
- Ali, I.; Cawkwell, F.; Dwyer, E.; Barrett, B.; Green, S. Satellite remote sensing of grasslands: From observation to management. J. Plant Ecol. 2016, 9, 649–671. [Google Scholar] [CrossRef] [Green Version]
- Becker, A.; Bugmann, H. Global change and mountain regions—An IGBP initiative for collaborative research. In Global Change and Protected Areas; Visconti, G., Beniston, M., Iannorelli, E.D., Barba, D., Eds.; Advance in Global Change Research: Laquila, Italy, 2001. [Google Scholar]
- Kräuchi, N.; Brang, P.; Schönenberger, W. Forests of mountainous regions: Gaps in knowledge and research needs. For. Ecol. Manag. 2000, 132, 73–82. [Google Scholar] [CrossRef]
- Andrade, B.O.; Koch, C.; Boldrini, I.I.; Vélez–Martin, E.; Hasenack, H.; Hermann, J.M.; Kollmann, J.; Pillar, V.D.; Overbeck, G.E. Grassland degradation and restoration: A conceptual framework of stages and thresholds illustrated by southern Brazilian grasslands. Nat. Conserv. 2015, 13, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Akiyama, T.; Kawamura, K. Grassland degradation in China: Methods of monitoring, management and restoration. Grassl. Sci. 2007, 53, 1–17. [Google Scholar] [CrossRef]
- Cheng, X.; Liu, W.; Zhou, J.; Wang, Z.; Zhang, S.; Liao, S. Extraction of mountain grasslands in yunnan, china, from sentinel–2 data during the optimal phenological period using feature optimization. Agronomy 2022, 12, 1948. [Google Scholar] [CrossRef]
- Li, Y.C.; Ge, J.; Hou, M.J.; Gao, H.Y.; Liu, J.; Bao, X.Y.; Yin, J.P.; Gao, J.L.; Feng, Q.S.; Liang, T.G. A study of the spatiotemporal dynamic of land cover types and driving forces of grassland area change in Gannan Prefecture and Northwest Sichuan based on CCI–LC data. Acta Pratacult. Sin. 2020, 29, 1–15. (In Chinese) [Google Scholar]
- Li, J.; Wen, G.; Li, D. Application of multi–source remote sensing image in yunnan province grassland resources investigation. Int. Arch. Photogram. Remote Sens. Spatial Inform. Sci. 2018, 42, 837–841. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.T.; Wang, X.; Wang, X.F. Study on the effect of training samples on the accuracy of crop remote sensing classification. Infrared Laser Eng. 2017, 46, 149–156. (In Chinese) [Google Scholar]
- Tang, J.; Alelyani, S.; Liu, H. Feature selection for classification: A review. In Data Classification, Algorithms and Applications; Routledge: New York, NY, USA, 2014. [Google Scholar]
- Kwak, N.; Choi, C.H. Input feature selection for classification problems. IEEE Trans. Neural Netw. 2002, 13, 143–159. [Google Scholar] [CrossRef]
- Zhang, H.; Shi, W.Z.; Wang, Y.J. Study on Reliable Classification Methods Based on Remotely Sensed Image; Surveying and Mapping Press: Beijing, China, 2006. [Google Scholar]
- Zhang, M.; Qian, Y.R.; Du, J.; Fan, Y.Y. The application of the convolution neural network to grassland classification in remote sensing images. J. Northeast Norm. Univ. Nat. Sci. Ed. 2019, 51, 53–58. (In Chinese) [Google Scholar]
- Senf, C.; Leitão, P.J.; Pflugmacher, D.; Linden, S.V.D.; Hostert, P. Mapping land cover in complex mediterranean landscapes using Landsat: Improved classification accuracies from integrating multi–seasonal and synthetic imagery. Remote Sens. Environ. 2015, 156, 527–536. [Google Scholar] [CrossRef]
- Liu, C.L.; Hsaio, W.H.; Tu, Y.C. Time series classification with multivariate convolutional neural network. IEEE Trans. Ind. Electron. 2018, 66, 4788–4797. [Google Scholar] [CrossRef]
- Hatami, N.; Gavet, Y.; Debayle, J. Classification of time–series images using deep convolutional neural networks. In Proceedings of the Tenth International Conference on Machine Vision, Vienna, Austria, 13–15 November 2018; pp. 242–249. [Google Scholar]
- Zhao, L.C.; Liu, R.T.; Yang, Y.H.; Li, Y.J.; Zhang, X.Q.; Sun, X.L. Study on the remote sensing classification of grasslands based on the topographic factors. Pratacult. Sci. 2006, 23, 26–30. (In Chinese) [Google Scholar]
- Yang, Z.S.; Liang, L.H. Soil erosion under different land use types and zones of Jinsha River Basin in Yunnan Province, China. J. Mt. Sci. 2004, 1, 46–56. [Google Scholar]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall–Erosion Losses from Cropland East of the Rocky Mountains: Guide for Selection of Practices for Soil and Water Conservation; US Government Printing Office: Washington, DC, USA, 1978; p. 33.
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); US Government Printing Office: Washington, DC, USA, 1997; p. 301.
- Liu, B.Y.; Zhang, K.L.; Xie, Y. An Empirical Soil Loss Equation. In Proceedings of the 12th ISCO Conference, Beijing, China, 26–31 May 2002; p. 143. [Google Scholar]
- Xie, Y.; Yue, T.Y. Application of soil erosion models for soil and water conservation. Sci. Soil Water Conserv. 2018, 16, 25–37. (In Chinese) [Google Scholar]
- Alewell, C.; Borrelli, P.; Meusburger, K.; Panagos, P. Using the USLE: Chances, challenges and limitations of soil erosion modelling. Int. Soil Water Conserv. Res. 2019, 7, 203–225. [Google Scholar] [CrossRef]
- Duan, X.; Bai, Z.; Rong, L.; Li, Y.; Ding, J.; Tao, Y.; Li, J.; Wang, W. Investigation method for regional soil erosion based on the Chinese Soil Loss Equation and high–resolution spatial data: Case study on the mountainous Yunnan Province, China. Catena 2020, 184, 104237. [Google Scholar] [CrossRef]
- Feng, J.X.; Chen, G.K.; Zuo, L.J.; Wen, Q.K.; Zhao, J.J.; Wang, Y.W. Quantitative evaluation and characteristic analysis of cultivated land erosion in mountain area using GF–6 WFV and CSLE model. Trans. CSAE 2022, 38, 169–179. (In Chinese) [Google Scholar]
- Liu, Y.; Zhang, Z.; Tong, L.; Khalifa, M.; Wang, Q.; Gang, C.; Wang, Z.; Li, J.; Sun, Z. Assessing the effects of climate variation and human activities on grassland degradation and restoration across the globe. Ecol. Indic. 2019, 106, 105504. [Google Scholar] [CrossRef]
- Wang, Y.; Ren, Z.; Ma, P.; Wang, Z.; Niu, D.; Fu, H.; Elser, J.J. Effects of grassland degradation on ecological stoichiometry of soil ecosystems on the Qinghai–Tibet Plateau. Sci. Total Environ. 2020, 722, 137910. [Google Scholar] [CrossRef]
- Laughlin, D.C. Applying trait–based models to achieve functional targets for theory–driven ecological restoration. Ecol. Lett. 2014, 17, 771–784. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.J.; Feng, Q.S.; Jin, Z.R.; Liu, J.; Zhao, Y.T.; Ge, J.; Liang, T.G. A study on restoration potential of degraded grassland on the Qinghai–Tibetan Plateau. Acta Pratacult. Sin. 2022, 31, 11–22. (In Chinese) [Google Scholar]
- Wang, K.L.; Wang, Z.H.; Xiao, P.Q.; Wang, T.S.; Zhang, P. Evaluation of restoration potential of shrubs–herbs–arbor vegetation coverage on the Loess Plateau based on the principle of water balance. Acta Ecol. Sin. 2022, 42, 8352–8364. (In Chinese) [Google Scholar]
- Reinermann, S.; Asam, S.; Kuenzer, C. Remote sensing of grassland production and management—A review. Remote Sens. 2020, 12, 1949. [Google Scholar] [CrossRef]
- Zhang, R.; Liang, T.; Guo, J.; Xie, H.; Feng, Q.; Aimaiti, Y. Grassland dynamics in response to climate change and human activities in Xinjiang from 2000 to 2014. Sci. Rep. 2018, 8, 2888. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Gang, C.; Zhou, F.; Li, J.; Dong, X.; Zhao, C. Quantitative assessment of the individual contribution of climate and human factors to desertification in northwest China using net primary productivity as an indicator. Ecol. Indic. 2015, 48, 560–569. [Google Scholar] [CrossRef]
- Li, Q.; Gao, S.; Zhang, C.; Wang, R.; Zhou, N.; Li, J.; Guo, Z.; Chang, C. Assessment of the impacts of climate change and human activities on the dynamic grassland change in Inner Mongolia. Geogr. Geo-Inf. Sci. 2019, 35, 99–104. [Google Scholar]
- Terwayet, B.O.; Zhang, W.; Terwayet, B.H. Assessment of drought characteristics and its impacts on net primary productivity (NPP) in southeastern Tunisia. Arab. J. Geosci. 2023, 16, 26. [Google Scholar] [CrossRef]
- Ghorbani, A.; Arzani, H.; Azizi, M.J.; Mostafazadeh, R. Modelling Above ground net primary production of Sabalan rangelands using vegetation index and non-linear regression. Rangeland 2022, 16, 33–51. [Google Scholar]
- Baeza, S.; Lezama, F.; Piñeiro, G.; Altesor, A.; Paruelo, J.M. Spatial variability of above-ground net primary production in Uruguayan grasslands: A remote sensing approach. Appl. Veg. Sci. 2010, 13, 72–85. [Google Scholar] [CrossRef]
- Franklin, S.E.; Lavigne, M.B.; Deuling, M.J.; Wulder, M.A.; Hunt Jr, E.R. Estimation of forest leaf area index using remote sensing and GIS data for modelling net primary production. Int. J. Remote Sens. 1997, 18, 3459–3471. [Google Scholar] [CrossRef]
- Chen, G.; Yu, C.Q.; Shen, Z.X.; Li, J.H. Grassland Quality Monitoring; Yunnan University Press: Kunming, China, 2018. [Google Scholar]
- Huangfu, J.Y.; Mao, F.X.; Lu, X.S. Analysis of grassland resources in southwest China. Acta Pratacult. Sin. 2012, 21, 75–82. (In Chinese) [Google Scholar]
- Cheng, X.B.; Yang, Z.S. Temporal and spatial variation characteristics and driving forces of land use in Zhaotong City of Yunnan Province. Bull. Soil Water Conserv. 2018, 38, 166–170. (In Chinese) [Google Scholar]
- Rao, J.; Li, X.C. Discussion on the status quo and countermeasures of the industrialization of animal husbandry in Zhaotong City. Contemp. Anim. Husb. 2016, 5, 78–79. (In Chinese) [Google Scholar]
- Liu, J.Y. Remote Sensing Spatiotemporal Information of Land Use Change in China in the 1990s; Science Press: Beijing, China, 2005; p. 26. [Google Scholar]
- Chen, J.; Liao, A.P.; Chen, J.; Peng, S.; Chen, L.J.; Zhang, H.W. 30–meter global land cover data product–Globeland30. Geomat. World 2017, 24, 1–8. [Google Scholar]
- Buchhorn, M.; Smets, B.; Bertels, L.; De Roo, B.; Lesiv, M.; Tsendbazar, N.E.; Li, L.; Tarko, A. Copernicus Global Land Service: Land Cover 100m: Version 3 Globe 2015–2019: Validation Report; Zenodo: Geneve, Switzerland, 2020. [Google Scholar]
- Zhang, X.; Liu, L.Y.; Chen, X.D.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global land–cover product with fine classification system at 30m using time–series Landsat imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- Gong, P.; Liu, H.; Zhang, M.N.; Li, C.C.; Wang, J.; Huang, H.B.; Clinton, N.; Ji, L.Y.; Li, W.Y.; Bai, Y.Q.; et al. Stable classification with limited sample: Transferring a 30–m resolution sample set collected in 2015 to mapping 10–m resolution global land cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.; Guo, Q.; Hu, T.; Guan, H.C.; Jin, S.C.; An, S.Z.; Chen, X.L.; Guo, K.; Hao, Z.Q.; Hu, Y.M.; et al. An updated vegetation map of China (1:1,000,000). Sci. Bull. 2020, 65, 1125–1136. [Google Scholar] [CrossRef]
- Yuan, Y.; Wen, Q.; Zhao, X.; Liu, S.; Zhu, K.; Hu, B. Identifying grassland distribution in a mountainous region in southwest China using multi–source remote sensing images. Remote Sens. 2022, 14, 1472. [Google Scholar] [CrossRef]
- Zhu, X.F.; Pan, Y.Z.; Zhang, J.S.; Wang, S.; Gu, X.H.; Xu, C. The Effects of training samples on the wheat planting area measure accuracy in TM scale (I): The accuracy response of different classifiers to training samples. J. Remote Sens. 2006, 11, 826–837. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Zhang, Z.; Guo, Q.; Wang, X.; Wen, Q. Quantitative assessment of soil erosion based on CSLE and the 2010 national soil erosion survey at regional scale in Yunnan Province of China. Sustainability 2019, 11, 3252. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Guo, S.; Li, Z.; Xie, Y.; Zhang, K.; Liu, X. Sampling survey of water erosion in China. Soil Water Conserv. China 2013, 8, 26–34. (In Chinese) [Google Scholar]
- Liu, B.; Xie, Y.; Li, Z.; Liang, Y.; Zhang, W.; Fu, S.; Yin, S.Q.; Wei, X.; Zhang, K.; Wang, Z.Q.; et al. The assessment of soil loss by water erosion in China. Int. Soil Water Conserv. Res. 2020, 8, 430–439. [Google Scholar] [CrossRef]
- Chen, G.K. Quantitative Assessment and Comparision of Soil Erosion by Water Based on Field Sampling Survey Data in China. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2019. [Google Scholar]
- Liu, B.Y.; Nearing, M.A.; Shi, P.J.; Jia, Z.W. Slope length effects on soil loss for steep slopes. Soil Sci. Soc. Am. J. 2000, 64, 1759–1763. [Google Scholar] [CrossRef] [Green Version]
- McCool, D.K.; Brown, L.C.; Foster, G.R.; Mutchler, C.K.; Meyer, L.D. Revised slope steepness factor for the universal soil loss equation. Trans. ASAE 1987, 30, 1387–1396. [Google Scholar] [CrossRef]
- Liu, B.Y.; Nearing, M.A.; Risse, L.M. Slope gradient effects on soil loss for steep slopes. Trans. ASAE 1994, 37, 1835–1840. [Google Scholar] [CrossRef]
- Jahelnabi, A.E.; Wu, W.; Boloorani, A.D.; Salem, H.M.; Nazeer, M.; Fadoul, S.M.; Khan, M.S. Assessment the influence of climate and human activities in vegetation degradation using GIS and remote sensing techniques. Contemp. Probl. Ecol. 2020, 13, 685–693. [Google Scholar] [CrossRef]
- Sun, Z.G.; Wu, J.S.; Liu, F.; Shao, T.Y.; Liu, X.B.; Chen, Y.Z.; Long, X.H.; Rengel, Z. Quantitatively assessing the effects of climate change and human activities on ecosystem degradation and restoration in southwest China. Rangel. J. 2019, 41, 335–344. [Google Scholar] [CrossRef]
- Li, H.; Hong, Y.; Deng, G.R.; Wu, R.H.; Zhang, H.Y.; Zhao, J.J.; Guo, X.Y. Impacts of climate change and human activities on net primary productivity of grasslands in Inner Mongolia, China during 1982–2015. J. Appl. Ecol. 2021, 32, 415–424. [Google Scholar]
- Duan, X.; Shi, X.; Li, Y.; Rong, L.; Fen, D. A new method to calculate soil loss tolerance for sustainable soil productivity in farmland. Agron. Sustain. Dev. 2017, 37, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Animal Husbandry Bureau of Yunnan Province. Yunnan Grassland Resources; Guizhou People’s Press: Guiyang, China, 1989. [Google Scholar]
Name | Resolution | Mapping Accuracy |
---|---|---|
1:100,000 land use data | 30 m | 85% |
GlobeLand30 data | 30 m | 83.50% |
CGLOPS–1 data | 100 m | 80% |
GLC_FCS30 data | 30 m | 82.50% |
FROMLC data | 10 m | 72.76% |
China 1:1,000,000 vegetation map | 30 m | 64.8% |
Name | Source | Resolution |
---|---|---|
NPP dataset (2000–2020) | GLASS products, University of Maryland (http://www.glass.umd.edu, accessed on 1 September 2022) | 500 m |
World Clim | https://www.worldclim.org/data/monthlywth.html, (accessed on 4 December 2022) | 1000 m |
Monthly temperature data | National Earth System Science Data Center | 1000 m |
Daily erosive rainfall events across three decades (1990–2020) | National Meteorological Data Sharing Center | Resampled to 10 m |
Soil erodibility | Beijing Normal University | Resampled to 10 m |
ALOS DEM data | https://search.asf.alaska.edu, (accessed on 28 February 2022) | 12.5 m |
Vegetation coverage | Sentinel images | 10 m |
Detailed soil conservation measures in PSUs | The Fourth National Soil Erosion Survey in China | 10 m |
Average Soil Erosion Rates t/(km2·a) | Restoration Potential (g C/m2) | Regrowth Rate (%) | |
---|---|---|---|
(Tolerate) | 1350 | A | B |
1350 | C | D | |
(Unsustainable) | 1350 | E | F |
1350 | G | H |
Erosion Intensity | Area (km2) | AP | SL (104 t) | SLP |
---|---|---|---|---|
Tolerant | 2076.47 | 40.46% | 59.83 | 11.53% |
Slight | 2631.77 | 51.29% | 291.84 | 56.24% |
Moderate | 350.98 | 6.84% | 116.54 | 22.46% |
Intensive | 56.39 | 1.10% | 34.29 | 6.61% |
Extremely intensive | 15.35 | 0.30% | 15.20 | 2.93% |
Severe | 0.71 | 0.01% | 1.20 | 0.23% |
Elevation (m) | Grassland Area (km2) | ER | SL (104 t) | SLP | |||||
---|---|---|---|---|---|---|---|---|---|
Tolerant | Slight | Moderate | Intensive | Extremely Intensive | Severe | ||||
<800 | 181.47 | 273.29 | 30.97 | 7.39 | 3.14 | 0.21 | 63.45% | 53.27 | 10.34% |
800–1200 | 358.01 | 467.84 | 72.19 | 10.54 | 3.80 | 0.21 | 60.77% | 98.31 | 19.07% |
1200–1600 | 499.50 | 476.44 | 68.54 | 11.08 | 2.81 | 0.13 | 52.81% | 99.33 | 19.27% |
1600–2000 | 478.89 | 399.93 | 63.71 | 10.83 | 2.38 | 0.10 | 49.90% | 87.32 | 16.94% |
2000–2400 | 285.91 | 420.01 | 54.60 | 9.12 | 2.11 | 0.05 | 62.96% | 80.24 | 15.57% |
>2400 | 265.83 | 585.70 | 57.57 | 6.08 | 0.80 | 0.01 | 70.98% | 96.91 | 18.80% |
Slope (°) | Grassland Area (km2) | ER | SL (104 t) | SLP | |||||
---|---|---|---|---|---|---|---|---|---|
Tolerant | Slight | Moderate | Intensive | Extremely Intensive | Severe | ||||
<10 | 326.51 | 84.79 | 3.06 | 0.38 | 0.07 | 0.00 | 21.29% | 15.04 | 2.91% |
10–20 | 657.52 | 570.88 | 41.11 | 5.66 | 1.21 | 0.03 | 48.49% | 94.34 | 18.27% |
20–30 | 541.58 | 784.79 | 90.33 | 13.56 | 3.43 | 0.11 | 62.23% | 145.05 | 28.09% |
30–40 | 327.91 | 647.47 | 100.91 | 16.06 | 4.46 | 0.19 | 70.11% | 133.58 | 25.87% |
40–50 | 159.83 | 367.96 | 72.27 | 12.08 | 3.48 | 0.17 | 74.04% | 84.36 | 16.34% |
>50 | 54.88 | 167.46 | 41.03 | 7.77 | 2.61 | 0.21 | 79.97% | 43.98 | 8.52% |
Month | January | February | March | April | May | June | July | August | September | October | Novermber | December |
---|---|---|---|---|---|---|---|---|---|---|---|---|
R | 0.11% | 0.17% | 0.54% | 1.78% | 6.00% | 22.10% | 29.33% | 25.25% | 9.54% | 4.75% | 0.43% | 0 |
FVC | 42.13% | 40.71% | 38.85% | 48.48% | 49.78% | 58.00% | 68.96% | 72.80% | 70.35% | 69.57% | 56.71% | 48.81% |
Soil Erosion | 0.29% | 0.47% | 1.59% | 3.84% | 12.59% | 35.23% | 21.76% | 14.15% | 6.44% | 3.15% | 0.49% | 0 |
Region | Area (km2) and Percentage | Restoration Patterns |
---|---|---|
A | 343.95 (8.95%) | High RP–High RR–Tolerant SE, achieve better restoration results without artificial promotion and special measures, natural repair. |
B | 242.21 (6.30%) | High RP–Low RR–Tolerant SE, demand a longer closure protection time cycle for restoration. |
C | 770.86 (20.05%) | Low RP–High RR–Tolerant SE, with better quality grass and less space for restoration, grazing according to topography and climate. |
D | 108.41 (2.82%) | Low RP–Low RR–Tolerant SE, mowing and grazing while cultivating and improving grassland. |
E | 664.91 (17.29%) | High RP–High RR–Serious SE, unsustainable, methods, such as slope sealing and grass cultivation, moderate grazing, etc., should be adopted to restore its ecological function. |
F | 653.21 (16.99%) | High RP–Low RR–Serious SE, unsustainable, demand multifaceted human intervention to achieve the desired ecological structure. |
G | 890.07 (23.15%) | Low RP–High RR–Serious SE, unsustainable, protection should be the main focus to strengthen vegetation restoration. |
H | 171.25 (4.45%) | Low RP–Low RR–Serious SE, unsustainable, demand urgent human intervention, adopt active soil conservation measures, such as fence sealing and artificial grass planting, to promote soil nutrients and productivity. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.; Wang, Y.; Wen, Q.; Zuo, L.; Zhao, J. An Erosion-Based Approach Using Multi-Source Remote Sensing Imagery for Grassland Restoration Patterns in a Plateau Mountainous Region, SW China. Remote Sens. 2023, 15, 2047. https://doi.org/10.3390/rs15082047
Chen G, Wang Y, Wen Q, Zuo L, Zhao J. An Erosion-Based Approach Using Multi-Source Remote Sensing Imagery for Grassland Restoration Patterns in a Plateau Mountainous Region, SW China. Remote Sensing. 2023; 15(8):2047. https://doi.org/10.3390/rs15082047
Chicago/Turabian StyleChen, Guokun, Yiwen Wang, Qingke Wen, Lijun Zuo, and Jingjing Zhao. 2023. "An Erosion-Based Approach Using Multi-Source Remote Sensing Imagery for Grassland Restoration Patterns in a Plateau Mountainous Region, SW China" Remote Sensing 15, no. 8: 2047. https://doi.org/10.3390/rs15082047
APA StyleChen, G., Wang, Y., Wen, Q., Zuo, L., & Zhao, J. (2023). An Erosion-Based Approach Using Multi-Source Remote Sensing Imagery for Grassland Restoration Patterns in a Plateau Mountainous Region, SW China. Remote Sensing, 15(8), 2047. https://doi.org/10.3390/rs15082047