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Abstract: Satellite remote sensing of grassland ecosystem restoration requires considering both the
above-ground biomass and soil information, and the latter is even more crucial due to the value and
restoration difficulty of soil productivity. In this study, we proposed an approach to support the
restoration pattern for mountainous grasslands at regional scale. The approach integrates different
aspects and key processes, including degradation status, restoration potential and recovery capability,
compared to a reference state. Specifically, we illustrated the method with the case of grasslands in
southwestern China from a conservation perspective. Soil erosion conditions, net primary productiv-
ity and regrowth rate of grasslands were selected as indicators to reveal restoration possibilities. The
results showed that the method proposed for remote sensing identification of grassland distribution
has an overall accuracy of 88.21% at the regional scale. 59.54% of grasslands in Zhaotong are being
eroded with an unsustainable erosion rate greater than the tolerant soil loss, and the average annual
soil erosion rate is 952.17 t/(km2·a). Meanwhile, there is obvious spatial heterogeneity in soil erosion
factors, vegetation restoration potential and regrowth rate, and the dry–hot valley of Jinsha River
in the southwest is much more sensitive to climate change and vulnerable than other regions. The
grassland vegetation cover revealed a fluctuating trend and protection of grassland vegetation on soil
from erosion has an obvious lag, restoration efforts should be focused on the months before the arrival
of the rainy season. In light of various grassland types, the overlay zoning results suggest various
restoration patterns of natural repair and manual intervention should be employed for different
grasslands. Urgent action is needed to face the challenge and process of grassland degradation and
restore its sustainability with shared understanding by taking the stakeholders, collaborations and
mutual relationships among different roles into account (e.g., scientist, government and herdsman).

Keywords: CSLE model; grassland erosion; random forest; remote sensing identification; restoration
mode; restoration potential

1. Introduction

Grasslands support a large fraction of terrestrial biodiversity and take up about 40%
of the Earth’s land area [1,2], and play essential roles in conserving soil and water, ensuring
food security and creating a strong ecological barrier [3–5]. However, due to agriculture,
urbanization, invasive species, climate change and human activities, about 49% of the
grasslands worldwide have been degraded to varying degrees [6–8], posing a major threat
to the ecosystem functions and services maintaining, which further hinders the achievement
of goals such as the United Nations Decade on Ecosystem Restoration and the Sustainable
Development Goals (SDGs) [3]. In southern China, grasslands are mostly distributed
in the mountainous or hilly regions such as Yunnan, Guizhou and Sichuan. They are
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large in area, evergreen during all seasons, high in grass yield and have both production
and ecological functions. Despite the importance of the grassland ecosystem and the
environmental implications of its degradation, the status quo is not taken seriously [9].
Subjected to hydrothermal and topographic conditions, the restoration efforts in southern
China are insufficient, and the development of the grassland-related industry is slow [10].
To some extent, the restoration of grassland in southern China is a major breakthrough in
the construction of sustainable grassland husbandry, given the challenging conditions of
continuous degradation and desertification of the northern grasslands.

So far, the causes, consequences and processes of grassland restoration have been
widely studied from different perspectives with various indicators [11]. However, vast
grasslands continue to degrade, and the restoration effect has no uniform law. The effect
of a single restoration measure for grassland ecosystems is limited, and the effect of the
same restoration measure varies greatly under different circumstances, which makes it
difficult to choose and learn from practical application. The major reasons behind it can be
summarized as follows [3,7,12,13]: Firstly, the complex broken plateau mountainous terrain,
the cloudy and rainy weather and data availability bring difficulties to the identification of
detailed grassland distribution at the regional scale. Besides, remote sensing assessment
of grassland degradation has been hampered by differences in definitions, classifications,
inconsistencies in the drivers of different types of degradation across and within regions, as
well as limited linkages between satellites and those unobserved variables [3]. Meanwhile,
grasslands have inconsistent interests from different perspectives and roles. Different
stakeholders need different functions and services from grasslands, carbon sequestration,
biodiversity, products and the raw materials produced, but it is impossible to get all of them
from one place [14]. Besides, there is a lack of shared understanding on grassland policies
and regulations for long-term sustainability among different roles. Lastly, mountainous
areas are more sensitive to climate change and human activities, which has accelerated this
degradation to a greater extent than any other areas [14,15].

Therefore, it is necessary to propose an approach to achieve regional or large-scale
grassland restoration goals [9,16], and the approach should consider regional ecological
environmental characteristics (such as vegetation dynamics, precipitation, topography
and soil condition), the causes of grassland degradation, the influence of climate change
and human activities on grassland, the recovery mechanisms and capabilities of different
ecosystem types, and finally formulate targeted ecological restoration modes for different
types of grasslands [9,17]. Specifically, for the plateau mountainous areas, several aspects
should be highlighted, to clarify the spatial distribution of grasslands at the regional scale
with high resolution, to evaluate driving factors and the degree of grassland degradation,
and to describe the grassland restoration potential and space and speed quantitatively.
Only in this way can we optimize the community structure accurately, and improve the
functions, biodiversity and stability of the grassland ecosystems.

Regional-scale grassland monitoring is the premise and basis for the scientific utiliza-
tion of grasslands and implementation of ecological restoration. As grasslands in plateau
mountainous areas are generally fragmented, it is difficult to identify them only through
field surveys or medium–low resolution optical remote sensing imagery [18]. In addition,
existing grassland distribution data are mainly retrieved from national or global land
cover datasets, and the accuracy cannot meet the needs of targeted research [19,20]. Thus,
constructing an integrated remote sensing method to accurately identify the distribution
of fragmented grasslands is of great importance. Related studies confirmed that the accu-
racy of remote sensing classification largely depends on sample selection and the input
features [21–23]. The spatial uniformed sample selection is well representative, which
can cause positive impacts on classification results [24,25]. Meanwhile, using time series
features as input features can effectively solve the problem of the ‘same spectrum but
different objects’ [26–28], and adding terrain features of the grassland distribution is also
crucial to improve the classification accuracy [29].
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For grassland degradation itself, any definition of it is essentially a grassland sus-
tainability issue [3]. Vegetation is closely related to soil. Vegetation degradation will lead
to soil degradation and environmental degradation. Soil degradation and harsh environ-
ments will further aggravate vegetation degradation, showing a vicious cycle. Therefore,
a good soil ecosystem is the fundamental guarantee for the sustainability of mountain
vegetation. At present, soil erosion is the most important land degradation problem in
mountainous areas of southern China [30]. Many scholars have used empirical models,
such as USLE [31], RUSLE [32] and CSLE [33], to monitor soil erosion in different regions
and spatial ranges. Nevertheless, there are still some shortcomings, since most models are
developed based on a large number of plots or slope observation data. When applied at
the regional scale or larger scales, the establishment conditions of model, the characteristics
of the applicable objects and the requirements for input variables or parameters should
be simplified accordingly, and the reliability of the results is often questioned [34,35]. Re-
stricted by the heterogeneity and interaction of erosion factors, the data access and quality
in plateau and mountainous areas have become the bottleneck of quantification of erosion
at large scales [36,37]. Lastly, most soil erosion assessments focus on cultivated land using
multi-year average erosion modulus as a quantitative index, and the analysis of soil loss
across seasons is insufficient. To some extent, a fine quantification of grassland erosion can
not only reflect the degradation degree, trend and limiting factors of the grassland, but also
the basis for timely, appropriate and moderate ecological restoration in the future.

Grassland restoration should also answer the questions of whether ecological restora-
tion is natural restoration or manual intervention, when, where and to what extent of the
efforts should be made. When faced with a degraded ecosystem, the first consideration
is to determine its ability to revert to a certain targeted condition, that is, to evaluate the
magnitude of the restoration potential [38,39]. For studies of vegetation’s restoration po-
tential (RP), the restoration target is usually defined according to the principle of ‘habitat
similarity’, and the RP is often determined by measuring the ‘gap’ between the degraded
community and the reference community [40,41]. These methods are simple and feasible,
but fail to fully consider the impact of micro-topographic changes on habitat conditions,
and are impracticable at the regional scale [42]. With the quick development of satellite and
remote sensing technology, high-resolution remote sensing images are capable of quantify-
ing vegetation cover, biomass, productivity and other surface characteristics [13,43]. As
climate change and human activities are two major factors leading to changes in terrestrial
ecosystems [44,45] and the net primary productivity (NPP), which is the total organic
matter amount accumulated by plants through photosynthetic conversion, can accurately
reflect these two factors [46]. Until now, there have been several methods to estimate NPP,
such as the normalized difference vegetation index (NDVI), the enhanced vegetation index
(EVI), the soil-adjusted vegetation index (SAVI) and the fraction of photosynthetically active
radiation (FPAR) and leaf area index (LAI), among which NDVI may be the most effective
one to reflect the restoration potential [3,47–50]. As for the recovery speed of grasslands, it
is usually represented by the regrowth rate and determined by the hydrothermal conditions
of the region.

Yunnan province harbors most of the biodiversity in China due to diverse climatic
conditions and various ecosystems. Nevertheless, with the interference of socio-economic
activities, the grassy hills and slope patches have been demonstrated with degrading
features, such as a low grass layer, sparse vegetation and low grass yield [51], which is quite
representative for mountainous grasslands in Southern China. The aim of this study is to
propose a grassland restoration approach based on the restoration goal, realization speed,
space and limiting factors of grassland degradation. Specifically, we aimed to monitor
and identify grasslands, quantify grassland erosion, evaluate the restoration potential and
regrowth rate and further clarify the grassland restoration pattern quantitatively with the
aid of field investigation and multi-source remote sensing imageries.
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2. Materials and Methods
2.1. Study Area and Data Sources

Yunnan province has the largest proportion of natural grasslands in southwest China,
with an area of 134,630 km2, accounting for about 37.84% of the southwest grassland area [52].
The Zhaotong municipality in Yunnan has a relatively dense distribution of grassland, and
was selected as the study area (Figure 1). Zhaotong lies between 102◦52′–105◦19′E and 26◦55′–
28◦36′N, on the right bank of the lower reaches of the Jinsha River (main stream of the Yangtze
River) and in the foothills of the Wumeng Mountains, with a total land area of 23,000 km2.
Located in the transition zone from the Sichuan Plain Basin to the uplifted Yunnan–Guizhou
Plateau, the altitude is high in the south and low in the north, and high mountains and
deep valleys characterize the region. The climate varies greatly at different altitudes, and
the spatial and temporal distribution of rainfall is extremely uneven, mainly concentrated
in the rainy season from May to October. The range of average annual temperature is
11–21 ◦C and the range of average annual precipitation is 660–1230 mm [53]. Soil erosion in
this region is extremely serious, mostly in the form of rainstorm and strong surface runoff.
Typical vegetation includes subtropical coniferous forests, broad-leaved forests, shrubs and
grasslands. The major soil groups (FAO/UNESCO classifications) in the study area are
Acrisols, Cambisols, Luvisols and Alisols. However, the current grassland husbandry scale in
the region is poor, with beef and sheep meat accounting for only 7.34% of total meat products
in the city, which has not yet fully utilized its vast grassland resources [54].

The critical data used for regional scale grassland identification in Zhaotong are listed
as follows: (1) the multi-source remote sensing data of Landsat–8/OLI (30 m), Sentinel–2
A/B (10 m), and Sentinel–1 (10 m) used to construct complete time series datasets, GF–1
(10 m) data obtained from the China Earth Observation Shared Data Platform; (2) ALOS
DEM with a spatial resolution of 12.5 m, obtained to acquire topographic input features;
(3) six non-homogenous remote sensing data [55–60] on grassland information used in the
sample selection, detailed information is shown in Table 1; (4) 117 investigated grassland
parcels were used for accuracy verification collected from the national survey (Figure 1), and
112 non-grassland verification samples were determined by the interpretation of Google
Earth images on the GEE platform.

Table 1. Detailed information of the six non-homogenous land use products.

Name Resolution Mapping Accuracy

1:100,000 land use data 30 m 85%
GlobeLand30 data 30 m 83.50%
CGLOPS–1 data 100 m 80%
GLC_FCS30 data 30 m 82.50%

FROMLC data 10 m 72.76%
China 1:1,000,000 vegetation map 30 m 64.8%

Data used to evaluate the vegetation RP consists of two parts: (1) NPP datasets
(2000–2020) from Global LAnd Surface Satellite (GLASS) products; (2) precipitation and
temperature data for the period 2000–2020 used to calculate the potential net primary
productivity (PNPP) (Table 2). Data used to evaluate soil erosion includes: (1) 109 primary
sample units (PSUs, Figure 1) in Zhaotong in the Fourth National Soil Erosion Survey
conducted by the Ministry of Water Resources of China (MWRC). PSUs were determined
using a stratified unequal probability surface sampling method. Each PSU is a small water-
shed for field investigation and data collection on soil-erosion–related index information,
and the data collected concerning soil erosion affecting factors share uniform standards
and specifications, and were well-examined in every step of the survey. Based on PSUs
with grassland parcels, information such as FVC every 15 days, rotations, terraces and
grassland type, were also investigated on site. For different elevation zones and grassland
types, we generated FVC dynamic curves across the year, which are employed to fulfill the
absence of image data caused by cloudy and rainy weather, as well as the complex terrain
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conditions in our study area; (2) Thematic data for calculating regional soil erosion factors
(Table 2). All these data were preprocessed and resampled to a 10 m spatial resolution for
further analysis.
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Table 2. List of the major multi-source data in this study.

Name Source Resolution

NPP dataset (2000–2020) GLASS products, University of Maryland
(http://www.glass.umd.edu, accessed on 1 September 2022) 500 m

World Clim https://www.worldclim.org/data/monthlywth.html,
(accessed on 4 December 2022) 1000 m

Monthly temperature data National Earth System Science Data Center 1000 m
Daily erosive rainfall events across three

decades (1990–2020) National Meteorological Data Sharing Center Resampled to 10 m

Soil erodibility Beijing Normal University Resampled to 10 m

ALOS DEM data https://search.asf.alaska.edu, (accessed on 28
February 2022) 12.5 m

Vegetation coverage Sentinel images 10 m
Detailed soil conservation measures in

PSUs The Fourth National Soil Erosion Survey in China 10 m

2.2. Grassland Distribution Identification Based on the Random Forest Algorithm

The experimental design of grassland remote sensing identification in the study area
is shown in Figure 2, which is mainly composed of three steps [61]: (1) sample selection
optimization; (2) determination of input features and optimization; (3) image classification
and accuracy verification.
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Since the number, distribution and representativeness of training samples have a
significant impact on the accuracy of image classification and recognition results [62],
a non-homogenous data-voting approach was employed to select the training samples
instead of retrieving from a single-source dataset. We also referred to the GlobeLand30
classification system and existing land-use types in the region, and divided them into six
categories. Consecutive pure pixels with the same land use type in six non-homogeneous
land-use products were used to determine the sample selection range, which was divided

http://www.glass.umd.edu
https://www.worldclim.org/data/monthlywth.html
https://search.asf.alaska.edu
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and coded according to an overall consideration elevation, slope and slope direction of
land-use types. Grids of 30 × 30 m were further used to traverse the coded selection range,
and those with different coding types were set as the final sample selection. Considering the
randomness, sample points are further created for each type by controlling the allowable
distance between samples. Finally, we supplemented the selection for regions lacking
samples by using Google Earth images, an NDVI time series curve, as well as a vegetation
map of China. The final samples obtained for farmland, forests, grasslands, water bodies,
built-up areas and bare land were 1162, 627, 500, 65, 134 and 39, respectively.

It is challenging to acquire complete time series data for grasslands in mountain
regions of southwest China because of the cloudy and rainy weather. The multispectral
time series dataset fused with Landsat–8/OLI and Sentinel–2 A/B data is used as input
features. The median data of the corresponding months of the year before and after 2020
were used as a supplement to improve the coverage. To solve the problem of the incomplete
regional coverage, the multispectral and radar time series data of Sentinel–1 were added
as input features. In addition, considering the fact that the distribution of grasslands had
typical topographic features, the topographic factors were also used as input features,
which is conducive to reducing the grassland omission problem.

Random Forest (RF) is a non-parametric machine-learning algorithm, which consists
of multiple CARTs, which can effectively run a large number of datasets and process
thousands of input variables [63]. In this study, a total of 2527 sample points and 67 input
characteristic bands were involved. Because of the large volume of samples and input
features, we conducted the RF classification process on the high-performance cloud com-
puting platform GEE. In this study, the hyper parameters used to train the random forest
model in the process of grassland classification and recognition include numberOfTrees,
variablesPerSplit, minLeafPopulation, bagFraction, maxNodes and seeds. The numberOfTrees start
number was set to 10, the termination number was set to 200, and the loop iteration was
performed with 10 as the step size. When numberOfTrees equals to 150, the classification
accuracy reaches the maximum, so the optimal value of the decision tree was set to 150.
Characteristic variables, such as spectrum, vegetation index, texture, vegetation coverage
and terrain (elevation, slope and aspect), were constructed and sorted. Finally, bands of
Blue, Green, Red, NIR and SWIR, NDVI, EVI, FVC, Brightness, Greenness and Humidity
were used as the major input feature variables for the final classification. Four accuracy
metrics of Precision, Recall, Overall Accuracy (OA) and F1 score were calculated based on
the validation data (117 grassland and 112 non–grassland validation samples). The closer
the value of the above four indicators is to 1, the better the grassland recognition is, and the
specific formulas are as follows:

Precision =
T1

F1 + T1
, (1)

Recall =
T1

F2 + T1
, (2)

Overall Accuracy =
T1 + T2

F2 + T1 + F1 + T2
, (3)

F1 score =
(

1 + β2
)Precision× Recall

Precision + Recall
,β = 1, (4)

where T1 refers to the numbers that are correctly extracted as positive examples, F1 is
the numbers that are not correctly extracted as negative examples, F2 is the numbers that
are not correctly extracted as positive examples, and T2 is the numbers that are correctly
extracted as negative examples.
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2.3. CSLE Model

On the basis of USLE, Liu et al. [33] proposed the Chinese soil loss equation (CSLE)
model based on numerous measured plot data in China. The model described a mathemat-
ical relationship between soil erosion rates and the erosion factors, and can be modified
based on regional conditions, and has been widely used and verified for the last two
decades [64]. The greatest advantage of CSLE is that the actual mountainous condition and
complex soil and water conservation measure systems in China are considered in detail,
with the C factor and P factor in USLE being modified into three factors of B factor, E factor
and T factors. It is also the methodological basis of the Fourth National Soil Erosion Survey
in China and the official model of the Ministry of Water Resources of China. The CSLE
formula is defined as follows:

A = R×K× L× S× B× E× T, (5)

where A is the average annual soil loss, t/(hm2·a); R is the average annual rainfall erosivity
(MJ·mm/(hm2·h·a)), K is the soil erodibility, (t·hm2·h/(hm2·MJ·mm)), L and S are the slope
length and slope steepness factors, respectively, dimensionless, B, E, T are soil conservation
measures of biological, engineering and tillage, respectively, dimensionless.

The calculation methods of R, K, L and S factors are detailed in the related litera-
ture [65–67]. L was calculated using the slope length index proposed by Liu et al. [68];
S was calculated based on 12.5 m DEM data with slopes below 10◦ using the formula of
McCool et al. [69], and above 10◦ according to Liu et al. [70], a verified study on steep
slopes from 9◦ to 55◦. E and T were assigned by widely collected local experiments and
combining them with field investigation.

Specially, the impact of vegetation on conserving soil has been well recognized. To
account for vegetation, the B factor has been used in the CSLE to monitor erosion. Similar
to the C factor in USLE, B values are weighted average soil erosion ratios (SLRi), each of
which represents the ratio of soil erosion under current conditions to the soil loss under unit
plot conditions during the same period [64,67]. SLRi changes as vegetation cover changes
during the process of plant growth. The B value then represents the average of the SLRi
values, each weighted by the rainfall erosivity portion. B was firstly obtained by using a
combination of sentinel data, meteorological satellite data and ground survey to obtain
the vegetation cover of the grassland in Zhaotong for the 12 months throughout the year,
and then calculate the soil loss ratio SLRi for each month, to acquire the annual average B
values. For grassland, B is calculated as follows:

B = ∑12
i=1 SLRi ×WRi, (6)

SLRi =
1

1.25 + 0.78845× 1.05968100×FVC , (7)

where SLRi is the proportion of soil loss of the grassland during month i, dimensionless,
the value range is 0–1; WRi is the proportion of rainfall erosivity in the month i to the whole
year, and the value range is 0–1; fractional vegetation coverage (FVC) is the vegetation
cover calculated based on the NDVI, and the value range is 0–1.

2.4. Grassland Regrowth Capacity and Net Primary Productivity

According to previous onsite investigations in the National Grassland Survey, the
grassland in Zhaotong can be divided into four vertical zones based on altitude and
hydrothermal conditions, which are thermal grassland (−800 m), with a regrowth rate of
30%; warm grassland (800–2100 m), with a regrowth rate of 20%; temperate rangeland
(2100–3800 m), with a regrowth rate of 15%; and alpine rangeland (3800–4300 m), with a
regrowth rate of 5%.

Characterized by spanning large spatial areas with multiple resolutions, RS monitoring
of NPP has been applied and is still an effective way to indicate grassland conditions [3].
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The grassland RP, which reflects the space of ecological restoration, is defined as the gap
between the actual net primary productivity (ANPP) and PNPP, and the formulas are listed
as follows:

PNPPm = max
2000≤i≤2020

{PNPPi}, (8)

RP = PNPPm −
1

21

2020

∑
i=2000

ANPPi (9)

In this study, the ANPP was derived from the Global LAnd Surface Satellite (GLASS)
products, while the PNPP was estimated using the Thornthwaite memorial (TM) model,
which incorporates a revised variant of the Thornthwaite potential evapotranspiration
model into the Miami model, and its effectiveness has been confirmed in previous stud-
ies [71,72]. Concretely, based on the relationship between evapotranspiration and carbon
sequestration, the TM model estimates that the PNPP has better performance than the
Miami model [73]. PNPP is calculated by the following equations:

PNPP = 3000[1− e−0.0009695(v−20)], (10)

v =
1.05r√

1 +
(

1 + 1.05r
L

)2
, (11)

L = 3000 + 25t + 0.05t3, (12)

where PNPP refers to the potential net primary productivity (g C/m2), v is the actual mean
evapotranspiration (mm), L refers to the mean evapotranspiration (mm), t is the mean
temperature (◦C) and r refers to the total precipitation (mm) annually.

2.5. Overlay Analysis for Grassland Restoration Zoning

The regrowth rate represents the rate of grassland recovery, while soil erosion is the
limiting factor in the recovery process. Based on this, spatial overlay analysis for layers
of the restoration potential, regrowth rate and soil erosion rate in the grassland area were
conducted. Table 3 displays the zoning criteria based on the literature. Among them, the
soil erosion rate of 500 t/(km2·a) represents the tolerant soil loss, which is the maximum
soil loss tolerance in southwestern China to maintain long-term soil fertility and basic
stability of land productivity [74]. When the soil erosion rate exceeds the threshold value,
the soil productivity is unsustainable. The annual average value of the restoration potential
for decades in this region is also used as the threshold [75]. The regeneration rate of 20% is
based on the research of husbandry, and the threshold is determined according to the local
grazing intensity, population density, hydrothermal conditions and other policy factors [75].
Here, we integrate these three as a common standard to divide the grassland restoration
zones in Zhaotong.

Table 3. Grassland regionalization criteria for ecological restoration.

Average Soil Erosion
Rates t/(km2·a)

Restoration Potential
(g C/m2)

Regrowth Rate (%)

≥20 <20

≤ 500 (Tolerate)
≥1350 A B
<1350 C D

> 500 (Unsustainable)
≥1350 E F
<1350 G H
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3. Results
3.1. Grassland Distribution Identification at the Regional Scale in Zhaotong

The Remote Sensing identification results of the grassland in Zhaotong is revealed
in Figure 3. With an overall accuracy of 88.21% and a spatial resolution of 10 m at the
regional scale, the proposed approach is reliable for mountainous regions with fragmented
grassland patches and complex terrain conditions compared to five other typical land-use
products. Results show that grassland covers an area of 5132 km2 and occupies about 23%
of the total land area in Zhaotong. Affected by topography and hydrothermal conditions,
the distribution area of grassland showed a significant decreasing trend from southwest
to northeast, and a trend of first increasing and then decreasing as altitude and slope
increase, with high values concentrated in the range of 1000–2000 m and a slope gradient
of around 20◦.
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Due to the strong altitudinal slopes in mountainous regions, meteorological, hydro-
logical and ecological conditions (especially vegetation and soils) are more sensitive than
others over relatively short distances. Alongside that, vegetation coverage information ex-
tracted from medium–low resolution images will cause different degrees of overestimation,
and does not conform to the input requirement of many empirical models, such as USLE,
RUSLE and CSLE. Considering that the critical role of vegetation cover in preventing soil
erosion has been well recognized, we retrieved a monthly time series grassland FVC, with
a resolution of 10 m across the year for the first time in this region, to reflect the vegetation
characteristics of the grassland area more objectively. As can be seen in Figure 4, it is clear
that the whole study area experiences higher FVC values during the warm seasons, espe-
cially from July to October. High FVC values are mainly found in the north and east, while
low FVC values are mainly distributed in the west, especially in the dry–hot valley area of
the Jinsha River. Compared to other regions, the western area also exhibits huge seasonal
variation in the FVC, which is mainly because of the relative abundant precipitation in
regions except the west. Obviously, the distribution area of the grassland is extremely
uneven in both time and space.
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3.2. Spatial–Temporal Quantification of Grassland Erosion Using the CSLE Model
3.2.1. Distribution Characteristics of Soil Erosion Factors of CSLE

Among the factors affecting grassland erosion, the R factor (Figure 5a) generally
showed a decreasing pattern from north to south, with a value range of
2749.30–4258.40 MJ·mm/(hm2·h·a) and an average of 3124.25 MJ·mm/(hm2·h·a). The
K values (Figure 5b) in Zhaotong vary from 0 to 0.0099 t·hm2·h/(hm2·MJ·mm), with a
mean value of 0.006 t·hm2·h/(hm2·MJ·mm), and the highest values were mostly found
in Cambisols and Luvisols areas in the east. The L and S factors in Figure 5c vary from 0
to 45, with a mean value of 10.28. Higher LS values characterized the whole study area
except for the Zhaoyang district in the south with relatively gentle slopes and less grassland
distribution. The annual average value of the B factor in grassland areas (Figure 5d) is
0.047, a relatively high value, indicating the weak protection ability of soil from vegetation.

In CSLE, the E factor refers to the changes in topography to reduce runoff and soil
loss by engineering construction. Since the investigation of soil conservation measures in
PSU (Figure 5e) was the major task in the Fourth National Soil Erosion Survey in China,
in this study, we integrated all 117 PSU data in Zhaotong, with a grassland distribution
map identified to form raster layers of the E factor using nearest-neighbor interpolation
methods, and about 90% of the grassland in Zhaotong has no erosion control measures.
The scarce and existing engineering measures are sloping terrace and level terrace in this
region, due to the sloping land conversion program (SLCP) conducted in China.
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3.2.2. Spatial Distribution of Grassland Erosion in Zhaotong

The spatial pattern of grassland erosion in Zhaotong was revealed with the relevant
factors of the CSLE model modified as input layers under a GIS framework (Figure 5f). The
soil erosion rate was further classified into six grades based on SL190–2007: Standard for
Classification and Gradation of Soil Erosion proposed by the Ministry of Water Resources
of China. Results showed that the grassland area is suffering from water erosion with a rate
greater than the tolerance (T) of 500 t/(km2·a), accounting for 59.54% of the total grassland
area. The average annual grassland erosion rate is 952.17 t/(km2·a) and the total annual soil
loss is about 5.19 × 106 t. As can be seen in Table 4, areas with soil erosion intensity grades
higher than slight erosion only take up 8.25% of the total grassland area, but contribute to
more than 30% of the total soil loss from grassland.
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Table 4. Statistics of soil erosion intensity grades of grassland in Zhaotong.

Erosion Intensity Area (km2) AP SL (104 t) SLP

Tolerant 2076.47 40.46% 59.83 11.53%
Slight 2631.77 51.29% 291.84 56.24%

Moderate 350.98 6.84% 116.54 22.46%
Intensive 56.39 1.10% 34.29 6.61%

Extremely intensive 15.35 0.30% 15.20 2.93%
Severe 0.71 0.01% 1.20 0.23%

AP, area percentage; SL, soil loss; SLP, soil loss percentage.

Soil erosion intensity in the grassland areas varies widely in space, and a serious
erosion problem exists. On the whole, the proportion of soil loss is high in the west and
low in the east. Severe and extreme erosion mainly occurred in the dry–hot valley of Jinsha
River with the lowest vegetation coverage. The counties of Qiaojia and Ludian in this
region even have a grassland erosion ratio (percentage of area eroded with a higher rate
than soil loss tolerance in the total land) greater than 80%, while for Weixin and Zhenxiong
in the east, there is almost no soil erosion occurring in the grassland.

Statistics on soil erosion in various elevation and slope zones are shown in Tables 5 and 6.
It is evident that the study of grassland erosion exhibits strong vertical zonation characteristics
and shows a close relationship with both the elevation and slope gradients. Grasslands within
the elevation range of 800–1600 m contribute to the total soil loss the most due to the large
grassland area. It should be noted that areas with an elevation above 2400 m also contribute
to the erosion volume significantly, and the area of serious erosion grades (intensive and
severe) and grassland erosion ratio is positively correlated with the slope. Soil erosion of
the grassland in Zhaotong mostly occurs in middle- and low-elevation areas where human
activities are frequent, as well as riversides, ditch sides and steep slopes, where vegetation
cover is relatively low.

Table 5. Soil erosion intensity grades of grasslands for different elevation zones.

Elevation
(m)

Grassland Area (km2)

ER SL (104 t) SLP
Tolerant Slight Moderate Intensive Extremely

Intensive Severe

<800 181.47 273.29 30.97 7.39 3.14 0.21 63.45% 53.27 10.34%
800–1200 358.01 467.84 72.19 10.54 3.80 0.21 60.77% 98.31 19.07%
1200–1600 499.50 476.44 68.54 11.08 2.81 0.13 52.81% 99.33 19.27%
1600–2000 478.89 399.93 63.71 10.83 2.38 0.10 49.90% 87.32 16.94%
2000–2400 285.91 420.01 54.60 9.12 2.11 0.05 62.96% 80.24 15.57%

>2400 265.83 585.70 57.57 6.08 0.80 0.01 70.98% 96.91 18.80%

ER, erosion ratio; SL, soil loss; SLP, soil loss percentage.

Table 6. Soil erosion status of grasslands between different slope zones.

Slope (◦)
Grassland Area (km2)

ER SL (104 t) SLP
Tolerant Slight Moderate Intensive Extremely

Intensive Severe

<10 326.51 84.79 3.06 0.38 0.07 0.00 21.29% 15.04 2.91%
10–20 657.52 570.88 41.11 5.66 1.21 0.03 48.49% 94.34 18.27%
20–30 541.58 784.79 90.33 13.56 3.43 0.11 62.23% 145.05 28.09%
30–40 327.91 647.47 100.91 16.06 4.46 0.19 70.11% 133.58 25.87%
40–50 159.83 367.96 72.27 12.08 3.48 0.17 74.04% 84.36 16.34%
>50 54.88 167.46 41.03 7.77 2.61 0.21 79.97% 43.98 8.52%

ER, erosion ratio; SL, soil loss; SLP, soil loss percentage.
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3.2.3. Interaction between Rainfall and Vegetation Coverage, and Its Impact on Erosion

Despite the fact that studies of regional-scale soil erosion have been reported world-
wide, little is known for soil erosion rates within the year at the regional scale, especially in
mountainous regions, due to the data availability of empirical models. Since mountainous
areas such as Zhaotong are more sensitive to monsoons and climate change, it is definitely
essential to understand the temporal erosion conditions to support the selection of when to
conduct restoration efforts. Thus, we analyzed the temporal distribution of R, FVC and
corresponding grassland erosion across the year to reflect the interaction between rainfall
and grassland vegetation coverage.

In order to intuitively reflect the interaction relationship between precipitation and
vegetation, the monthly precipitation distribution in Zhaotong, which was extracted from
meteorological satellite data for calculating the annual R value, is shown in Figure 6.
Obviously, grassland erosion is significantly impacted by the interaction and variation
between rainfall and vegetation. As the uneven distribution of rainfall in time and space,
the distribution of the R factor, FVC and soil erosion is also extremely uneven across the
year, and all of them show a trend of increasing first and then decreasing, reaching the
maximum in July, August and June, respectively (Table 7). Grassland erosion from May to
October occupied 93.32% of the total soil loss of the year because of abundant precipitation.
Although vegetation cover is one of the major affecting factors of grassland erosion, soil
erosion is not serious from December to April, when the vegetation cover is the lowest
during the year. This is because the R factor during this period only accounts for 2.6% of
the year and lacks the key factors that trigger soil erosion. Nevertheless, low vegetation
coverage caused by climate change is the dominant factor causing grassland erosion.
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Table 7. Distribution of R, FVC and corresponding grassland soil erosion across the year.

Month January February March April May June July August September October Novermber December

R 0.11% 0.17% 0.54% 1.78% 6.00% 22.10% 29.33% 25.25% 9.54% 4.75% 0.43% 0
FVC 42.13% 40.71% 38.85% 48.48% 49.78% 58.00% 68.96% 72.80% 70.35% 69.57% 56.71% 48.81%
Soil

Erosion 0.29% 0.47% 1.59% 3.84% 12.59% 35.23% 21.76% 14.15% 6.44% 3.15% 0.49% 0

With the arrival of the rainy season, the vegetation coverage of the grassland also
increases. However, the lag effect of grassland vegetation protection on soil is obvious,
especially in dry–hot valleys. Specifically, the most soil erosion occurred in June, but
not the months after it with higher vegetation coverage or R values, which indicates that
the start of the rainy season is the most critical stage for erosion control and ecological
restoration efforts.

3.3. Grassland Regrowth Rate and Restoration Potential

Regrowth rate refers to the speed of grassland restoration, and is defined as the
per–centage of the grass yield that continues to grow after grazing or mowing, when the
aboveground biomass of grasslands reaches the highest level. According to the agricultural
industry standard of China “calculation of reasonable carrying capacity of natural grass-
land” (NY/T 635–2015), the grassland in Zhaotong was further divided into four classes
based on elevation: thermal grassland, warm–temperate grassland, temperate grassland
and alpine grassland [74]. The corresponding regrowth rates of each grassland type were
30%, 20%, 15% and 5%, respectively. Figure 7b illustrates the general grassland regeneration
pattern, being high in the north and low in the south, and there are obvious vertical zonal
distribution characteristics. The regrowth rate is higher than 20% in most areas; in other
words, as long as the proper ecological restoration measures and conservation policies are
put in place, most areas can return to a much better situation in a relatively short period
of time.
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The distribution map of estimated grassland RP in Zhaotong is shown in Figure 7a.
Vegetation restoration potential represents the gap between the actual vegetation growth
and the ideal statue. To some extent, it also indicates the degree of ecosystem degradation;
that is, the greater the RP value, the greater the degradation degree. Apparently, the
grassland RP is roughly increasing from northeast to southwest, which is similar to the
soil erosion distribution pattern. Grasslands with low RP values are mainly distributed in
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the elevation range of 800–2100 m (warm grassland). The grassland RP of zones with an
elevation above 2100 m is generally higher, which indicates that human activities are not
the major driver of grassland degradation, since most of the population is distributed in the
800–2100 m zone with a fine vegetation cover. Additionally, as the slope rises, the potential
of grassland restoration improves. It should be noted that more than 60% of the grassland
has an RP value greater than 1350 g C/m2, indicating an overall promising performance of
grassland vegetation restoration.

Figure 8 was drawn based on the RP values during 2000–2020. It depicts the in-
terannual RP trend of each type of grassland in Zhaotong. The analysis showed that
alpine grassland was a grassland type with a high RP value, ranging from 1226.92 to
1851.86 g C/m2, and the fluctuation was relatively higher than other types of grassland.
However, this type of grassland accounts for the smallest proportion of Zhaotong grassland.
In contrast, the warm grassland with the largest area proportion has the lowest recovery
potential, ranging from 765.37 to 1338.02 g C/m2. The low and non-significant interannual
fluctuation RP of warm grasslands makes the restoration value of this type of grassland
lower, which also indicates that its degradation degree is lower. In addition, thermal and
temperate grasslands with more serious soil erosion also have higher RP values, ranging
from 910.30 to 1420.12 g C/m2 and 851.93 to 1560.47 g C/m2, respectively. We found
that the overall trend of the restoration potential of the four types of typical grasslands
showed large fluctuation. The underlying reasons include the frequent occurrence of
climate change, such as extreme precipitation and drought, the inconsistent protection
focus of the decision-making departments each year and the continuous change in the scale
of grazing.
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3.4. Grassland Restoration Patterns

Table 8 displays the zoning descriptions and results of the spatial overlay analysis,
and Figure 9 displays the divisions and distribution of the grassland restoration patterns.
The results show that most Class A and Class C grasslands that do not require artificial
intervention are located below 2000 m in elevation, and are primarily thermal and warm–
temperate grasslands with high regeneration rates. Grasslands of Class E and Class G, with
high regeneration rates but serious soil erosion, are widely distributed in steep slope areas,
with high grazing intensity and serious degradation. Among them, Class E grasslands
have a higher restoration potential and grazing value, so they should be the focus of
closure and protection. Most Class B, D, F and H grasslands with lower regeneration rates
are located in the southwestern part of Zhaotong, at a higher elevation range, and are
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mostly subalpine meadows with higher utilization rates. Among them, Class B and Class
D grasslands with less serious soil erosion are sparse in area distribution, and most of
them are characterized with low regeneration rates and serious soil erosion. This type of
grassland can be represented by the alpine grassland in the Yaoshan Nature Reserve of
Qiaojia County, which has a high protein content for grazing, and is currently degraded
due to the increase in livestock. Therefore, the primary focus should be protecting the
natural grasslands, cultivation and adopting various human interventions to achieve the
ideal ecological structure.

Table 8. Description of treatment for each grassland region and restoration patterns.

Region Area (km2) and
Percentage

Restoration Patterns

A 343.95 (8.95%) High RP–High RR–Tolerant SE, achieve better restoration results without artificial promotion and
special measures, natural repair.

B 242.21 (6.30%) High RP–Low RR–Tolerant SE, demand a longer closure protection time cycle for restoration.

C 770.86 (20.05%) Low RP–High RR–Tolerant SE, with better quality grass and less space for restoration, grazing
according to topography and climate.

D 108.41 (2.82%) Low RP–Low RR–Tolerant SE, mowing and grazing while cultivating and improving grassland.

E 664.91 (17.29%) High RP–High RR–Serious SE, unsustainable, methods, such as slope sealing and grass cultivation,
moderate grazing, etc., should be adopted to restore its ecological function.

F 653.21 (16.99%) High RP–Low RR–Serious SE, unsustainable, demand multifaceted human intervention to achieve
the desired ecological structure.

G 890.07 (23.15%) Low RP–High RR–Serious SE, unsustainable, protection should be the main focus to strengthen
vegetation restoration.

H 171.25 (4.45%)
Low RP–Low RR–Serious SE, unsustainable, demand urgent human intervention, adopt active soil
conservation measures, such as fence sealing and artificial grass planting, to promote soil nutrients
and productivity.

RP, restoration potential; RR, regrowth rate; SE, soil erosion.
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4. Discussion
4.1. Quantitative Assessment of the Grassland Restoration Patterns

Despite the fact that the importance of grassland ecosystems and the socio-ecological
environmental implications of grassland degradation have been well recognized, grassland
restoration is still not being taken seriously. Therefore, we try to establish an erosion-based
approach to achieve the goal of regional or large-scale grassland restoration by integrating
the drivers, results, potential and recovery speed of grassland. However, other perspectives,
such as biodiversity and ecosystem service should also be considered in the future. With
the demand for precise governance in China, a quantitative restoration guide is of the
utmost importance for policy makers.

Although previous studies have assessed grassland restoration using satellite imagery,
and demonstrated that soil erosion is the main cause of grassland degradation in Southern
China, rather than over-grazing. These studies merely classified the grassland restoration
patterns and constructed spatial distribution maps. Quantitative assessments of the factors
that determine grassland restoration at large spatio-temporal scales are lacking in China.
Located in the one of the National Key Management Areas of Soil Erosion in China, the
erosion-based restoration modes in Zhaotong are consistent with the survey results of the
China Soil and Water Conservation Bulletin, but with a higher time resolution of 10 m
and continuous grassland cover. We also achieved grassland soil erosion quantitative
estimation at the regional scale, which makes our work different from the previous soil
erosion studies.

The fragmented distribution and complex natural environment of grasslands in south-
ern China generally result in poor identification accuracy. Based on multi-source remote
sensing data, the non-homogenous data voting and random forest classification method
are used to identify grassland distribution, which provides a higher classification accuracy
compared to existing available LULC datasets, and proves to be more effective and efficient
in identifying fragmented grasslands in mountainous and hilly regions. However, in terms
of input feature selection and time series vegetation cover construction, visual estimation
was also employed. Due to the knowledge differences between different investigators,
manual subjectivity is inevitable, which will affect the classification results to some extent.

The regeneration rate is calculated based on local government statistics and standards,
which varies greatly from year to year. This can only be used as a relative reference
threshold and uncertainties exist in the evaluation process. We did analyze the interaction
of rainfall–soil–plant system, but with the increase of global extreme climate events which
generate large amounts of soil erosion, the amount of soil erosion produced by a single
extreme rainfall event may exceed the annual values, this is not considered in this study.

4.2. Uncertainties

A high interannual variation in grassland RP was also found in Zhaotong. This is
mainly because temperature and precipitation are the only driving parameters in NPP
estimation, and the establishment of NPP estimation model is affected by human factors,
data quality, model parameter values, grassland vegetation types and geographical location.
Thus, there are still differences in estimation results among different products in the same
area and location. There are also issues of misclassification and omission with the land-
use/cover data products used in the study. Methods of obtaining high-precision land-
use/cover data for complex terrains in southwestern China demand further discussion and
study. It should be noted that the establishment of the CSLE model is to estimate long-term
average sheet and rill erosion from a single slope, other erosion types are not included,
which will also lead to serious grassland degradation. Additionally, despite the CSLE
model having been well studied and widely applied for different landscapes in China,
previous runoff plots were mostly concentrated on cultivated land, and further grassland
plot experiments are also needed for this region to verify our erosion estimation results.
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4.3. Future Challenges

Relevant research has evaluated grassland restoration in northern China using the
StageTHREE Sustainable Grassland model (StageTHREE SGM), which integrates the dy-
namics of grassland and soil resources, wind erosion, livestock production and herder
household economics to provide a useful tool for finding sustainable solutions for grass-
land systems. Due to the difference in the drivers of grassland restoration, especially the
difference in scale, the uncertainty of data, model and scale effects will be caused. Different
stakeholders and different scales of research have a different understanding of restoration.
This paper presents a simple and rapid evaluation method for degraded grassland in
southwest mountainous areas. Its biggest advantage compared to other studies is that it
combines field survey data to supplement the characteristics of the special environment in
the mountainous area. Considering the conflict between the restoration goals at multiple
scales, restoration actions need to counteract local-scale habitat degradation, as well as
sustaining natural migration across landscapes. Restoration scientists and practitioners
should be called upon to face grassland restoration challenges at various scales.

5. Conclusions

Given the extent of global land degradation resulting from climate changes and human
activities, restoration efforts have been increasingly focused on grassland conservation
schemes to ensure the long-term sustainability of biodiversity and ecosystem services.
Quantitative restoration assessment is one of the most important scientific foundations
for land resource management. Apparently, a satellite remote sensing approach is likely
to be a significant contributor to support conservation strategies by providing relevant
spatio-temporal information. While there are many experimental studies and qualitative
reports about the causes, consequences and processes of grassland restoration from different
perspectives and with various indicators, grasslands are still under a major threat from
ongoing degradation, since little progress has been made in finding standardized soci—
ecological solutions to reverse degradation.

This study describes a new approach for zoning mountainous grassland restoration,
using multi-source remote sensing data. We emphasize that caution is warranted when
choosing grassland restoration modes, and that long-term sustainability of grassland
can be achieved only when multiple factors of both the above-ground vegetation and
soil conditions are considered. Based on both optical and SAR sensors, regional scale
identification of grassland distribution was completed in Zhaotong using a random forest
classification method. A fine quantification of grassland erosion using the CSLE model was
achieved. The grassland restoration potential in the research region was further estimated
by calculating the gap between ANPP and PNPP. The grassland regrowth rate was obtained
and then overlaid to provide a basis for supporting conservation schemes.

The method proposed for remote sensing grassland identification, using non-homologous
data voting, has an overall accuracy of 88.21%, which can meet the requirements of a regional-
scale study. The findings indicate that the grassland restoration potential in Zhaotong is gener-
ally performing well. Low values are primarily found in the 800–2100 m range with intensive
human activity, and the overall trend for restoration potential has been steadily declining
during the last two decades. The average soil erosion rate of grassland is 952.17 t/(km2·a),
and about 60% of the grasslands are showing unaccepted erosion rates. Furthermore, the inter-
action between rainfall and vegetation suggests that in large geographical extents, restoration
conditions and solutions can significantly vary, both in time and space, and the low vegetation
cover and precipitation change, rather than human activities, accelerates the degradation of
grassland in the region. Our results also suggest that grassland restoration can be effective
only when different grasslands are treated with various management strategies, and those in
severely degraded conditions with low regrowth rates, in the southwest dry–hot valley, are
calling for human intervention immediately.

We argue that urgent action is needed to face the process and challenges of grassland
degradation, as well as the increasing recognition in policies and regulations. To restore
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grassland sustainability, shared understanding, developed standardized indicators and data
sharing regarding restoration experiences by different roles, stakeholders, collaborations
and mutual relationships are also needed.
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