Improved Understanding of Flash Drought from a Comparative Analysis of Drought with Different Intensification Rates
Abstract
:1. Introduction
- (1)
- Identify the global hotspots and trends of drought with different intensification rates in the absence of consensus on flash drought characteristics;
- (2)
- Explore the difference in vegetation response to drought intensification rate;
- (3)
- Investigate the role of precipitation and temperature in affecting the drought intensification rate and their regional difference across the globe.
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.2.1. Root Zone Soil Moisture (RZSM)
2.2.2. Climate Data
2.2.3. Vegetation Information
2.3. Methods
2.3.1. Drought Identification
- (1)
- The pentad-averaged root zone soil moisture decreases from above the 40th percentile to the 20th percentile;
- (2)
- If the soil moisture rises to the 25th percentile and continues for 5 pentads, the drought is considered to be demised;
- (3)
- The total duration of drought should not be less than 4 pentads (20 days).
- (1)
- Flash drought: the length of RZSM changes in the onset phase should not exceed 5 pentads, which is equivalent to a maximum onset duration of 6 pentads (30 days), with the mean decline rate of no less than 5% in the RZSM percentiles for each pentad [30];
- (2)
- General drought: the length of onset phase exceeds 6 pentads but less than 12 pentads;
- (3)
- Creep drought: the length of onset phase exceeds 12 pentads; that is, more than 2 months.
2.3.2. Analysis of the Role of Climatic Variables and Drought’s Ecological Impacts
3. Results
3.1. The Prevalence of Rapid Intensification over the Globe
3.2. Characteristics of Drought Onset Duration and Total Duration
3.3. Seasonality and Ecological Impacts
3.4. The Potential Effect of Precipitation and Temperature on the Intensification Rate
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mark, S.; Doug, L.; Mike, H.; Richard, H.; Karin, G.; Jim, A.; Brad, R.; Rich, T.; Mike, P.; David, S.; et al. The Drought Monitor. Bull. Am. Meteorol. Soc. 2002, 83, 1181–1190. [Google Scholar]
- Mozny, M.; Trnka, M.; Zalud, Z.; Hlavinka, P.; Nekovar, J.; Potop, V.; Virag, M. Use of a soil moisture network for drought monitoring in the Czech Republic. Theor. Appl. Climatol. 2012, 107, 99–111. [Google Scholar] [CrossRef]
- Yuan, X.; Ma, Z.G.; Pan, M.; Shi, C.X. Microwave remote sensing of short-term droughts during crop growing seasons. Geophys. Res. Lett. 2015, 42, 4394–4401. [Google Scholar] [CrossRef]
- Gerken, T.; Bromley, G.T.; Ruddell, B.L.; Williams, S.; Stoy, P.C. Convective suppression before and during the United States Northern Great Plains flash drought of 2017. Hydrol. Earth Syst. Sci. 2018, 22, 4155–4163. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.; Wheeler, M.C.; Otkin, J.A.; Cowan, T.; Frost, A.; Stone, R. Using the evaporative stress index to monitor flash drought in Australia. Environ. Res. Lett. 2019, 14, 064016. [Google Scholar] [CrossRef] [Green Version]
- Otkin, J.A.; Svoboda, M.; Hunt, E.D.; Ford, T.W.; Andersoson, M.C.; Hain, C.; Basara, J.B. FLASH DROUGHTS A Review and Assessment of the Challenges Imposed by Rapid-Onset Droughts in the United States. Bull. Am. Meteorol. Soc. 2018, 99, 911–919. [Google Scholar] [CrossRef]
- Christian, J.I.; Basara, J.B.; Hunt, E.D.; Otkin, J.A.; Furtado, J.C.; Mishra, V.; Xiao, X.M.; Randall, R.M. Global distribution, trends, and drivers of flash drought occurrence. Nat. Commun. 2021, 12, 6330. [Google Scholar] [CrossRef]
- Mishra, V.; Aadhar, S.; Mahto, S.S. Anthropogenic warming and intraseasonal summer monsoon variability amplify the risk of future flash droughts in India. Npj Clim. Atmos. Sci. 2021, 4, 1. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Y.; Zhang, L.; Ren, L.; Yuan, F.; Yang, X.; Jiang, S. Flash droughts characterization over China: From a perspective of the rapid intensification rate. Sci. Total Environ. 2020, 704, 135373. [Google Scholar] [CrossRef]
- Nguyen, H.; Wheeler, M.C.; Hendon, H.H.; Lim, E.P.; Otkin, J.A. The 2019 flash droughts in subtropical eastern Australia and their association with large-scale climate drivers. Weather Clim. Extrem. 2021, 32, 100321. [Google Scholar] [CrossRef]
- Osman, M.; Zaitchik, B.F.; Badr, H.S.; Christian, J.I.; Tadesse, T.; Otkin, J.A.; Anderson, M.C. Flash drought onset over the contiguous United States: Sensitivity of inventories and trends to quantitative definitions. Hydrol. Earth Syst. Sci. 2021, 25, 565–581. [Google Scholar] [CrossRef]
- Mahto, S.S.; Mishra, V. Dominance of summer monsoon flash droughts in India. Environ. Res. Lett. 2020, 15, 104061. [Google Scholar] [CrossRef]
- Poonia, V.; Goyal, M.K.; Jha, S.; Dubey, S. Terrestrial ecosystem response to flash droughts over India. J. Hydrol. 2022, 605, 127402. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mishra, A.K. Global Flash Drought Analysis: Uncertainties From Indicators and Datasets. Earths Future 2022, 10, e2022EF002660. [Google Scholar] [CrossRef]
- Christian, J.I.; Basara, J.B.; Hunt, E.D.; Otkin, J.A.; Xiao, X. Flash drought development and cascading impacts associated with the 2010 Russian heatwave. Environ. Res. Lett. 2020, 15, 094078. [Google Scholar] [CrossRef]
- Chen, L.G.; Gottschalck, J.; Hartman, A.; Miskus, D.; Tinker, R.; Artusa, A. Flash Drought Characteristics Based on US Drought Monitor. Atmosphere 2019, 10, 498. [Google Scholar] [CrossRef] [Green Version]
- Noguera, I.; Vicente-Serrano, S.M.; Dominguez-Castro, F. The Rise of Atmospheric Evaporative Demand Is Increasing Flash Droughts in Spain During the Warm Season. Geophys. Res. Lett. 2022, 49, e2021GL097703. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mishra, A.K. A Multivariate Flash Drought Indicator for Identifying Global Hotspots and Associated Climate Controls. Geophys. Res. Lett. 2022, 49, e2021GL096804. [Google Scholar] [CrossRef]
- Mo, K.C.; Lettenmaier, D.P. Heat wave flash droughts in decline. Geophys. Res. Lett. 2015, 42, 2823–2829. [Google Scholar] [CrossRef]
- Mo, K.C.; Lettenmaier, D.P. Precipitation Deficit Flash Droughts over the United States. J. Hydrometeorol. 2016, 17, 1169–1184. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Y.; Ren, L.; Otkin, J.; Hunt, E.D.; Yang, X.; Yuan, F.; Jiang, S. Two Different Methods for Flash Drought Identification: Comparison of Their Strengths and Limitations. J. Hydrometeorol. 2020, 21, 691–704. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.H.; Jiao, W.Z.; Zhao, L.J.; Zeng, X.M.; Xing, X.Y.; Zhang, L.N.; Hong, Y.X.; Lu, Q.Q. A new multi-variable integrated framework for identifying flash drought in the Loess Plateau and Qinling Mountains regions of China. Agric. Water Manag. 2022, 265, 107544. [Google Scholar] [CrossRef]
- Didan, K. Multi-satellite earth science data record for studying global vegetation trends and changes. In Proceedings of the 2010 International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; p. 2530. [Google Scholar]
- Dass, P.; Rawlins, M.A.; Kimball, J.S.; Kim, Y. Environmental controls on the increasing GPP of terrestrial vegetation across northern Eurasia. Biogeosciences 2016, 13, 45–62. [Google Scholar] [CrossRef] [Green Version]
- Marshall, M.; Okuto, E.; Kang, Y.; Opiyo, E.; Ahmed, M. Global assessment of Vegetation Index and Phenology Lab (VIP) and Global Inventory Modeling and Mapping Studies(GIMMS) version 3 products. Biogeosciences 2016, 13, 625–639. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Yang, Y. Observed earlier start of the growing season from middle to high latitudes across the Northern Hemisphere snow-covered landmass for the period 2001–2014. Environ. Res. Lett. 2020, 15, 034042. [Google Scholar] [CrossRef]
- Helman, D.; Zaitchik, B.F.; Funk, C. Climate has contrasting direct and indirect effects on armed conflicts. Environ. Res. Lett. 2020, 15, 104017. [Google Scholar] [CrossRef]
- Wu, M.; Vico, G.; Manzoni, S.; Cai, Z.; Bassiouni, M.; Tian, F.; Zhang, J.; Ye, K.; Messori, G. Early growing season anomalies in vegetation activity determine the large-scale climate-vegetation coupling in Europe. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG006167. [Google Scholar] [CrossRef]
- Yin, C.; Yang, Y.; Yang, F.; Chen, X.; Xin, Y.; Luo, P. Diagnose the dominant climate factors and periods of spring phenology in Qinling Mountains, China. Ecol. Indic. 2021, 131, 108211. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, L.; Wu, P.; Ji, P.; Sheffield, J.; Zhang, M. Anthropogenic shift towards higher risk of flash drought over China. Nat. Commun. 2019, 10, 4661. [Google Scholar] [CrossRef] [Green Version]
- Shah, J.; Hari, V.; Rakovec, O.; Markonis, Y.; Samaniego, L.; Mishra, V.; Hanel, M.; Hinz, C.; Kumar, R. Increasing footprint of climate warming on flash droughts occurrence in Europe. Environ. Res. Lett. 2022, 17, 064017. [Google Scholar] [CrossRef]
- Parker, T.; Gallant, A.; Hobbins, M.; Hoffmann, D. Flash drought in Australia and its relationship to evaporative demand. Environ. Res. Lett. 2021, 16, 064033. [Google Scholar] [CrossRef]
- Lisonbee, J.; Ribbe, J.; Otkin, J.A.; Pudmenzky, C. Wet season rainfall onset and flash drought: The case of the northern Australian wet season. Int. J. Climatol. 2022, 42, 6499–6514. [Google Scholar] [CrossRef]
- Markonis, Y.; Kumar, R.; Hanel, M.; Rakovec, O.; Maca, P.; AghaKouchak, A. The rise of compound warm-season droughts in Europe. Sci. Adv. 2021, 7, eabb9668. [Google Scholar] [CrossRef]
- Griffin, D.; Anchukaitis, K.J. How unusual is the 2012-2014 California drought? Geophys. Res. Lett. 2014, 41, 9017–9023. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.P.; Cook, E.R.; Smerdon, J.E.; Cook, B.I.; Abatzoglou, J.T.; Bolles, K.; Baek, S.H.; Badger, A.M.; Livneh, B. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 2020, 368, 314–318. [Google Scholar] [CrossRef]
- Kong, Q.; Guerreiro, S.B.; Blenkinsop, S.; Li, X.-F.; Fowler, H.J. Increases in summertime concurrent drought and heatwave in Eastern China. Weather Clim. Extrem. 2020, 28, 100242. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mishra, A.K. Increase in Compound Drought and Heatwaves in a Warming World. Geophys. Res. Lett. 2021, 48, e2020GL090617. [Google Scholar] [CrossRef]
- Wang, Y.M.; Yuan, X. Anthropogenic Speeding Up of South China Flash Droughts as Exemplified by the 2019 Summer-Autumn Transition Season. Geophys. Res. Lett. 2021, 48, e2020GL091901. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, L.; Wood, E.F. Anthropogenic intensification of southern african flash droughts as exemplified by the 2015/16 season. Bull. Am. Meteorol. Soc. 2018, 99, S86–S90. [Google Scholar] [CrossRef]
- Christidis, N.; Jones, G.S.; Stott, P.A. Dramatically increasing chance of extremely hot summers since the 2003 European heatwave. Nat. Clim. Chang. 2015, 5, 46–50. [Google Scholar] [CrossRef]
- Bras, T.A.; Seixas, J.; Carvalhais, N.; Jagermeyr, J. Severity of drought and heatwave crop losses tripled over the last five decades in Europe. Environ. Res. Lett. 2021, 16, 065012. [Google Scholar] [CrossRef]
- Pfleiderer, P.; Schleussner, C.F.; Kornhuber, K.; Coumou, D. Summer weather becomes more persistent in a 2 degrees C world. Nat. Clim. Chang. 2019, 9, 666–671. [Google Scholar] [CrossRef]
- Koster, R.D.; Schubert, S.D.; Wang, H.; Mahanama, S.P.; DeAngelis, A.M. Flash Drought as Captured by Reanalysis Data: Disentangling the Contributions of Precipitation Deficit and Excess Evapotranspiration. J. Hydrometeorol. 2019, 20, 1241–1258. [Google Scholar] [CrossRef]
- Ferreira, V.; Montecino, H.D.C.; Yakubu, C.; Heck, B. Uncertainties of the Gravity Recovery and Climate Experiment time-variable gravity-field solutions based on three-cornered hat method. J. Appl. Remote Sens. 2016, 10, 015015. [Google Scholar] [CrossRef]
- Long, D.; Pan, Y.; Zhou, J.; Chen, Y.; Hou, X.Y.; Hong, Y.; Scanlon, B.R.; Longueyergne, L. Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models. Remote Sens. Environ. 2017, 192, 198–216. [Google Scholar] [CrossRef]
- Chen, L.; Ford, T.W.; Yadav, P. The Role of Vegetation in Flash Drought Occurrence: A Sensitivity Study Using Community Earth System Model, Version 2. J. Hydrometeorol. 2021, 22, 845–857. [Google Scholar] [CrossRef]
- Bastos, A.; Ciais, P.; Friedlingstein, P.; Sitch, S.; Pongratz, J.; Fan, L.; Wigneron, J.P.; Weber, U.; Reichstein, M.; Fu, Z.; et al. Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Sci. Adv. 2020, 6, eaba2724. [Google Scholar] [CrossRef]
Variable | Unit | Temporal Resolution | Spatial Resolution | Source | |
---|---|---|---|---|---|
ERA5 | RZSM (28–100 cm) | m3 m−3 | hourly | 0.25° × 0.25° | https://cds.climate.copernicus.eu/cdsapp#!/home (accessed on 27 March 2023) |
ET and PET | m | ||||
MERRA2 | RZSM (0–100 cm) | m3 m−3 | hourly | 0.5° × 0.625° | https://disc.gsfc.nasa.gov/datasets?project=MERRA-2 (accessed on 27 March 2023) |
ET | kg m−2 s−1 | ||||
2 m temperature and dew temperature | K | ||||
Surface pressure | Pa | daily | |||
2 m northward and eastward wind | m s−1 | ||||
Net longwave and shortwave | W m−2 | ||||
CFSR/CFSR2 | RZSM (40–100 cm) | % | 6-hourly | 0.5° × 0.5° | https://rda.ucar.edu/datasets/ds094.0/ (accessed on 27 March 2023) |
Potential water evaporation flux | W m−2 | ||||
Latent heat flux | |||||
JRA55 | RZSM (0.02 cm–148 cm) | % | 6-hourly | 0.56° × 0.56° | https://rda.ucar.edu/datasets/ds628.0/ (accessed on 27 March 2023) |
ET | W m−2 | 3-hourly | |||
Relative humidity | % | 6-hourly | |||
2 m temperature | K | ||||
10 m northward and eastward wind | m s−1 | ||||
Surface pressure | Pa | 3-hourly | |||
Downward and upward long-wave radiation | W m−2 | ||||
Downward and upward solar radiation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Zhang, J.; Yang, S.; Seka, A.M. Improved Understanding of Flash Drought from a Comparative Analysis of Drought with Different Intensification Rates. Remote Sens. 2023, 15, 2049. https://doi.org/10.3390/rs15082049
Han J, Zhang J, Yang S, Seka AM. Improved Understanding of Flash Drought from a Comparative Analysis of Drought with Different Intensification Rates. Remote Sensing. 2023; 15(8):2049. https://doi.org/10.3390/rs15082049
Chicago/Turabian StyleHan, Jiaqi, Jiahua Zhang, Shanshan Yang, and Ayalkibet M. Seka. 2023. "Improved Understanding of Flash Drought from a Comparative Analysis of Drought with Different Intensification Rates" Remote Sensing 15, no. 8: 2049. https://doi.org/10.3390/rs15082049
APA StyleHan, J., Zhang, J., Yang, S., & Seka, A. M. (2023). Improved Understanding of Flash Drought from a Comparative Analysis of Drought with Different Intensification Rates. Remote Sensing, 15(8), 2049. https://doi.org/10.3390/rs15082049