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Abstract: To improve smartphone GNSS positioning performance using extra inequality information,
an inequality constraint method was introduced and verified in this study. Firstly, the positioning
model was reviewed and three constraint applications were derived from it, namely, vertical velocity,
direction, and distance constraints. Secondly, we introduced an estimator based on the density
function truncation method to solve the inequality constraint problem. Finally, the performance
of the method was investigated using datasets from three smartphones, including a Huawei P30,
a Huawei P40, and a Xiaomi MI8. The results indicate that the position and velocity accuracy can
be improved in the up component using a vertical velocity constraint. The horizontal positioning
accuracy was increased using a heading direction constraint with dynamic datasets. Numerically,
the root mean square error (RMSE) improvement percentages were 16.77%, 14.57%, and 31.09% for
HP40, HP30, and XMI8, respectively. Using an inter-smartphone distance constraint could enhance
the horizontal positioning of all participating smartphones, with improvement percentages of 34.27%,
75.58%, and 23.66% for HP40, HP30, and XMI8, respectively, in the static dataset. Additionally,
the improvement percentages were 15.90%, 5.55%, and 0.17% in dynamic datasets. In summary,
this study demonstrates that utilizing inequality constraints can significantly improve smartphone
GNSS positioning.

Keywords: Android smartphones; GNSS; positioning; inequality constraints; density function truncation

1. Introduction

In 2016, Google announced that raw Global Navigation Satellite System (GNSS) obser-
vations including carrier phase measurements would be accessible to developers, providing
more opportunities for the implementation of location-based services (LBS) on smart-
phones [1]. Extensive studies have been conducted to develop different data processing
and positioning algorithms for achieving precise smartphone-based location tracking [2,3].

Numerous studies have investigated both absolute positioning and relative posi-
tioning algorithms for smartphones. Banville et al. initially evaluated the single-point
positioning (SPP) performance of the Samsung Galaxy S7 using only GPS single-frequency
pseudo-range observations, and the results indicated that the smartphone was capable of
providing only meter-level accuracy [4]. To improve code-based positioning performance,
carrier smooth code (CSC) or Doppler smooth code (DSC) approaches have been proposed,
which take advantage of the high-precision carrier phase measurements available on some
smartphones [5]. Geng et al. combined pseudo-range, carrier phase, and Doppler observa-
tions using an improved Hatch filter, proposing an algorithm called the three-thresholds
and single-difference Hatch filter (TT-SD filter), which achieved sub-meter-level positioning
accuracy [6]. Zhang et al. proposed an algorithm based on the time-differenced carrier
phase (TDCP) filter, which obtained meter-level accuracy [7]. Precise point positioning
(PPP) is another important algorithm in absolute positioning, and several studies have
investigated its application in smartphones capable of performing carrier phase measure-
ments [8]. These investigations also considered data analysis, observation processing, and
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model modification [9–11], and the results confirmed that sub-meter-level accuracy in static
scenarios and meter-level accuracy in kinematics are achievable on smartphones using the
PPP algorithm [12]. In addition to absolute positioning, relative positioning methods are
also frequently studied, with real-time kinematics (RTK) being a major approach [13]. In
short-baseline cases, atmospheric delay can be eliminated, allowing the RTK algorithm to
provide high-precision location estimates [14]. Investigations using different smartphone
brands and various use cases have consistently demonstrated the feasibility of achieving
high-precision positioning using certain types of smartphone.

The aforementioned studies have primarily focused on smartphone positioning that
relies on GNSS observations obtained from the smartphone’s application programming
interface (API). However, considering that smartphones are equipped with multiple sensors,
additional measurements can be obtained, which can be used as constraints in positioning
algorithms to improve positioning accuracy and stability [15]. Several studies have been
conducted to verify the performance of GNSS combined with other sensor information on
smartphones to enhance positioning accuracy [16]. For example, it has been demonstrated
that combining GNSS and Inertial Navigation System (INS) measurements in a loosely
coupled manner can significantly improve smartphone location accuracy [17,18]. Other
observation constraints, such as camera observations, digital map data, and WiFi signals,
have also been investigated [19–21]. In most cases, the additional information is expressed
as an equality constraint. However, in some scenarios, it is more appropriate to express the
range information as an inequality constraint [22]. For example, a smartphone can compute
road direction based on node positions, which are obtained from digital maps, but this
information alone may not accurately indicate the actual direction of a vehicle [23]. Thus,
expressing the range of direction as an inequality constraint can provide better results.
Similarly, although smartphone collaborative positioning (CP) using inter-device distance
has been investigated in several studies [24–26], it is uncommon to express the distance as
an inequality constraint while taking into account vehicle length information. Therefore, it
is crucial to explore methods that can utilize range information as an inequality constraint
to further improve smartphone positioning accuracy.

In this study, we aim to improve the accuracy of smartphone positioning using range
information via an inequality constraint estimation approach. Simon et al. previously
demonstrated that the error variance of a solution obtained through inequality-constrained
state estimation is equal to or less than that of a solution obtained through unconstrained es-
timation [27]. Various methods have been proposed to solve the inequality constraint prob-
lem, such as the active sets method, the Bayesian method, and the projection method [27–29].
However, it has been noted that projecting state estimates onto the constraint hyperplane
does not necessarily place the mean of the state near the mean of the feasible region [30].
As such, we choose the probability density truncation (PDF) method as our estimator,
which updates the state with the mean and covariance of the PDF region [31]. Additionally,
an iterative procedure is used to ensure that the probability within the constraint range
exceeds a given threshold. To validate our method, we introduce three applications: vertical
velocity constraint, direction constraint, and inter-smartphone distance constraint. The
structures of these constraints are introduced, and their effectiveness is demonstrated in
the experimental section.

The rest of the paper is organized as follows. Firstly, the positioning model is re-
viewed, and then we introduce the design of the inequality constraint matrices in different
applications. Secondly, the density function truncation method is introduced in detail,
including the estimator and the iterative procedure. Thirdly, the performance of the method
is analyzed using a real-world collection of datasets from three smartphones. Finally, we
conclude the paper.

2. Positioning Model and Inequality Constraints

In this section, the positioning model on Android smartphones is introduced. Addi-
tionally, we describe the constraint matrices of three different applications.
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2.1. Positioning Model for Android Smartphones

The pseudo-range, carrier phase, and Doppler measurements between satellite s and
smartphone r with regard to frequency i can be expressed as follows [32,33]:

Ps
r,i = ρs

r + c(dtr − dTs) + Is
r,i + Ts

r + dr,i − ds
i + ms

r,i + εPs
r,i

Φs
r,i = ρs

r + c(dtr − dTs)− Is
r,i + Ts

r + λi

(
φr,0,i − φs

0,i + Ns
r,i

)
+ δr,i − δs

i + Ms
r,i + dΦs

r,i + εΦs
r,i

−λiDs
r,i =

.
ρ

s
r + c

(
d

.
tr − d

.
T

s)
+

.
I

s
r,i +

.
T

s
r +

.
M

s
r,i + εDs

r,i

(1)

where Ps
r,i, Φs

r,i, and −λiDs
r,i represent the pseudo-range, carrier phase, and Doppler ob-

servations in meters, respectively. i represents frequency, and λi indicates the wavelength
under the frequency. ρs

r represents the distance between the smartphone and the satellite
in meters,

.
ρs

r is its change rate in m/s, dtr and dTs indicate the receiver and satellite clock

offset, d
.
tr and d

.
T

s
represent the change rate of the receiver and satellite clock offset, and c

represents light speed. Is
r,i and Ts

r represent the ionospheric delay and tropospheric delay,
.
I

s
r,i and

.
T

s
r represent their change rates, dr,i and ds

i represent the smartphone and satellite
pseudo-range hardware delay, ms

r,i represents the pseudo-range multipath delay, and φr,0,i
and φs

0,i represent the initial phase of the smartphone and the satellite, respectively. Ns
r,i

represents the integer ambiguity in the unit of cycle [33]. δr,j and δs represent the receiver
and satellite hardware delay of the carrier phase observation, Ms

r,i represents the carrier

multipath error, and
.

M
s
r,i represents its change rate. dΦs

r,i represents the carrier phase
correction term, which includes phase center offsets, Earth tides, and relativity correc-
tions, and εPs

r,i
, εΦs

r,i
, and εDs

r,i
represent the noise of the pseudo-range, carrier phase, and

Doppler observations.
For some types of smartphone, such as Xiaomi 9 or Xiaomi 10, the carrier observation

cannot be obtained from the API, and the RTK or PPP method is inapplicable [34,35]. In
this case, the positioning algorithms that are based on pseudo-range observations, such
as the SPP algorithm or the real-time differential (RTD) algorithm, are practical [36]. In
this paper, we apply pseudo-range measurements for positioning. In addition, we use
the inter-smartphone observations differential to eliminate the smartphone clock offset [6].
Overall, the estimated variables are given below [5]:

X =

r
v
α

 (2)

where r =
[
x y z

]T, v =
[
vx vy vz

]T, and α =
[
αx αy αz

]T represent vectors,
including their positions, in meters, velocity in m/s, and acceleration in m/s2, respectively.
T represents vector transposition.

2.2. Inequality Constraint Model

In a poor observation environment, taking actual information into consideration will
make the positioning model more reliable. In this paper, we apply a vertical velocity
constraint, direction constraint, and inter-smartphone distance constraint to enhance the
position estimation. Typically, the inequality constraint method is employed, and the state
inequality relationships can be presented in a linear form, as follows:

CX ≤ d (3)

where C represents the constraint matrix, d represents a vector that contains the threshold,
and ≤ denotes that each element in the left vector (CX) is smaller than or equal to the
corresponding elements in the right vector (d).
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2.2.1. Vertical Velocity Constraint

Because of the limitation of road slope and the velocity of vehicles, there could be
an upper bound of velocity in the up component. For instance, the Highway Technique
Standard has a speed limitation of 120 km/h and a slope limitation of 3% on highways [37];
in this case, the range of the vertical velocity should be −1 m/s~1 m/s. In other words,
even if the horizontal velocity of smartphones is unknown, we can still set an empirical
threshold for vertical velocity in most cases. In this part, the threshold is expressed using
the following inequation:

|vu| ≤ σu (4)

where vu represents vertical velocity, and σu represent the threshold in m/s. Note that this
inequation is established under the body system and is not directly applicable. We must first
convert the results from the WGS84 system to the body system. In addition, considering
that after constraining the position can be changed, iteration is necessary for the results
to fit the velocity inequation condition. To avoid complex and low-efficiency iteration
procedures, we transform velocity into position change. Assuming that the interval is ∆t,
we can calculate the height constraints of continuous epochs as follows:

σh = σu × ∆t (5)

where σh represents the threshold of the height change in meters, and ∆t represents the
sampling interval in seconds. In this paper, the sampling interval is 1 s. Additionally, the
vertical velocity constraint can be converted as follows:

|ht+1 − ht| ≤ σh (6)

where t and t + 1 represent different epochs, ht+1 and ht represent the height in two epochs.
Regarding coordinate system conversion, we can choose a position p0 near the smartphone
as the reference, and this position can be calculated using the SPP algorithm. The transform
matrix can be computed as follows based on the reference p0:

E0 =

 − sin l cos l 0
− sin b cos l − sin b sin l cos b
cos b cos l cos b sin l sin b

 (7)

where E0 represents the conversion matrix, and b and l represent the latitude and longitude
of the reference p0. With this conversion matrix, we can compute the height difference of
continuous epochs as follows:

ht+1 − ht =
[
cos b cos l cos b sin l sin b

]
(rt+1 − rt) (8)

It should be noted that only the third row in E0 is selected since only the height
component is applied. In addition, considering that the symbol of absolute value is utilized
in Equation (6), we can express the inequation as follows:{ [

cos b cos l cos b sin l sin b
]
(rt+1 − rt) ≤ σh[

− cos b cos l − cos b sin l − sin b
]
(rt+1 − rt) ≤ σh

(9)

The change in position between continuous epochs can be computed using the velocity,
the acceleration, and the sampling interval. The position in the above inequality can be
written as:

rt+1 − rt = vt∆t + 0.5αt∆t2 (10)
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Overall, upon applying the empirical vertical velocity information, we can establish
the constraint matrix as follows:

E0 =

[
cos b cos l cos b sin l sin b
− cos b cos l − cos b sin l − sin b

]
C0 =

[
02×3 E0∆t 0.5E0∆t2 ]

d0 =
[

σh σh
]T (11)

where E0 represents the third row of E0, C0 and d0 are the constraint matrices. Additionally,
we obtain the following inequality:

C0X ≤ d0 (12)

2.2.2. Direction Constraint

In some cases, the moving direction of a smartphone or vehicle can be obtained. For
instance, its direction can be calculated by the road nodes in a digital map, such as the Open
Street Map (OSM), which can be downloaded onto a smartphone. An example is given
below, with some of the elements of an OSM shown in Figure 1. In this figure, the black
lines represent roads, and the red points represent the nodes of the roads. The latitude
and longitude of the four nodes are given in Table 1. Assuming that the vehicle moved
from east to west, we can calculate the direction: αD→A = 260.48◦, and αB→C = 248.59◦.
Additionally, this information can be used as constraints in a positioning campaign.
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Figure 1. Roads and nodes downloaded from OSM.

Table 1. Latitude and longitude of the four nodes.

A B C D

Latitude (◦) 31.893451 31.8936597 31.8933643 31.8935834

Longitude (◦) 118.8175719 118.8184759 118.817593 118.818498

We can set a range when applying direction information. Additionally, we can employ
the position change in the body system to estimate direction. The direction constraint at
this stage can be written as follows:∣∣∣∣tan−1 ∆xet

∆xnt
− αt

∣∣∣∣ ≤ δ (13)
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where αt represents the prior direction, and δ represents the threshold, which is determined
by the tolerance range of the direction. ∆xet and ∆xnt represent the east and north position
changes in meters. Similar to Equation (8), they can be calculated as follows:{

∆xet =
[
− sin l cos l 0

]
(rt+1 − rt)

∆xnt =
[
− sin b cos l − sin b sin l cos b

]
(rt+1 − rt)

(14)

This is an inverse trigonometric function and a fraction in Equation (13). It is difficult
to convert this inequality into a linear form. In this paper, we propose several steps to
achieve the above direction inequality constraint. In the first step, we can compute the
initial direction using the unconstrained position results. If the direction is within the given
range, the constraint is not necessary. If the direction is outside the range, we proceed to
the second step, in which we convert the position change result from the body system to
a new coordinate system, as shown in Figure 2. As shown in the figure, the direction can
be limited to a range of −δ ∼ δ after conversion. Additionally, the rotation method is
introduced in Equation (15).
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∆x̂et
∆x̂nt

]
=

[
cos αt − sin αt
sin αt cos αt

][
∆xet
∆xnt

]
(15)

In Equation (15), ∆x̂et and ∆x̂nt represent the converted position change. A new
inequality can be obtained as follows:

−δ ≤ tan−1 ∆x̂et

∆x̂nt
≤ δ (16)

Assuming that δ is smaller than π/2, we can obtain the inequality in linear form
as follows: 

∆x̂nt ≥ 0
∆x̂et − ∆x̂nt tan δ ≤ 0
−∆x̂et − ∆x̂nt tan δ ≤ 0

(17)
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The third step is to build the constraint matrix for direction inequality constraints
based on all the aforementioned equations. The constraint matrix, considering direction,
can be established as follows:

E1 =

[
− sin l cos l 0

− sin b cos l − sin b sin l cos b

]
C1 =

 0 −1
1 − tan δ
−1 − tan δ

[ cos αt − sin αt
sin αt cos αt

][
02×3 E1∆t 0.5E1∆t2 ]

d1 = 03×1

(18)

where E1 contains the first and second row of E0, and C1 and d1 are the constraint matrices
for applying direction information. A flowchart of general direction inequality constraint is
shown in Figure 3.

2.2.3. Distance Constraint

The above-mentioned constraints employ information that is only related to the oper-
ating smartphone. In this section, we consider a smartphone CP application that can utilize
inter-smartphone information. Assuming that devices are connected to a central system,
the appropriate inter-device distance can be estimated using extra information, such as road
width or dedicated short-range communication (DSRC) measurements [38]. This distance
range can also be applied by the estimator. When the extra information is employed, the
positioning performance can be improved for all participating smartphones [26].

Assuming that two smartphones are connected, the distance range is determined
as follows:

D ∈
[
Dl Du

]
(19)

where D represents the distance between two smartphones in meters, and Dl and Du
represent the lower and upper bounds of the distance range. In this paper, we achieve the
distance constraint using three steps.

The first step involves computing the initial distance between two smartphones, i.e.,
D0 =‖ r0 − r1 ‖, where D0 is the initial distance, r0 and r1 are the positions of the two
smartphones, and ‖ ‖ is the 2-norm symbol. After linearizing the equation, we can obtain
the distance D0 and its variance Q0

D. The second step is to check whether the computed
distance is within range. When the result fulfills the condition, the constraint will prevent
the task from being performed. Additionally, if the distance is out of range, we can apply
the inequality constraint estimator to calculate the constrained distance D̂i and its variance
Q̂i

D, in which i represents the iteration time. Then, the constrained distance can be applied
to re-estimate the positions of the smartphones in the system. This calculation ends when
the distance is inside the given range or the difference between Di−1 and Di is within
a certain range σD. The steps carried out in the distance constraint are introduced in
Refs. [39,40]. Additionally, a flowchart of the calculation is shown in Figure 4.

2.2.4. Combining Different Types of Constraint

In some cases, we may obtain multiple types of constraint information that need to
be combined to improve position estimation. For example, the previously introduced
constraints on direction and vertical velocity can be simultaneously applied to enhance
position estimation. In such cases, it is straightforward to combine multiple constraints by
constructing matrices based on different information, and performing iteration until all the
constraints are satisfied.
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For instance, if we need to simultaneously apply direction and vertical velocity infor-
mation, we can establish five inequalities using Equations (9) and (17). Then, we can deter-
mine and implement coordinate constraints one-by-one to obtain the constrained result.
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3. Kalman Filter with Inequality Constraints

The Kalman filter (KF) is commonly chosen in GNSS positioning due to its advantages
of maturity and computational efficiency. Additionally, numerous practical applications
have demonstrated the robustness and effectiveness of the KF in GNSS [41]. In addition,
a KF with a state constraint is also easy to achieve, and these methods are frequently
studied [29,42]. In this paper, we employ the Kalman filter (KF) as an estimator to obtain
the value and variance of the unknown states. In this section, the KF is first briefly reviewed,
and then, the inequality constraint method is introduced. Specifically, we apply the density
function truncation approach to solve the inequality constraint problem, and this method
is described in detail.

3.1. Standard Kalman Filter

The state and observation equation of a system can be expressed in linear form as
follows [29]: {

Xt = Ft−1,tXt−1 + wt
yt = HtXt + vt

(20)

where Xt and Xt−1 represent the state vector at epoch t and epoch t− 1, Ft−1,t represents
the transition matrix from epoch t− 1 to epoch t, yt represents the measurement, and Ht
represents the design matrix. wt and vt represent uncorrelated white noise vectors of the
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system and measurement. Their covariance matrices are Qwt and Rt. Qwt is calculated as
follows [5]:

Qwt = σ2
a

∆t4

20
∆t3

8
∆t2

6
∆t3

8
∆t2

3
∆t
2

∆t2

6
∆t
2 1

 (21)

where σ2
a represents empirical variance, which we set to 0.012 m2 in this paper. Rt represents

the prior observation variance, which is related to the stochastic model, and we choose the
C/N0-based stochastic model to estimate the variance in satellite observations [43].

In this paper, we only estimate the position, velocity, and acceleration. The transition
matrix can be computed as follows:

Ft,t−1 =

1 ∆t 0.5∆t2

1 ∆t
1

⊗ diag(1, 1, 1) (22)

where diag(1, 1, 1) represents an identity matrix, and ⊗ represents the Kronecker product
operator. The state vector Xt and its covariance Qt can be estimated as follows [44]:

Xt−1,t = Ft−1, kXt−1
Vt−1,t = yt−HtXt−1,t
Qt−1,t = Ft−1.tQt−1FT

t−1,t + Qwt

Kt = Qt−1,tH
T
t
(
HtQt−1,tH

T
t + Rt

)−1

Xt = Xt−1,t + KtVt−1,t

Qt = (I−KtHt)Qt−1,t(I−KtHt)
T + KtRtKT

t

(23)

where I represents an identity matrix and Kt represents the Kalman gain.

3.2. Solution of Inequality Constraint

Typically, a state inequality relationship can be presented in a linear form as follows:

dl ≤ CX ≤ du (24)

where dl represents the lower bound of the constraints, and du represents the upper bound.
In fact, another equality constraint can also be applied to restrict the state based on the
Gaussian distribution. It can be expressed as follows:{

CX = d = dl+du

2
Qd = 1

m ×
du−dl

2
(25)

where Qd represents the variance in the target, and m is an empirical constant based on
the Gaussian distribution; for instance, if we set m = 3, the probability of CX being in the
region is 99.73%. However, there is a remarkable difference between the two strategies in
terms of results. For the inequality constraint, the state is only restricted within the range,
but the probability is consistent in this region; in other words, it is a uniform distribution
of the estimated state in the restricted region, as shown in Figure 5a. Comparably, if we
utilize the equality constraints that are expressed in Equation (25), it is preferable to restrict
the state around the center of the constrained region, as in d. Additionally, a Gaussian
distribution is displayed in Figure 5b (m = 3). In fact, the value using the latter strategy
could be inaccurate, and can considerably deteriorate the accuracy of the estimation. In
contrast, the inequality-constrained method is more reliable.
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Some strategies can be utilized to solve the inequality constraint, such as the maximum
probability method, the mean square method, and the projection method [27]. The common
aim of these methods is to solve the problem summarized and expressed in Equation (26).

min
(

X̃− X̂
)T

Wk

(
X̃− X̂

)
s.t. CX̃ ≤ d (26)

where Wk represents any symmetric positive definite weighting matrix, X̃ is the state after
constraining, and X̂ is the estimation of the conventional unconstrained Kalman filter. We
can obtain the result using the maximum probability method and the mean square method
by setting Wk = Q̂−1

k and Wk = I, respectively, in which I represents a unit matrix. The
problem defined by this inequation is known as a quadratic programming (QP) problem.
There are many methods that can be applied to solve it, and almost all of them fall into a
category named the active set method. As an optimization method, the active set method
treats a subset of constraints as additional equality constraints; then, it transforms the
problem into an estimator with an equality constraint, which is also called an “active set”.
As this method has been introduced in numerous works of literature, we will not review it
in detail in this paper [45].

In this paper, we apply the density function truncation method to solve the inequality
constraint, since the state and the variance can be obtained using this method, which is
helpful for sequential estimation [27]. The goal of the method is to reset the cumulative
probability of the constrained region to 1. There are several steps that must be followed
to reach this goal. Firstly, we transform the state vector and variances into a constrained
region. Secondly, we calculate the cumulative probability between the constraints bound
based on the transformed state and variance. Note that we use a Gaussian PDF, since we
assume that the estimated state follows the distribution. The function can be expressed as: f (x; µ, σ) = 1

σ
√

2π
exp

(
−(x−µ)2

2σ2

)
CPD =

∫ du
dl

f (τ; µ0, σ0)dτ
(27)

where f (x; µ, σ) represents the PDF under the expectation µ and the variance σ. CPD
represents the cumulative probability distribution (CPD) of the constrained area. µ0 and σ0
represent the state and variance after transformation, respectively. Thirdly, we normalize
the PDF using the CPD, and then compute the expectation and variance in the region using
the normalized PDF as follows:

f0(x; µ, σ) = 1
CDF f (x; µ, σ)

µ̂ =
∫ du

dl
τ f0(τ; µ0, σ0)dτ

σ̂ =
∫ du

dl
(τ − µ̂)2 f0(τ; µ0, σ0)dτ

(28)



Remote Sens. 2023, 15, 2062 12 of 22

where µ̂ and σ̂ represent the exception and variance of the constrained area. Note that we
can standardize the constraint bound by µ0 to simplify the calculation. Finally, we set µ̂ and
the σ̂ as the constrained state and its variance to update their matrices. Another essential
step is to check the reliability of constrained area; in this paper, we utilize the CPD of the
region after constraint operation to achieve this. There are two steps in this process; the first
is to calculate the CPD using Equation (27) by replacing µ0 and σ0 with the constrained
parameters µ̂ and σ̂. The second step is to judge whether the CPD is satisfied by these
conditions. This is illustrated in Figure 6, in which c is a threshold and is set to 0.1 in this
paper. If the condition cannot be satisfied, this could be due to the tight restriction, and we
should enlarge the bound. In this paper, we enlarge the bound 1.5 times.
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Overall, the solution flowchart of the inequality constraint is expressed as follows
(Algorithm 1):

Algorithm 1: Kalman filter with inequality constraint.

Input: Estimation from the conventional unconstrained Kalman filter. State: X̂k, variance: Q̂k.
Output: Estimation of the Kalman filter with inequality constraints.
Steps:
1. Transform X̂k and Q̂k into a constrained frame. Obtain the transformed
expectation µ0 and variance σ0.
2. Check µ0.
3. If dl ≤ µ0 ≤ du:
4. go to Stop.
5. Else: (Constrain Process)
6. Compute the CPD of the constrained area using Equation (27).
7. Normalize the PDF and compute the expectation µ̂ and the variance σ̂ of
the area using Equation (28).
8. Update the result of standard KF, X̂k, and Q̂k using C, µ̂ and σ̂, and

obtain the inequality constraint results for X̃k and Q̃k.
9. Compute the ˆCPD using the updated state and variance.
10. If: ˆCPD ≥ 1− c:
11. go to Stop.
12. Else:
13. Enlarge dl and du.
14. Go to (Constrain Process).
15. Stop.

4. Experiment and Setting

In this section, the datasets collected in the real world are provided to evaluate the
positioning performance of the method. Specially, three smartphones were used for data
collection, namely, a Huawei P40, a Huawei P30, and a Xiaomi MI8, which are, respectively
abbreviated as HP40, HP30, and XMI8 in the following analysis.
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4.1. Data Description

For algorithm verification, we utilized datasets collected from static and dynamic
scenarios. The stationary datasets were collected on 16 May 2022, while the dynamic
datasets were collected on 6 July 2022, with a collection time of approximately 30 min.
All datasets were obtained at Southeast University in Nanjing, China. Figures 7a and 7c,
respectively, display the location and trajectory of the static and dynamic data. During the
experiments, two high-grade geodetic receivers, namely, CHCNAV i90, were installed in
the vicinity of the smartphones, and their relative positions are shown in Figure 7b,d. The
reference positions were computed using the commercial software CHC Geomatics Office
(CGO), based on observations from the geodetic receivers. The reference positions achieved
centimeter-level accuracy using the RTK mode, while reference velocity was calculated
based on the reference position, achieving centimeter/second-level accuracy with a fixed
position solution.
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For the collection of smartphone GNSS measurements, we utilized the Geo++ Rinex
Logger Android app, setting the cut-off elevation to 10 degrees and the cut-off signal-
to-noise ratio (SNR) to 25 dB-Hz. To ensure comprehensive coverage, we collected
observations from GPS, BDS, and Galileo constellations. In the experiment, we em-
ployed a precise single positioning model that utilizes only pseudo-range observations,
as it is generally more accessible in smartphones. The ionospheric and tropospheric
delays were estimated using the Klobuchar and Saastamoinen models, respectively. Ad-
ditionally, we calculated the satellite position and clock offset by employing the inter-
polation method with ultra-rapid precise ephemeris, which can be downloaded from
ftp:/igs.gnsswhu.cn/pub/gnss/products/mgex/ (accessed on 10 April 2023) [46]. In terms
of observation noise estimation, we applied a stochastic model based on the carrier-to-noise
density ratio (C/N0) [43].

ftp:/igs.gnsswhu.cn/pub/gnss/products/mgex/
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4.2. Accuracy Statistics

In order to assess the algorithm’s computational accuracy, we employed the root
mean square error (RMSE) as a statistical measure to characterize the position and velocity
computation performance of different methods. The formula for computing the RMSE
value is:

RMSE =

√
∑n

i=0(xi − x̂)2

n
(29)

where i represents the epoch index, n represents the number of epochs, xi represents the
calculation result series, and x̂ represents the actual value. In this paper, we calculated the
actual value of position and velocity using the commercial software CGO using the GNSS
measurements from the geodetic receivers. When the result series had a lower RMSE, it
meant that it had higher positioning accuracy.

To compare the positioning accuracy of different methods, we calculated the improve-
ment percentage as follows:

Imp =
RMSEori − RMSEconstrained

RMSEori
× 100% (30)

where Imp represents the improvement percentage, RMSEori represents the RMSE result
without using the constraint, and RMSEconstrained represents the RMSE result after using
the constraint.

5. Results Analysis
5.1. Performance of Vertical Velocity Constraint

At this stage, the vertical velocity was set to the prior information for constraining. To
verify the effectiveness of vertical velocity in the application, we first calculated the vertical
velocity of the dynamic dataset and analyzed it. It should be noted that the speed of the
static datasets was zero over this period. Therefore, the velocity constraint was absolutely
valid. Shown in Figure 8 is the calculated vertical velocity using observations from the
reference geodetic receiver. It can be seen that the vertical velocity range is −0.3 m/s ~
0.3 m/s. Therefore, we set the velocity constraint at [−0.3 m/, 0.3 m/s] both for static and
dynamic datasets in this experiment.
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We only analyzed the results of HP30 for convenience of expression. It should be noted
that the results of the other two smartphones are similar. Firstly, the velocity estimation
errors were determined; these are shown in Figure 9a, in which the blue points represent
the original results and the orange points represent the estimated velocity under constraints.
It can be found that there is a slight difference in the E/N components between the two
methods, but the difference in the U component is obvious. Specifically, the vertical velocity
estimated without constraint is distributed between −0.5 m/s and 0.5 m/s, and the RMSE
is 0.16 m/s. With constraint, the range of vertical velocity shrinks to −0.2 m/s~0.2 m/s,
and the RMSE is 0.07 m/s. This indicates that the influence of the vertical velocity con-
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straint is mainly on the vertical direction, and there is a great improvement in vertical
velocity estimation.
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Regarding the improved velocity estimation, the positioning result can be changed
indirectly, and this is shown in Figure 9b. Similarly, the horizontal improvement is slight,
and there is notable positioning enhancement in the up component. Compared with the
velocity estimation, the position cannot be constrained to a specific range. However, it
can be seen in the figure that the orange points are much smoother than the blue points.
The vertical RMSE accounts for 9.41 m of the original result and 6.38 m of the constrained
result. The improvement percentage is 32.22%. Overall, applying a vertical velocity
constraint could enhance velocity and position estimation, but the horizontal improvement
is not obvious.

Shown in Figure 10 are the velocity and position results of the HP30 dynamic dataset.
In this case, the smartphone was moved between different environments, and the velocity
estimation performance is worse than that of the static dataset. Therefore, the estimated
vertical velocity is between approximately −2 m/s and 2 m/s, and the position error in the
up component is large. After constraining, it is clear that velocity and position estimation
performance is improved.
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The RMSE results of the two approaches are displayed in Table 2 for all the smart-
phones, in both the static and dynamic datasets. It can be seen in the table that the vertical
position can be improved.

Table 2. RMSE results and improvement percentages of static datasets using the vertical veloc-
ity constraint.

Device
Original RMSE (m) Constrained RMSE (m) Imp

E N U E N U E N U

Static
HP40 2.56 5.05 10.07 2.49 4.93 7.94 3.00% 2.32% 21.09%
HP30 4.08 5.27 9.41 3.79 4.87 6.38 7.15% 7.65% 32.22%
XMI8 3.29 3.60 15.31 3.18 3.70 13.66 3.21% −2.74% 10.80%

Dynamic
HP40 1.77 3.15 5.04 1.81 2.77 3.93 −2.58% 12.12% 21.92%
HP30 2.04 2.78 3.83 2.09 2.59 2.57 −2.30% 6.82% 32.80%
XMI8 1.41 2.40 4.65 1.44 2.24 4.32 −2.43% 6.61% 7.01%
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In particular, the improvement in HP40 and HP30 is obvious, but not that for XMI8.
The improvement percentages for XMI8 are, respectively, 10.80% and 7.01% in the static
and dynamic datasets. The reason for the different effects is that the velocity estimation
performance of XMI8 is relatively satisfactory, and the constraint would not always enable
the task to be performed over the data collection period. Considering the horizontal
position, the enhancement in the static datasets is stable, but the improvement percentage is
slight. For the dynamic datasets, the position accuracy is degraded in the east component,
and it is improved in the north component for all smartphones. This could be due to the
satellite geometry occurring during data collection. Overall, using the vertical velocity
constraint can provide notable vertical positioning performance improvement, but the
horizontal improvement is not obvious.

To analyze the cause of positioning accuracy decreasing during 06:50~07:00, we cal-
culated the position dilution of precision (PDOP) value of each epoch. The PDOP value
is influenced by the satellite geometry, and it can represent the observation conditions in
different environments [47]. In particular, the environment can worsen when the PDOP is
higher, and the environment can be satisfactory when the PDOP is low. The PDOP value
series of the HP30 dynamic dataset is shown in Figure 11. It can be seen in the figure that
the PDOP increases in some periods, especially during 06:50~07:00. The reason for this
is that the vehicle moved along a road surrounded by tall buildings, which can obstruct
satellite signals. Overall, the positioning accuracy decreasing in this period could be due to
the vehicle moving through a region with an unsatisfactory observation environment.
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5.2. Performance of Direction Constraint

For the static datasets, the direction constraint was invalid. Therefore, we only applied
the car-borne dynamic datasets to analyze the performance of the direction constraint. As
the direction of the dynamic data collection changed frequently and is inconvenient to use,
we chose a short period of data for our analysis, and the trajectory and heading direction
are displayed in Figure 12. It can be seen in the figure that the trajectory is approximately
linear, and the range of the heading direction is 254◦ to 262◦. At this stage, we set the
constraint range to 250◦~270◦ to ensure its effectiveness. Note that this information can be
obtained from the Internet or other sources in real-world applications.

Figure 13 displays the result trajectories of the three smartphones, in which the green
points are the references, the blue points are original results, and the red points are the
results using direction constraints. Intuitively, the red line is much closer to the green
line than to the blue line. This means that the horizontal accuracy after constraining is
obviously improved. Specifically, it can be seen in the figure that the original results are not
as satisfactory as those of the car traveling among the buildings. In this area, smartphones
suffer from considerable multipath error. As the method in this paper constrains the
direction in the kinematic dataset, the positioning performance can be enhanced.
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the environment of the selected data, and (b) shows the yaw of the car during data collection.

Shown in Table 3 are the RMSE results and improvement percentages for the three
smartphones before and after applying the direction constraint. In contrast to using
vertical velocity constraints, using direction constraints provides horizontal positioning
improvement. In detail, we can see in Table 3 that this benefit is considerably reflected in
the north component. The reason for this is that the vehicle was driving on an east–west
road during the data collection period, and two tall buildings stood on both sides of the
road. In this case, the north–south direction error is the major cause of the positioning offset.
As a result, it is significantly influenced by the constraints. Specifically, the improvement
percentages of the horizontal position accuracy for HP30, HP40, and XMI8 are 16.77%,
14.57%, and 31.09%, respectively.

Table 3. RMSE results and improvement percentages of dynamic datasets using the direction
constraint.

Smartphone Method
Position RMSE (m) Imp

E N U E N U 2D

HP30
Original 3.14 6.12 3.24

1.66% 21.20% −0.12% 16.77%Constrained 3.08 4.83 3.25

HP40
Original 4.02 2.79 18.60

2.47% 48.09% 5.05% 14.57%Constrained 3.92 1.45 17.67

XMI8
Original 2.94 5.13 21.07

2.69% 43.43% −1.78% 31.09%Constrained 2.86 2.90 21.44

It should be noted that the direction threshold is vital in the actual application of
direction constraints. On the one hand, precise constraint could result in a perfect effect
and increase the positioning accuracy. On the other hand, excessive constraint could
lead to over-constraining and decrease the positioning accuracy. In fact, applying relaxed
conditions could result in stable positioning. For direction information acquisition, for
instance, we can extract road information from an OSM or set direction constraints using
the yaw, which can be computed by performing inertial measurements of smartphones.

5.3. Performance of Distance Constraint

The previous analysis verified the effects of vertical velocity constraints and direction
constraints. In this section, we detail our investigation of the performance of the inter-
smartphone distance constraint. The relative position of the three smartphones is shown
in Figure 7b,d. To ensure the effect of constraint, the distance range was set to 0~2 m. In
addition, the smartphones were installed in a car for the dynamic data collection, and
we consistently set the distance range to 0~1 m over the data collection period. For the
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calculation, we applied observations of the three smartphones simultaneously. In this
section, we detail our calculation of the cumulative distribution function (CDF) to clearly
depict and compare the positioning accuracy of the three smartphones.

Remote Sens. 2023, 15, x FOR PEER REVIEW 19 of 24 
 

 

 
 

(a) (b) 

Figure 12. A period of data was selected to clearly depict the performance of the method; (a) shows 
the environment of the selected data, and (b) shows the yaw of the car during data collection. 

Figure 13 displays the result trajectories of the three smartphones, in which the green 
points are the references, the blue points are original results, and the red points are the 
results using direction constraints. Intuitively, the red line is much closer to the green line 
than to the blue line. This means that the horizontal accuracy after constraining is obvi-
ously improved. Specifically, it can be seen in the figure that the original results are not as 
satisfactory as those of the car traveling among the buildings. In this area, smartphones 
suffer from considerable multipath error. As the method in this paper constrains the di-
rection in the kinematic dataset, the positioning performance can be enhanced. 

 
(a) 

 
(b) 

Remote Sens. 2023, 15, x FOR PEER REVIEW 20 of 24 
 

 

 
(c) 

Figure 13. Trajectory calculated using different approaches. The blue lines represent results without 
constraint, the red lines represent results with direction constraint, and the green lines represent 
references for (a) HP40, (b) HP30, and (c) XMI8. 

Shown in Table 3 are the RMSE results and improvement percentages for the three 
smartphones before and after applying the direction constraint. In contrast to using verti-
cal velocity constraints, using direction constraints provides horizontal positioning im-
provement. In detail, we can see in Table 3 that this benefit is considerably reflected in the 
north component. The reason for this is that the vehicle was driving on an east–west road 
during the data collection period, and two tall buildings stood on both sides of the road. 
In this case, the north–south direction error is the major cause of the positioning offset. As 
a result, it is significantly influenced by the constraints. Specifically, the improvement per-
centages of the horizontal position accuracy for HP30, HP40, and XMI8 are 16.77%, 
14.57%, and 31.09%, respectively. 

Table 3. RMSE results and improvement percentages of dynamic datasets using the direction con-
straint. 

Smartphone Method 
Position RMSE (m) Imp 

E N U E N U 2D 

HP30 
Original 3.14 6.12 3.24 

1.66% 21.20% −0.12% 16.77% 
Constrained 3.08 4.83 3.25 

HP40 
Original 4.02 2.79 18.60 

2.47% 48.09% 5.05% 14.57% 
Constrained 3.92 1.45 17.67 

XMI8 
Original 2.94 5.13 21.07 

2.69% 43.43% −1.78% 31.09% 
Constrained 2.86 2.90 21.44 

It should be noted that the direction threshold is vital in the actual application of 
direction constraints. On the one hand, precise constraint could result in a perfect effect 
and increase the positioning accuracy. On the other hand, excessive constraint could lead 
to over-constraining and decrease the positioning accuracy. In fact, applying relaxed con-
ditions could result in stable positioning. For direction information acquisition, for in-
stance, we can extract road information from an OSM or set direction constraints using 
the yaw, which can be computed by performing inertial measurements of smartphones. 

5.3. Performance of Distance Constraint 
The previous analysis verified the effects of vertical velocity constraints and direction 

constraints. In this section, we detail our investigation of the performance of the inter-
smartphone distance constraint. The relative position of the three smartphones is shown 
in Figure 7b,d. To ensure the effect of constraint, the distance range was set to 0~2 m. In 

Figure 13. Trajectory calculated using different approaches. The blue lines represent results without
constraint, the red lines represent results with direction constraint, and the green lines represent
references for (a) HP40, (b) HP30, and (c) XMI8.

Since the horizontal error in smartphone positioning requires more concentration, we
only considered horizontal positioning performance in the following analysis. Additionally,
the horizontal CDF error is displayed in Figure 14, in which the left, middle, and right
panels represent the CDF errors of HP40, HP30, and XMI8, respectively. The orange lines
in the figure represent the original results, the blue lines represent the results using the
distance constraint, and the red dashed lines represent the references of 50% and 95%
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CDF. Intuitively, the horizontal positioning accuracy of all the smartphones is improved
using the constraint. This means that it is beneficial for all devices in the system using
distance information. The enhancement of HP30 is especially significant. This is because
the original accuracy of HP30 was not satisfactory, which could have been influenced by
the considerable multipath error. After constraint, the performance of all smartphones is
similar, as the distance is fixed. Considering the 95% CDF, the improvement percentages of
the three smartphones are 34.27%, 75.58%, and 23.66%.
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Figure 15 displays the results of the dynamic datasets. Compared with the aforemen-
tioned experiment on the static datasets, the improvement is not obvious. This is because
the dynamic data collection environment is ideal most of time. Therefore, three smart-
phones can achieve a satisfactory positioning in this case, and the enhancement may not
always work over the data collection period. Numerically, the improvement percentages
are 15.90%, 5.55%, and 0.17%, respectively.
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6. Conclusions

Taking advantage of multi-sensor-embedded and cutting-age communication tech-
niques, most smartphones can obtain multi-source information, and some information
can be expressed in the form of inequalities. Using extra inequalities could improve the
positioning accuracy and stability of smartphones. In this paper, we introduce an inequality
constraint estimator and three applications using inequality constraints on smartphone
GNSS positioning, including a vertical velocity constraint, direction constraint, and distance
constraint. Real-world collected datasets from a Huawei P40, a Huawei P30, and a Xiaomi
MI8 were utilized for the method’s validation.

It is proven that velocity and position estimation performance can be improved in
the up component using vertical velocity constraints. In particular, the position series was
smoother after applying this method, as it was indirectly influenced. However, horizontal
enhancement was not obvious in this application. To verify the direction constraint, we
selected a period in which data were collected for analysis along a straight road. Compared
with the original results, the trajectories using constraints are much closer to the reference
trajectory. This means that the horizontal positioning accuracy is improved. Numerically,
the horizontal RMSE result improvement percentages were 16.77%, 14.57%, and 31.09% for
HP40, HP30, and XMI8, respectively. Additionally, we considered the inter-smartphone
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distance inequality constraint. The results indicate that the positioning accuracy of all
the smartphones in the cooperative system improved. Considering the 95th percentile of
the horizontal error, the improvement percentages were 34.27%, 75.58%, and 23.66% for
the three smartphones in the static dataset, and 15.90%, 5.55%, and 0.17% for those in the
dynamic dataset. This method could be applied to smartphone cooperative positioning in
the future.
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