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Abstract: Understanding crop phenology is crucial for predicting crop yields and identifying poten-
tial risks to food security. The objective was to investigate the effectiveness of satellite sensor data,
compared to field observations and proximal sensing, in detecting crop phenological stages. Time
series data from 122 winter wheat, 99 silage maize, and 77 late potato fields were analyzed during
2015–2017. The spectral signals derived from Digital Hemispherical Photographs (DHP), Disaster
Monitoring Constellation (DMC), and Sentinel-2 (S2) were crop-specific and sensor-independent.
Models fitted to sensor-derived fAPAR (fraction of absorbed photosynthetically active radiation)
demonstrated a higher goodness of fit as compared to fCover (fraction of vegetation cover), with
the best model fits obtained for maize, followed by wheat and potato. S2-derived fAPAR showed
decreasing variability as the growing season progressed. The use of a double sigmoid model fit al-
lowed defining inflection points corresponding to stem elongation (upward sigmoid) and senescence
(downward sigmoid), while the upward endpoint corresponded to canopy closure and the maximum
values to flowering and fruit development. Furthermore, increasing the frequency of sensor revisits
is beneficial for detecting short-duration crop phenological stages. The results have implications for
data assimilation to improve crop yield forecasting and agri-environmental modeling.

Keywords: precision agriculture; Copernicus Sentinel-2 (S2); disaster monitoring constellation
(DMC); digital agriculture; remote sensing; arable cop

1. Introduction

An important aspect of estimating crop yield and production concerns the stages of
crop growth and development, known as crop phenology. Crop phenology affects almost
all aspects of the agri-environment, including yield formation, water and carbon cycling,
agro-ecosystem services, and food webs. Changes in crop phenological processes such
as flowering are among the most sensitive biological responses to climate change [1], so
crop phenological development stages allow comparisons of impacts between regions and
seasons. Globally, many phenological stages, including the start and end of the growing
season, are occurring earlier in the spring and later in the autumn [2–4]. However, not

Remote Sens. 2023, 15, 2090. https://doi.org/10.3390/rs15082090 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15082090
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-3742-7062
https://orcid.org/0000-0002-2341-667X
https://orcid.org/0000-0002-9444-8206
https://orcid.org/0000-0002-1530-8468
https://orcid.org/0000-0002-7479-796X
https://doi.org/10.3390/rs15082090
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15082090?type=check_update&version=2


Remote Sens. 2023, 15, 2090 2 of 19

all species and regions are affected at the same rate, leading to mismatches and making
phenology a leading indicator of climate change impacts [5,6].

The occurrence of meteorological events, such as frost or drought, during the crop life
cycle or at specific phenological stages explains yield variation in common crops [7–10].
Crop phenology and canopy development help improve the effectiveness of management
practices and the accuracy of decision support systems [11,12]. Farmers need to know the
timing of crop development to decide when to apply fertilizers, pesticides, or remedial
measures and to implement certain practices, such as irrigation, in a more sustainable
way. Crop phenology models are the basis of all crop models, and crop emergence, flower-
ing, and maturity are typically simulated from weather variables [13–15]. Comparisons
with measured crop data consist of observations and intensive within-season time series
information on soil water content, crop biomass, and yield [15–17].

The accuracy of arable crop models largely depends on a reliable estimation of the crop
phenological stages to which the processes of crop performance and yield formation are
tuned. Understanding crop phenology is crucial for predicting crop yields and identifying
potential climate risks to food security [14,18,19]. The productivity of a crop depends on
its development and ability to intercept incident radiation, which is a function of the leaf
area and structure of the crop [20]. All 27 crop models included in [16] simulate wheat
(Triticum aestivum) phenology based on planting date (n = 27) and temperature summation
approaches (n = 27); some models also consider the effects of daylength and vernalization
(n = 21) or water/nutrient stress (n = 6). Based on 23 participating models, the maize (Zea
mays) crop model intercomparison [17] shows that days after sowing and temperature
(n = 23) are the most important factors used for deriving phenological stages, followed
by day length (n = 15) and nutrient or water stress (n = 5). An intercomparison review of
33 potato (Solanum tuberosum) models showed that most research has been carried out in
relation to soil-water-nitrogen dynamics, with the phenological compartment being driven
by days after planting (n = 33), or temperature (n = 30) in combination with daylength
(n = 13) [21].

Vegetation phenology can be monitored with vegetation indices (VI) derived from
optical remote sensing [22,23]. The need for monitoring crop phenology at the farm-
to-regional scale has become apparent to, inter alia, clarify crop responses to seasonal
variation, elucidate effective farm management practices, and improve crop performance
prediction and yield forecasting. As the growing season progresses, the crop’s greenness
increases, leaving a distinct and detectable spectral signature that changes with different
stages of development [24,25]. Methods to detect phenological stages range from the
detection of single phenological events based on NDVI to complex mathematical modeling
methods using VI time series analysis and sensor fusion methods to infer crop phenological
development [26–29]. Despite the disadvantage of requiring a priori information such as
the number of cropping seasons during the year [30] and planting/sowing dates [31], model
fitting offers the possibility to mathematically characterize specific transitions in the crop
phenological cycle [32,33]. Most methods determine crop growth after the growing season
using time-series smoothing techniques such as splines or neural networks [34,35]. Similar
smoothing and machine learning methods have been developed to evaluate yield estimates
at farm-to-regional scales [36,37], compare different growing seasons [38], and support
decisions on farming practices [11]. However, model fitting would enable a mathematical
characterization of changes in crop growth rate and, therefore, crop phenology during the
growing season, providing information on crop performance independent of currently
used weather-based crop modeling methods.

Since crop phenology is a leading indicator of climate impacts, crop performance
processes, and yield formation, its detection during the growing season may provide
data that is independent of current weather-based modeling methods for simulating crop
phenological stages. We hypothesized that biophysical variables derived from satellite
sensors provide a valid set of measurements for inferring crop phenology. The objectives of
this study are therefore to relate in-situ field phenological observations to proximal and
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satellite sensor data and investigate how well modeling using sensor data can be used
to infer crop phenological stages during the growing season. A unique dataset of field
observations was constructed during three growing seasons (2015–2017) for three major
arable crops in Belgium, i.e., silage maize, winter wheat, and late potato.

2. Materials and Methods

The proximal sensor data consisted of field-based digital hemispherical photographs
(DHP) acquired by a digital camera with a fisheye lens, while the satellite sensor data
consisted of disaster monitoring constellation-2/Deimos-1 satellite (DMC) images at a
22 m resolution from Deimos Imaging and Copernicus Sentinel-2 (S2) images at a 10 m
resolution from the European Space Agency. All sensor data were processed and analyzed
at the parcel level following the flow diagram of data processing presented in Figure 1.
Parcel boundaries were retrieved from the Land Parcel Information System (LPIS) used to
administer farmers’ income support through the European Common Agricultural Policy.
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2.1. Satellite Sensor Observations

A time series of cloud-free ortho-rectified 22 m resolution DMC and 10 m resolution
S2 satellite images were used for deriving the biophysical variables fAPAR (fraction of ab-
sorbed photosynthetically active radiation) and fCover (vegetation cover fraction) (Table 1).
Pre-processing included atmospheric correction [39]; cloud and shadow detection [40] for
DMC; [41] for S2; and calculation of the biophysical variables [42].

Table 1. Cropping calendar for winter wheat, silage maize, and late potato, and number of fort-
nightly cloud-free images used during the growing seasons of April–November 2015, 2016, and 2017
in Belgium.

Crop Apr. May Jun. Jul. Aug. Sep. Oct. Nov.
Winter wheat f f h h s s
Silage maize s s e f f h h
Late potato p p e e t t h h
2015 DMC (22 m) 3 2 2 2 1
2016 DMC (22 m) 3 2 2 4 2 4 4
2015 Sentinel-2A (10 m) 1 2 4 4 3 1 1
2016 Sentinel-2A (10 m) 5 4 5 4 2 1 4 5 3 4 4 5 4 5 4 4
2017 Sentinel-2A&B (10 m) 3 6 3 4 3 5 7 8 5 8 5 9 5 9 5 6

s: sowing, p: planting (brown); e: emergence (green); f: flowering, t: tuber setting (light green); h: harvesting
(dark green). The number of images available is colored from red to dark green.
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The derivation of fAPAR and fCover products from Sentinel-2 and DMC was achieved
by using the BV-NET (biophysical variable neural network), initially developed for medium-
resolution sensors [43], adapted to higher spatial resolution sensors such as SPOT [44] and
Landsat-8 [45], and based on neural networks trained on a synthetic dataset of around
50,000 simulations using the PROSAIL model [46]. The distribution of the variables was
designed with an experimental plan, and constraints were applied to the co-distribution
of the leaf area index (LAI), soil brightness, chlorophyll, and average leaf angle [47]. For
Sentinel-2, neural networks derived from the same algorithm are available in the SNAP
(Sentinel Application Platform) toolbox [48]. This algorithm showed good performances
for Sentinel-2 against in situ measurements, with an RMSE of 0.32 for LAI for five different
crops, including wheat and maize [48] and an RMSE of 0.1 for sunflower for fAPAR
estimated from Landsat. Similar results were obtained using Formosat data [44].

Each neural network, i.e., one for each sensor and biophysical variable, was calibrated
using the same set of PROSAIL inputs: canopy architecture, leaf constituents, and soil
background. However, the simulations were adapted to each sensor by considering the
spectral bands and orbital characteristics of the particular sensor. To achieve a good
temporal and spatial consistency between the two sensors and for inter-comparison reasons,
we considered only similar spectral bands between DMC and Sentinel-2, i.e., green, red,
and near-infrared bands (Figure 2). Furthermore, this selection allowed us to use the best
Sentinel-2 spatial resolution (10 m) and the best accuracy when applying for registration
between the two sensors. The inputs of the different neural networks are the reflectance in
three spectral bands and the geometry of acquisition, which is determined by the cosine of
the sun, the view zenith angle, and the relative azimuth angle.
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Figure 2. Spectral Sensitivity of DMC-Deimos and Sentinel-2A in three spectral bands (green, red,
and near-infrared) as inputs to the neural network.

During 2015–2017, a total of 122 fields of winter wheat, 99 maize fields, and 77 potato
fields were monitored across Belgium (Table 2). The fields were located in the agroecological
regions of Belgium, where the crops occurred mostly (Figure 3). An inward buffer was
imposed such that only pure pixels were extracted per field (Figure 4), whereafter the
median value per bio-physical variable was retained.
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Table 2. Arable fields monitored. In brackets are the fields monitored with Digital Hemispheric
Photography (DHP).

Crop 2015 2016 2017 Total
Silage Maize 10 (10) 20 (09) 69 (15) 99 (34)
Late Potato 20 (01) 29 (05) 28 (06) 77 (12)
Winter wheat 37 (19) 22 (09) 63 (10) 122 (38)
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2.2. Digital Hemispherical Photography and Ground Observations

Between March and September, all fields were regularly visited to record the pheno-
logical stage according to the BBCH-scale. BBCH stands for Biologische Bundesanstalt für
Forst und Landwirtschaft, Bundessortenamt für CHemische Industrie, and the description
should apply to at least 50% of the individual plants in a field [49]. Pictures were taken with
Digital Hemispherical Photography (DHP) in a subset of fields (Table 2; Figure 5). DHP
acquisitions were obtained along 2 transects of 15 m, with 5 images taken per transect [50].
The reflectances were established for an area of 20 m resolution centered along the tran-
sects. The camera and fish-eye lens was calibrated, and the physical position of the optical
center and the projection function were used to undistort the images. The plant area was
estimated from the identification of background (soil or sky) and plant (green) pixels and
the established geometric considerations. The images were processed using the CAN-EYE
software to extract the fraction of absorbed photosynthetically active radiation (fAPAR) and
the vegetation cover fraction (fCover) [51]. Commensurate with the BBCH descriptions,
median values per field were calculated.
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2.3. Statistical Modelling Methods

The dates of image acquisition were transformed to days after planting (DAP) based
on the sowing and planting dates recorded for the different winter wheat, potato, and
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maize parcels. The coefficient of variation (CV) was used to represent the variation in
the biophysical variables fAPAR and fCover between crops, fields, and dates during the
cropping season. Using a two-way ANOVA [52], we tested the hypothesis that there were
statistically significant relationships between the biophysical variables fAPAR and fCover
during the crop growing season and crop type, field location, days after planting, and their
factorial interactions.

Subsequent model fitting of all DHP-, DMC-, and Sentinel-2-derived fAPAR and
fCover against DAP and/or against the day of the year (DOY) was done in R [52] us-
ing maximum likelihood estimation (MLE) for establishing model parameters. Different
models were compared for different sensors, i.e., cubic splines, single sigmoid models
(Equation (1)), and double sigmoid models, and discussed in terms of goodness-of-fit and
practical application. Double-sigmoid models were fitted simultaneously, whereby the
decay was defined for f(x) > f(x)max.

f (x) =
a[

1 + e−b(x−c)
] f or f (x) ≤ f (x)max (1)

where x was expressed in DAP or DOY, f (x) represented the biophysical parameter fAPAR
or fCover at time x; and a, b, and c were fitting parameters. The best model fit was based on
the lowest estimators of prediction error using the Akaike information criterion (AIC, [53]).
The goodness-of-fit statistics between observed and estimated values were mean average
error (MAE), root mean square error (RMSE), coefficient of determination (R2), and model
agreement (d) [54]. For both the upward and downward sigmoid models, the inflection
points, the endpoint (saturation), and the maximum fAPAR and fCover values were derived
and subsequently related to the BBCH code.

3. Results
3.1. Digital Hemispherical Photography and Ground Observations

The crop phenological stages through which maize, potato, and wheat crops passed
and their durations were expressed in time after planting. Despite the categorical scale
and crisp delineation of BBCH codes identified in the field, the crop phenological stages
showed a clear progression of growth stages toward maturity and harvest (Figure 6). The
BBCH codes were related to days after planting/sowing (DAP).

Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 19 
 

 

on the lowest estimators of prediction error using the Akaike information criterion (AIC, 
[53]). The goodness-of-fit statistics between observed and estimated values were mean 
average error (MAE), root mean square error (RMSE), coefficient of determination (R2), 
and model agreement (d) [54]. For both the upward and downward sigmoid models, the 
inflection points, the endpoint (saturation), and the maximum fAPAR and fCover values 
were derived and subsequently related to the BBCH code. 

3. Results 
3.1. Digital Hemispherical Photography and Ground Observations 

The crop phenological stages through which maize, potato, and wheat crops passed 
and their durations were expressed in time after planting. Despite the categorical scale 
and crisp delineation of BBCH codes identified in the field, the crop phenological stages 
showed a clear progression of growth stages toward maturity and harvest (Figure 6). The 
BBCH codes were related to days after planting/sowing (DAP). 

For maize, leaf development (BBCH: 10–19) corresponded to 28–63 days after sow-
ing, stem elongation (BBCH: 30–39) to 48–84 DAP, heading or inflorescence emerging 
(BBCH: 51–59) to 76–91 DAP, flowering/anthesis (BBCH: 60–69) to 83–118 DAP, grain de-
velopment (BBCH: 70–79) to 100–141 DAP, ripening (BBCH: 80–89) to 126–158 DAP, and 
senescence (BBCH: 90–95) to above 160 DAP. 

For winter wheat, emergence and early leaf development took place before winter. 
Leaf development was re-commenced after winter and was followed by a period of stem 
elongation between 102–141 days after sowing. The booting stage (138–146 DAP) pre-
ceded heading (146–151 DAP) and anthesis (155–161 DAP). Maturity stages comprise 
grain development and ripening between 170–194 DAP, followed by senescence. Harvest 
occurred around 200–220 DAP. 

 
Figure 6. Observed BBCH codes versus days after planting/sowing (DAP) for maize, winter wheat, 
and potato for the period 2015–2017. 

Potato BBCH stages were distinctly different from cereal phenology. Sprouting and 
germination (BBCH: 0–10) took one month on average and were closely followed by leaf 
development and crop emergence (BBCH: 10–20). Formation of side shoots (BBCH: 20–
30) stretched between 35–52 DAP, while main stem elongation (BBCH: 30–40) lasted for 
45–72 DAP. The onset of tuber formation (BBCH: 40–50) coincided with inflorescence 
emerging (BBCH: 50–60) and flowering (BBCH: 60–70) during the period 65–96 DAP. The 
duration of the above-ground development of fruit (BBCH: 70–80) was at 91–115 DAP, 
whereas seed development (BBCH: 80–90) was at 96–138 DAP. Senescence covered a pe-
riod of 122–175 DAP. 

Digital hemispherical photography (DHP) enabled in situ ground observations, 
whereby the analysis of DHP-derived fCover and fAPAR provided a good insight into the 
ability to detect crop phenology (Table 3 and Figure 7) that relates to satellite sensor-

Figure 6. Observed BBCH codes versus days after planting/sowing (DAP) for maize, winter wheat,
and potato for the period 2015–2017.

For maize, leaf development (BBCH: 10–19) corresponded to 28–63 days after sowing,
stem elongation (BBCH: 30–39) to 48–84 DAP, heading or inflorescence emerging (BBCH:
51–59) to 76–91 DAP, flowering/anthesis (BBCH: 60–69) to 83–118 DAP, grain development
(BBCH: 70–79) to 100–141 DAP, ripening (BBCH: 80–89) to 126–158 DAP, and senescence
(BBCH: 90–95) to above 160 DAP.
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For winter wheat, emergence and early leaf development took place before winter.
Leaf development was re-commenced after winter and was followed by a period of stem
elongation between 102–141 days after sowing. The booting stage (138–146 DAP) preceded
heading (146–151 DAP) and anthesis (155–161 DAP). Maturity stages comprise grain devel-
opment and ripening between 170–194 DAP, followed by senescence. Harvest occurred
around 200–220 DAP.

Potato BBCH stages were distinctly different from cereal phenology. Sprouting and
germination (BBCH: 0–10) took one month on average and were closely followed by
leaf development and crop emergence (BBCH: 10–20). Formation of side shoots (BBCH:
20–30) stretched between 35–52 DAP, while main stem elongation (BBCH: 30–40) lasted
for 45–72 DAP. The onset of tuber formation (BBCH: 40–50) coincided with inflorescence
emerging (BBCH: 50–60) and flowering (BBCH: 60–70) during the period 65–96 DAP. The
duration of the above-ground development of fruit (BBCH: 70–80) was at 91–115 DAP,
whereas seed development (BBCH: 80–90) was at 96–138 DAP. Senescence covered a period
of 122–175 DAP.

Digital hemispherical photography (DHP) enabled in situ ground observations, whereby
the analysis of DHP-derived fCover and fAPAR provided a good insight into the ability
to detect crop phenology (Table 3 and Figure 7) that relates to satellite sensor-derived bio-
physical variables. Both variables changed during crop growth and development, and their
specific characteristics reflected different phenological stages. An excellent goodness-of-fit
was obtained for fitted growth models of fAPAR and fCover for individual silage maize
fields (Table 3). Compared to silage maize, the goodness-of-fit of the fAPAR and fCover
models for individual winter wheat fields was more variable. For individual late potato
fields, the growth models on fAPAR and fCover displayed the largest variability. Overall,
DHP-derived fAPAR captured the dynamics of phenological development and the retrieval
of canopy closure better at the field level than DHP-derived fCover.

Table 3. Goodness-of-fit metrics for model fitting per field of DHP-derived fAPAR and fCover.

Crop Variable MAE RMSE R2 d

Silage Maize fAPAR
fCover

0.03–0.08
0.01–0.09

0.03–0.09
0.01–0.10

0.75–0.99
0.75–0.99

0.93–0.99
0.93–0.99

Late Potato fAPAR
fCover

0.00–0.11
0.00–0.14

0.00–0.13
0.00–0.15

0.46–0.99
0.55–0.99

0.81–0.99
0.50–0.99

Winter wheat fAPAR
fCover

0.00–0.09
0.00–0.18

0.00–0.09
0.00–0.24

0.60–0.99
0.43–0.99

0.53–0.99
0.82–0.99

3.2. Satellite Observations

The development of biophysical products from satellite sensors enabled the construc-
tion of time series per field (Figure 8), provided that cloud contamination was minimal
during the season.

Similar findings to DHP were observed for growth models fitted from DMC-derived
time series of fCover and fAPAR. In the case of maize, the obtained goodness-of-fit per field
was similar for fAPAR (MAE = 0.014–0.031; RMSE = 0.014–0.040; R2 = 0.96–0.99; d = 0.99–1)
as for fCover (MAE = 0.019–0.039; RMSE = 0.024–0.048; R2 = 0.95–0.99; d = 0.99–1) (Figure 9).
The biophysical variable fCover displayed less uncertainty during the onset of the crop
growing season, whereas fAPAR displayed less uncertainty during vegetative development
and mature crop growth stages.

The comparatively higher revisit frequency and higher spatial resolution increase the
probability and number of pure and cloud-free pixels per field for Sentinel-2 as compared
to DMC (Figure 10). Models that suited all fields per crop were difficult to develop since
the probability of cloud- or shadow-contaminated values also increased with higher revisit
frequencies, adding to the variability between fields and years.
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Figure 8. DMC-derived fAPAR progression for maize and winter wheat fields during 2015, including
day/month of image acquisition.

Models per field highlighted the location-specific nature of crop development as
demonstrated by cubic spline fits for the three different crops (Figure 11). For maize, we
chose a time window for the growing period between 1st May and 1st October; for potatoes,
between 10 April and 1 October; and, for winter wheat, we considered the growing period
after vernalization between 10 February and 1 August. Three knots were defined at 50-day
intervals during the growing season, and cubic polynomials were subsequently fitted
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through the fAPAR and fCover points. However, the splined models could only be fitted
after the cropping season.
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3.3. Differences and Similarities between Sensors during the Cropping Season

A comparison between DHP, DMC, and Sentinel-2-derived fCover and fAPAR during
the growing season demonstrated similarities between the different sensors, whereby each
field is represented by the median value of pixels in the case of satellite sensors or by the
median of DHP measurements (Figure 12). The comparison showed a strong relationship
between DMC and DHP and between Sentinel-2 and DHP. Overall, the relationship was
stronger for fAPAR than for fCover.

An analysis of variance (ANOVA) demonstrated clear effects of crops, fields, dates,
and their factorial interactions on fAPAR (p < 0.001) and fCover (p < 0.001). For maize in
2015, fAPAR (fCover) showed the largest variability during the onset of the season, with
the coefficient of variation (cv) dropping exponentially as the season progressed, from 87%
(125%) at sowing to 12% (12%) at stem elongation, 3% (3%) at maturity, and 5% (5%) at
senescence. For wheat in 2015, the cv in fAPAR (fCover) dropped from 46% (67%) at stem
elongation to 9% (11%) at maturity and back up to 21% (25%) at senescence. The variability
(cv) in fAPAR (fCover) ranged between 32% and 56% for maize fields and between 36%
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(41%) and 65% (78%) for wheat fields; these ranges were overall larger than the variability
between dates. For all crops, fAPAR consistently showed less variability for the different
crop development stages.
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3.4. Crop Phenology Detection Differences and Similarities between Sensors during the
Cropping Season

Model fitting of crop phenological development concentrated on relating field obser-
vations in the BBCH scale to Sentinel-2-derived fAPAR time series, since this biophysical
variable provided better results than fCover during the crop growing season. A numerical
solution of fitting models through fAPAR time series enabled the mathematical derivation
of inflection points and the subsequent detection of changes in green vegetation status and
growth rate. The inflection points (Figure 13) represented the times of rapid, peak, and
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decay green vegetation development. The fit for above ground crop development was
highest for maize, followed by winter wheat and potato, demonstrating the efficiency of
Sentinel-2 satellite imagery for crop monitoring.
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season. The red squares depict the inflection points.

For the three arable crops, the first inflection point (midpoint 1, Figure 14) was charac-
terized by low Sentinel-2-derived fAPAR values at the onset of the crop growing season
and corresponded predominantly to the phenological stage of stem elongation, reflecting a
point of maximum growth and subsequent increase in fAPAR (Figure 14). The endpoint
of the upward sigmoid model marked the stage of canopy closure and extended to the
stage of inflorescence emergence. Maximum fAPAR values (Max Point) were associated
with flowering and fruit development, whereby the phenological stages of canopy closure,
inflorescence emergence, and fruit development follow each other very closely in time. The
inflection point of the downward sigmoid model (Mid Point 2) corresponded with low
fAPAR values towards the end of the season when fruit ripening and senescence take place.
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The DHP derived fAPAR values (Figure 15) displayed similar values and patterns as
compared to Sentinel-2-derived fAPAR. Stem elongation (BBCH [30–40[, Figure 14) covered
the largest range of fAPAR values and corresponded to vegetative crop growth.
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4. Discussion

The demand for crop development stages, i.e., crop phenology, is high in an operational
farming context, particularly in a changing climate with an increase in extreme weather
events [55]. For farmers, the preferred unit of communication is days, to which field
operations can be adjusted depending on the weather [56]. We reported crop development
according to crop phenological stages as recorded by agronomists using the categorical
BBCH scale [49], and we used calendar days in relation to the planting or sowing date. The
BBCH observations and DHP acquisitions required regular field visits, certainly during the
exponential growth phase, which was not always feasible in an operational context and did
not allow a large number of agricultural parcels to be covered. Fixed pheno-cameras [57]
or citizen science data acquisitions [58] may provide additional perspectives to augment
in-situ observations. The disadvantages of fixed pheno-cameras and citizen science data
acquisitions, such as their limited spatial coverage and observational bias, can be overcome
by remote sensing.

Most remote sensing applications use time series smoothing algorithms to derive
vegetation or crop development and relate this to yield [36,59]. We compared modeling
methods such as cubic splines and sigmoid models to derive crop development. Cubic
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splines required the definition of knots to fit cubic polynomials to the windows confined
by the knots or cutpoints. However, the definition of cutpoints could only take place after
the crop growing season and was therefore less suitable for an operational context within
the growing season. The application of cubic splines in our case was limited to post-season
assessments, as the models could only be successfully fitted after the harvest. Similar
to our findings, sigmoid models have been successfully used to describe crop develop-
ment throughout the growing season in maize [24,35] and winter wheat [25,34]. We have
extended their use to within-season model fitting and included potato crop development.

A common presumption is that the requirements for field-scale monitoring are ac-
complished with the availability of global Sentinel-2 images at 10 to 20 m resolution every
five days. The prerequisite to realizing improved crop monitoring through optical remote
sensing data is that cloud-free images are available. Deep learning techniques have helped
improve the detection of clouds and shadows and subsequently allowed the removal
of contaminated observations prior to further time series analysis [60]. However, dur-
ing periods of rapid change in the crop growing cycle, the number of observations may
dwindle to a low number, necessitating a combination with other sensors such as UAV
acquisitions [61], Sentinel-1-derived information [62], or high- and low-resolution data
fusion [28]. Sentinel-1/2 integration is promising for parcel-based mapping and phenology
detection [27,63]. In our study, we explored the use of models for single-sensor-derived
biophysical variables such as fAPAR and fCover. fAPAR is integrated over the hemisphere
to capture photosynthetic activity, whereas fCover is a near-nadir observation to obtain the
fraction of soil covered by green vegetation.

Our results using satellite sensor-derived biophysical variables demonstrated that
fCover displayed less variability than fAPAR during the onset of vegetative growth, while
fAPAR showed less variability from vegetative growth to crop maturity stages. While
satellite sensor-derived fCover is successful in detecting green-up and canopy closure,
fAPAR provides information on the crop’s photosynthetic activity [42,47]. Therefore, we
preferred fAPAR to infer crop phenology and used sigmoid models to describe crop pheno-
logical development. Sigmoid models have the advantage that they can be fitted within the
season when the vegetation indicator values are close to their maximum. Prior to this point,
models can be fitted with less certainty, for example, by incorporating crop establishment
and exponential vegetative growth. Both DHP and satellite sensor-derived biophysical
variables may occur in the saturated zone at their highest values when the crop canopy
is dense [50,64]. The difference between satellite-derived and DHP-derived biophysical
variables can be explained by the differences in observation frequency, sampling, and
calculation methods. While DHP images were processed using fisheye distortion correction
followed by can-eye software, satellite images were processed using a biophysical variable
and neural network (Figure 1).

The crop phenological stages were related to fitted sigmoid fAPAR models, whereby
the inflection points indicated clear changes in the time series commensurate with changes
in the crop status. Crop phenological stages such as stem elongation, full cover, and
senescence were successfully detected. Certain phenological stages, such as inflorescence
emergence or flowering in cereals, are short in duration and therefore more difficult to
detect. According to the experimental results, the sowing stage appears to be more difficult
to detect. Similarly, crop emergence detection, though not the focus of this research,
proves challenging and requires multiple sensors at a high spatiotemporal resolution to
arrive at a 6 to 10-day accuracy [31]. Moreover, sowing and planting dates, when not
recorded, are important for crop modeling of current seasons and future scenarios [65,66].
Short duration phenological stages could therefore benefit from higher spatiotemporal
and spectral information. Information about variability during the cropping season helps
decide which biophysical variable to use for detecting crop phenological stages.

Variability between fields and years has an impact on the crop phenological progres-
sion and depends on soil moisture, temperature, and light incidence, as established in
model inter-model comparisons for maize, wheat, and potato [16,17,21], which simulated
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crop phenology well. Our methodology was tested on these three arable crops, which are
common in Belgium and can be applied to other crops and regions of the world. A further
comparison between crop phenological models and satellite sensor-derived biophysical
variables could benefit the advanced understanding of weather impacts on phenologi-
cal development and the subsequent scope of monitoring using remote sensing-derived
biophysical variables.

5. Conclusions

The biophysical variables fraction of absorbed photosynthetically active radiation
(fAPAR) and vegetation cover fraction (fCover) derived from digital hemispherical pho-
tographs (DHP), the disaster monitoring constellation (DMC), and Sentinel-2 (S2) satellite
imagery were sensor-independent but crop-specific when monitoring the phenological
stages of maize, wheat, and potato in Belgium. fCover showed less variability at the
beginning of the crop-growing season, whereas fAPAR displayed less variability during
vegetative development and mature crop growth. Since the dynamics of phenological
development were well captured by fAPAR, a high goodness of fit was obtained. A nu-
merical solution to fit sigmoid models through time series of biophysical variables enabled
the derivation of inflection points and the subsequent detection of changes in green veg-
etation status and growth rate. In addition, the upward-sigmoid model demonstrated
the ability to infer within-season phenological stages of crops, enabling crop performance
assessment and within-season crop management decisions. Higher spatiotemporal sensor
data and additional spectral information would assist in the detection of crop phenological
stages, particularly short-duration stages, to support improved crop performance and
yield modeling.
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