Evapotranspiration of Winter Wheat in the Semi-Arid Southeastern Loess Plateau Based on Multi-Source Satellite Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Analysis Methodology
2.3.1. SEBAL Model
2.3.2. ESTARFM Model
2.3.3. GeoDetector
3. Results and Analysis
3.1. Analysis of ESTFARM ET Fusion Results
3.2. Temporal and Spatial Characteristics of Winter Wheat ET in Linfen Basin
3.3. Winter Wheat ET Response to Meteorological Factors during the Main Growth Stages
4. Discussion
4.1. Improvements to and Limitations of ESTARFM ET
4.2. Variation Characteristics of ET and Its Effects on Growth and Development of Winter Wheat
4.3. Relationship between Winter Wheat ET and Meteorological Factors in Various Growth Stages
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, Y.; Song, X. Applying stable isotopes to determine seasonal variability in evapotranspiration partitioning of winter wheat for optimizing agricultural management practices. Sci. Total Environ. 2019, 654, 633–642. [Google Scholar] [CrossRef]
- Ji, Y.; Tang, Q.; Yan, L.; Wu, S.; Yan, L.; Tan, D.; Chen, J.; Chen, Q. Spatiotemporal Variations and Influencing Factors of Terrestrial Evapotranspiration and Its Components during Different Impoundment Periods in the Three Gorges Reservoir Area. Water 2021, 13, 2111. [Google Scholar] [CrossRef]
- Yin, Y.; Ma, D.; Wu, S. Enlargement of the semi-arid region in China from 1961 to 2010. Clim. Dyn. 2019, 52, 509–521. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, Q.; Yue, P.; Yang, J.; Wang, S. Environmental and Biophysical Effects of the Bowen Ratio over Typical Farmland Ecosystems in the Loess Plateau. Remote Sens. 2022, 14, 1897. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, D.; Gan, R.; Chiew, F.H.S.; McVicar, T.R.; Zhang, Q.; Yang, Y. Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017. Remote Sens. Environ. 2019, 222, 165–182. [Google Scholar] [CrossRef]
- Li, Y.; Chen, H.; Liang, C.; Su, W.; He, T. Estimation and spatio-temporal characteristics of winter wheat evapotranspiration in Henan Province based on NPP VIIRS data and SEBS model. Chin. J. Eco-Agric. 2022, 30, 1–10. [Google Scholar]
- Hu, C.; Fang, W.; Wang, H.; Duan, J. Evapotranspiration and crop coefficient of winter wheat cropland in Henan Province. Chin. J. Ecol. 2020, 39, 3004–3010. [Google Scholar]
- Song, L.; Yin, Y.; Wu, S. Advancements of the metrics of evapotranspiration. Prog. Geogr. 2012, 31, 1186–1195. [Google Scholar]
- Chen, J.; Tan, H.; Ji, Y.; Tang, Q.; Yan, L.; Chen, Q.; Tan, D. Evapotranspiration Components Dynamic of Highland Barley Using PML ET Product in Tibet. Remote Sens. 2021, 13, 4884. [Google Scholar] [CrossRef]
- Bai, P. Comparison of remote sensing evapotranspiration models: Consistency, merits, and pitfalls. J. Hydrol. 2023, 617, 128856. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212–213, 198–212. [Google Scholar] [CrossRef]
- Su, Z. The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85–100. [Google Scholar] [CrossRef]
- Roerink, G.J.; Su, Z.; Menenti, M. S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance. Phys. Chem. Earth Part B 2000, 25, 147–157. [Google Scholar] [CrossRef]
- Wu, X.; Zhou, J.; Wang, H.; Li, Y.; Zhong, B. Evaluation of irrigation water use efficiency using remote sensing in the middle reach of the Heihe River, in the semi-arid Northwestern China. Hydrol. Process. 2015, 29, 2243–2257. [Google Scholar] [CrossRef]
- Garcia-Santos, V.; Niclòs, R.; Valor, E. Evapotranspiration Retrieval Using S-SEBI Model with Landsat-8 Split-Window Land Surface Temperature Products over Two European Agricultural Crops. Remote Sens. 2022, 14, 2723. [Google Scholar] [CrossRef]
- Aliabad, F.A.; Shojaei, S.; Mortaz, M.; Ferreira, C.S.S.; Kalantari, Z. Use of Landsat 8 and UAV Images to Assess Changes in Temperature and Evapotranspiration by Economic Trees following Foliar Spraying with Light-Reflecting Compounds. Remote Sens. 2022, 14, 6153. [Google Scholar] [CrossRef]
- Zheng, C.; Hu, G.; Chen, Q.; Jia, L. Impact of remote sensing soil moisture on the evapotranspiration estimation. Natl. Remote Sens. Bull. 2021, 25, 990–999. (In Chinese) [Google Scholar]
- Wei, G.; Cao, J.; Xie, H.; Xie, H.; Yang, Y.; Wu, C.; Cui, Y.; Luo, Y. Spatial-Temporal Variation in Paddy Evapotranspiration in Subtropical Climate Regions Based on the SEBAL Model: A Case Study of the Ganfu Plain Irrigation System, Southern China. Remote Sens. 2022, 14, 1201. [Google Scholar] [CrossRef]
- Cammalleri, C.; Anderson, M.C.; Gao, F.; Hain, C.R.; Kustas, W.P. Mapping daily evapotranspiration at field scales over rainfed and irrigated agricultural areas using remote sensing data fusion. Agric. For. Meteorol. 2014, 186, 1–11. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, S.; Song, L.; Xu, Z.; Liu, Y.; Xu, T.; Zhu, Z. Estimation of daily evapotranspiration and irrigation water efficiency at a Landsat-like scale for an arid irrigation area using multi-source remote sensing data. Remote Sens. Environ. 2018, 216, 715–734. [Google Scholar] [CrossRef]
- Li, Y.; Huang, C.; Hou, J.; Gu, J.; Zhu, G.; Li, X. Mapping daily evapotranspiration based on spatiotemporal fusion of ASTER and MODIS images over irrigated agricultural areas in the Heihe River Basin, Northwest China. Agric. For. Meteorol. 2017, 244–245, 82–97. [Google Scholar] [CrossRef]
- Wang, T.; Tang, R.; Li, Z.-L.; Jiang, Y.; Liu, M.; Niu, L. An Improved Spatio-Temporal Adaptive Data Fusion Algorithm for Evapotranspiration Mapping. Remote Sens. 2019, 11, 761. [Google Scholar] [CrossRef]
- Acerbi-Junior, F.W.; Clebers, J.; Schaepman, M.E. The assessment of multi-sensor image fusion using wavelet transforms for mapping the Brazilian Savanna. Int. J. Appl. Earth Obs. Geoinf. 2006, 84, 278–288. [Google Scholar] [CrossRef]
- Malenovský, Z.; Bartholomeus, H.M.; Acerbi-Junior, F.W.; Schopfer, J.T.; Painter, T.H.; Epema, G.F.; Bregt, A.K. Scaling dimensions in spectroscopy of soil and vegetation. Int. J. Appl. Earth Obs. Geoinf. 2007, 92, 137–164. [Google Scholar] [CrossRef]
- Song, H.; Huang, B. Spatiotemporal satellite image fusion through one-pair image learning. IEEE Trans. Geosci. Remote Sens. 2012, 51, 1883–1896. [Google Scholar] [CrossRef]
- Song, H.; Liu, Q.; Wang, G.; Hang, R.; Huang, B. Spatiotemporal satellite image fusion using deep convolutional neural networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 821–829. [Google Scholar] [CrossRef]
- Jarihani, A.A.; McVicar, T.R.; Van Niel, T.G.; Emelyanova, I.V.; Callow, J.N.; Johansen, K. Blending Landsat and MODIS Data to Generate Multispectral Indices: A Comparison of “Index-then-Blend” and “Blend-then-Index” Approaches. Remote Sens. 2014, 6, 9213–9238. [Google Scholar] [CrossRef]
- Gevaert, C.M.; García-Haro, F.J. A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion. Remote Sens. Environ. 2015, 156, 34–44. [Google Scholar] [CrossRef]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar]
- Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [Google Scholar] [CrossRef]
- Cheng, Q.; Liu, H.; Shen, H.; Wu, P.; Zhang, L. A spatial and temporal nonlocal filter-based data fusion method. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4476–4488. [Google Scholar] [CrossRef]
- Yang, G.; Weng, Q.; Pu, R.; Gao, F.; Sun, C.; Li, H.; Zhao, C. Evaluation of ASTER-Like Daily Land Surface Temperature by Fusing ASTER and MODIS Data during the HiWATER-MUSOEXE. Remote Sens. 2016, 8, 75. [Google Scholar] [CrossRef]
- Kuriqi, A. Assessment and quantification of meteorological data for implementation of weather radar in mountainous regions. MAUSAM 2016, 67, 789–802. [Google Scholar] [CrossRef]
- Martínez-de la Torre, A.; Blyth, E.M.; Robinson, E.L. Evaluation of drydown processes in global land surface and hydrological models using flux tower evapotranspiration. Water 2019, 11, 356. [Google Scholar] [CrossRef]
- Small, E.E.; Badger, A.M.; Abolafia-Rosenzweig, R.; Livneh, B. Estimating Soil Evaporation Using Drying Rates Determined from Satellite-Based Soil Moisture Records. Remote Sens. 2018, 10, 1945. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, Y.; Xun, L.; Chai, X. Crop classification based on multi-source remote sensing data fusion and LSTM algorithm. Trans. Chin. Soc. Agric. Eng. 2019, 35, 129–137. [Google Scholar]
- Sun, C.; Chen, W.; Chen, Y.; Cai, Z. Stable isotopes of atmospheric precipitation and its environmental drivers in the Eastern Chinese Loess Plateau, China. J. Hydrol. 2020, 581, 124404. [Google Scholar] [CrossRef]
- Chen, Y.; Lei, T.; Xia, J.; Tu, Y.; Wang, Y.; Wang, Z.-L. Application of a multiple model integration framework for mapping evapotranspiration with high spatial-temporal resolution in the Haihe River Basin, China. Ecol. Indic. 2022, 145, 109661. [Google Scholar] [CrossRef]
- Jia, K.; Zhang, W.; Xie, B.; Xue, X.; Zhang, F.; Han, D. Does Climate Change Increase Crop Water Requirements of Winter Wheat and Summer Maize in the Lower Reaches of the Yellow River Basin? Int. J. Environ. Res. Public Health 2022, 19, 16640. [Google Scholar] [CrossRef]
- Salehnia, N.; Salehnia, N.; Torshizi, A.S.; Kolsoumi, S. Rainfed wheat (Triticum aestivum L.) yield prediction using economical, meteorological, and drought indicators through pooled panel data and statistical downscaling. Ecol. Indic. 2020, 111, 105991. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- He, P.; Bi, R.; Xu, L.; Wang, J.; Cao, C. Using geographical detection to analyze responses of vegetation growth to climate change in the Loess Plateau, China. Chin. J. Appl. Ecol. 2022, 332, 448–456. [Google Scholar]
- Yu, X.; Guo, X.; Wu, Z. Land Surface Temperature Retrieval from Landsat 8 TIRS—Comparison between Radiative Transfer Equation-Based Method, Split Window Algorithm and Single Channel Method. Remote Sens. 2014, 6, 9829–9852. [Google Scholar] [CrossRef]
- He, P.; Bi, R.; Xu, L.; Yang, F.; Wang, J.; Cao, C. Study on Spatial and Temporal Characteristics of Surface Albedo at the Northern Edge of the Badain Jaran Desert Based on C + STNLFFM Model. Sensors 2022, 22, 6494. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Li, M.; Zhang, W. Conversion coefficient of small evaporation pan into E-601B pan in China. J. Appl. Meteorol. Sci. 2002, 13, 508–512. [Google Scholar]
- Brutsaert, W.; Parlange, M.B. Hydrologic cycle explains the evaporation paradox. Nature 1998, 396, 30. [Google Scholar] [CrossRef]
- Fan, J.; Wang, Q.; Hao, M. Estimation of reference crop evapotranspiration by Chinese pan. Trans. Chin. Soc. Agric. Eng. 2006, 22, 14–17. [Google Scholar]
- Yang, T.; Wang, J.; Zhang, H.M.; Li, R.J.; Zhang, Y.; Shen, Y.J. Evapotranspiration of typical agroecosystems in the North China Plain based on single crop coefficient method. Chin. J. Ecol. 2022, 30, 356–366. [Google Scholar]
- Wu, X.; Shen, Y.; Zhang, C.; Pan, X. Modeling crop evapotranspiration using remotely sensed vegetation data: A case study of winter wheat in the North China Plain. Chin. J. Ecol. 2014, 22, 920–927. [Google Scholar]
- Degano, M.F.; Rivas, R.E.; Carmona, F.; Niclòs, R.; Sánchez, J.M. Evaluation of the MOD16A2 evapotranspiration product in an agricultural area of Argentina, the Pampas region. Egypt. J. Remote Sens. Space Sci. 2021, 24, 319–328. [Google Scholar] [CrossRef]
- Januar, T.W.; Lin, T.-H.; Huang, C.-Y.; Chang, K.-E. Modifying an Image Fusion Approach for High Spatiotemporal LST Retrieval in Surface Dryness and Evapotranspiration Estimations. Remote Sens. 2020, 12, 498. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, K.; Chen, C.; Bai, T.; Park, T.; Wang, W.; Nemani, R.R.; Myneni, R.B. Generation and Evaluation of LAI and FPAR Products from Himawari-8 Advanced Himawari Imager (AHI) Data. Remote Sens. 2019, 11, 1517. [Google Scholar] [CrossRef]
- Tan, Z.; Yue, P.; Di, L.; Tang, J. Deriving High Spatiotemporal Remote Sensing Images Using Deep Convolutional Network. Remote Sens. 2018, 10, 1066. [Google Scholar] [CrossRef]
- Azhar, A.H.; Perera, B.J.C. Evaluation of Reference Evapotranspiration Estimation Methods under Southeast Australian Conditions. J. Irrig. Drain. Eng. 2011, 137, 268–279. [Google Scholar] [CrossRef]
- Wang, W.; Wang, P.; Xie, Y. Estimation of Evapotranspiration Optimized by Crop Coefficient Based on Dynamic Simulation. Trans. Chin. Soc. Agric. Mach. 2015, 46, 129–136. [Google Scholar]
- Yang, J.-Y.; Mei, X.-R.; Huo, Z.-G.; Yan, C.-R.; Ju, H.; Zhao, F.-H.; Liu, Q. Water consumption in summer maize and winter wheat cropping system based on SEBAL model in Huang-Huai-Hai Plain, China. J. Integr. Agric. 2015, 14, 2065–2076. [Google Scholar] [CrossRef]
- He, P.; Xu, L.; Bi, R.; Yang, F.; Zhen, Z. Spatial and temporal characteristics of surface albedo in Badain Jaran Desert, China. Earth Sci. Inform. 2021, 14, 429–440. [Google Scholar] [CrossRef]
- Ahmad, M.-U.-D.; Kirby, J.M.; Cheema, M.J.M. Impact of agricultural development on evapotranspiration trends in the irrigated districts of Pakistan: Evidence from 1981 to 2012. Water Int. 2019, 44, 51–73. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, X.; Liu, C.; Bai, P. Responses of runoff to climatic variation and human activities in the Fenhe River, China. Stoch. Environ. Res. Risk Assess. 2013, 27, 1293–1301. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, Z.; Hao, X.; Yue, P. Conversion features of evapotranspiration responding to climate warming in transitional climate regions in northern China. Clim. Dyn. 2019, 52, 3891–3903. [Google Scholar] [CrossRef]
- Yan, Y.; Hao, W.; Mei, X.; Bai, J.; Liu, L. Effects of water stress-rewatering at jointing stage on dry matter accumulation and WUE of winter wheat. J. Agrometeorol. 2011, 32, 190–195. [Google Scholar]
- Xiao, J.; Liu, Z.; Duan, A.; Liu, Z.; Li, X. Studies on effects of irrigation systems on the grain yield constituents and water use efficiency of winter wheat. J. Irrig. Drain. Eng. 2006, 25, 20–23. [Google Scholar]
- Li, Q.; Dong, B.; Qiao, Y.; Liu, M.; Zhang, J. Root growth, available soil water, and water-use efficiency of winter wheat under different irrigation regimes applied at different growth stages in North China. Agric. Water Manag. 2010, 97, 1676–1682. [Google Scholar] [CrossRef]
- He, H.; Wu, Z.; Li, D.; Zhang, T.; Pan, F.; Yuan, H.; Jiang, S.; Shi, Z.; Yang, S.; Wang, F. Characteristics of Winter Wheat Evapotranspiration in Eastern China and Comparative Evaluation of Applicability of Different Reference Evapotranspiration Models. Soil Sci. Plant Nutr. 2022, 22, 2078–2091. [Google Scholar] [CrossRef]
- Qin, Q.; Chen, J.; Yang, Y.; Zhao, X.; Zhou, G.; You, H.; Han, X. Spatiotemporal variations of vegetation and its response to topography and climate in the source region of the Yellow River. J. Environ. Sci. 2021, 41, 3832–3841. [Google Scholar]
- He, P.; Yang, F.; Xu, L.; Zhu, W.; Zheng, X. Spatial and Temporal Differences in Surface Albedo over Different Underlying Surfaces in the Badain Jaran Desert, China. Pol. J. Environ. Stud. 2021, 30, 4555–4567. [Google Scholar] [CrossRef]
- Eshonkulov, R.; Poyda, A.; Ingwersen, J.; Wizemann, H.-D.; Weber, T.K.D.; Kremer, P.; Högy, P.; Pulatov, A.; Streck, T. Evaluating multi-year, multi-site data on the energy balance closure of eddy-covariance flux measurements at cropland sites in southwestern Germany. Biogeosciences 2019, 16, 512–540. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, H. Spatial and temporal characteristics of water requirement and water deficit of wheat in Gansu Province from 1967 to 2017. Arid Land Geogr. 2019, 42, 1094–1104. [Google Scholar]
- Li, B.; Wang, T.; Meng, F. Double Quantitative Analysis of the Effects of Meteorological Factors on Winter Wheat Yield at Different Growth Stages Based on Grey Relational Analysis. J. Grey Syst. 2018, 30, 31–44. [Google Scholar]
- Chen, X.-L.; Tian, X.-Y.; Li, L.-N.; Chen, J.; Li, Q. The association between high-yield and stable-yield characteristics of winter wheat and its influencing factors in the main producing areas in Northern China. J. Nat. Resour. 2022, 37, 263–276. [Google Scholar] [CrossRef]
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | |
---|---|---|---|---|---|---|---|---|---|---|
PD | 0.305 ** | 0.335 ** | 0.506 ** | 0.804 ** | 0.753 ** | 0.686 ** | 0.491 ** | 0.754 ** | 0.813 ** | 0.924 ** |
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | |
---|---|---|---|---|---|---|---|---|---|
rain-fed areas | 0.287 ** | 0.505 ** | 0.714 ** | 0.937 ** | 0.931 ** | 0.967 ** | 0.825 ** | 0.967 ** | 0.966 ** |
irrigated areas | 0.356 ** | 0.307 ** | 0.559 ** | 0.719 ** | 0.724 ** | 0.565 ** | 0.282 ** | 0.691 ** | 0.551 ** |
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | |
---|---|---|---|---|---|---|---|---|
green-up stage | 0.098 | 0.348 ** | 0.546 ** | 0.524 ** | 0.564 ** | 0.475 ** | 0.579 ** | 0.609 ** |
jointing stage | 0.333 ** | 0.311 ** | 0.648 ** | 0.888 ** | 0.949 ** | 0.845 ** | 0.701 ** | 0.932 ** |
heading-filling stage | 0.180 * | 0.745 ** | 0.755 ** | 0.903 ** | 0.964 ** | 0.976 ** | 0.839 ** | 0.780 ** |
milk stage | 0.030 | 0.103 * | 0.405 ** | 0.338 ** | 0.331 ** | 0.334 ** | 0.153 * | 0.211 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, P.; Bi, R.; Xu, L.; Liu, Z.; Yang, F.; Wang, W.; Cui, Z.; Wang, J. Evapotranspiration of Winter Wheat in the Semi-Arid Southeastern Loess Plateau Based on Multi-Source Satellite Data. Remote Sens. 2023, 15, 2095. https://doi.org/10.3390/rs15082095
He P, Bi R, Xu L, Liu Z, Yang F, Wang W, Cui Z, Wang J. Evapotranspiration of Winter Wheat in the Semi-Arid Southeastern Loess Plateau Based on Multi-Source Satellite Data. Remote Sensing. 2023; 15(8):2095. https://doi.org/10.3390/rs15082095
Chicago/Turabian StyleHe, Peng, Rutian Bi, Lishuai Xu, Zhengchun Liu, Fan Yang, Wenbiao Wang, Zhengnan Cui, and Jingshu Wang. 2023. "Evapotranspiration of Winter Wheat in the Semi-Arid Southeastern Loess Plateau Based on Multi-Source Satellite Data" Remote Sensing 15, no. 8: 2095. https://doi.org/10.3390/rs15082095
APA StyleHe, P., Bi, R., Xu, L., Liu, Z., Yang, F., Wang, W., Cui, Z., & Wang, J. (2023). Evapotranspiration of Winter Wheat in the Semi-Arid Southeastern Loess Plateau Based on Multi-Source Satellite Data. Remote Sensing, 15(8), 2095. https://doi.org/10.3390/rs15082095