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Abstract: Most existing road extraction approaches apply learning models based on semantic seg-
mentation networks and consider reduced study areas, featuring favorable scenarios. In this work, an
end-to-end processing strategy to extract the road surface areas from aerial orthoimages at the scale of
the national territory is proposed. The road mapping solution is based on the consecutive execution
of deep learning (DL) models trained for 1© road recognition, 2© semantic segmentation of road
surface areas, and 3© post-processing of the initial predictions with conditional generative learning,
within the same processing environment. The workflow also involves steps such as checking if the
aerial image is found within the country’s borders, performing the three mentioned DL operations,
applying a p = 0.5 decision limit to the class predictions, or considering only the central 75% of the
image to reduce prediction errors near the image boundaries. Applying the proposed road mapping
solution translates to operations aimed at checking if the latest existing cartographic support (aerial
orthophotos divided into tiles of 256 × 256 pixels) contains the continuous geospatial element, to
obtain a linear approximation of its geometry using supervised learning, and to improve the ini-
tial semantic segmentation results with post-processing based on image-to-image translation. The
proposed approach was implemented and tested on the openly available benchmarking SROADEX
dataset (containing more than 527,000 tiles covering approximately 8650 km2 of the Spanish territory)
and delivered a maximum increase in performance metrics of 10.6% on unseen, testing data. The
predictions on new areas displayed clearly higher quality when compared to existing state-of-the-art
implementations trained for the same task.

Keywords: road mapping solution; road recognition; road surface area extraction; road predictions
post-processing

1. Introduction

At the moment, at the national level, the road mapping task is a challenging, time-
consuming, and manual process, even with open access to high-resolution, remotely sensed
imagery [1]. It is also important to mention that secondary roads are mostly dismissed, due
to the considerable efforts required to digitalize them, although they may become important
in the short and medium term, considering the rise of autonomous cars. Thus, being able
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to obtain an accurate representation and distribution of the road transport network is a
priority for government agencies.

Recent advances in computer vision [2–4] can enable a higher level of automation
of the traditional feature extraction approach from aerial imagery and can help achieve
road mapping workflows that are applicable at a large scale. However, current road
extraction approaches based on machine learning (generally applying modifications to
popular algorithms and neural network architectures [5,6]) feature drawbacks such as
favorable study areas, the implementation of methods trained on reduced datasets that may
not contain the features required to model the road transport network or the implementation
of models that are not capable enough to learn a correct road extraction function [7–9].
Existing implementations found in the specialized literature (presented and discussed in
Section 2) indicate that the road mapping operation needs optimization.

Moreover, a process tackling the extraction of road representations from aerial images
must consider the great complexity of the operation. First, the use of aerial imagery can
be challenging due to the defects present in the images (e.g., noise, occlusions, etc.) and
the complexity of the ground scenes. Second, roads can be structured (clearly marked
highways and city roads, or primary road network) or unstructured (the secondary road
network), further complicating their detection and extraction. In this respect, secondary
roads often present borders that are not clearly delimited (no markings) and can be easily
confused with their surroundings, due to the absence of clearly defined edges or centerlines.
Third, roads have different spectral characteristics because of the various kinds of material
used (asphalt, cement, gravel, etc.) and are often covered by obstructions present in the
scenes (e.g., dense vegetation). Fourth, these structures are complex in nature, due to the
differences in widths and the large curvature changes, which can complicate the extraction
of detailed information. In addition, imperfections in the ground-truth segmentation
masks and particularities of the applied segmentation algorithms also influence the process.
For these reasons, the recognition and extraction of the road network can be considered
complicated. Scenes encountered in existing official Spanish road cartography that feature
some of these mentioned problems are illustrated in Figure 1.
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Figure 1. Examples of imperfections found in existent official road cartography: (a) impossibility to
visually define roads and their category, (b) errors caused by large curvature changes, (c) incomplete
digitalization of roads and subsequently, incorrect cartographic masks, (d) secondary roads easily
confused with their surroundings, (d,e) incomplete road cartography and impossibility to decide
which path is a road, and (f) systematic inconsistencies in differentiating the roads network as a
continuous geospatial object.
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In this work, the methodology proposed in [10] for extracting point features (where
19,617 wind turbines present in the Spanish peninsular territory were successfully extracted
from aerial orthoimages, while obtaining false positive, or FP, rates of 6.4% and false
negative, or FN, rates of 1.2%) is expanded, and a novel end-to-end road surface area
mapping solution is proposed. “End-to-end” refers to the design framework that enables
the full procedure to be executed within the same processing environment, from start to
finish—the process developed can be implemented from beginning to end to deliver a fully
functional solution and is applicable for road surface area mapping in new regions. The
goal is to implement a strategy based on deep learning (DL) models to extract the road
transport network (multiline feature) on a large scale (for example, for a whole country, or
autonomous region).

The road extraction procedure is tackled as a chained processing workflow of aerial
orthophotographs, based on three operations: a road recognition task, 1©, to identify tiles
where roads are present and avoid unnecessary processing at pixel level of tiles where roads
are not present, a semantic segmentation extraction of road surface area, 2©, evaluating only
the tiles that contain road elements to obtain an initial approximation, and a third operation,
3©, of post-processing the initial semantic segmentation results obtained in the second

operation with the generator of a conditional GAN trained for image-to-image translation.
The proposed extraction solution was first validated metrically, on a new dataset containing

road information from high-resolution aerial orthophotography, covering 8636.94 km2 of the
Spanish territory. The performance levels were evaluated through appropriate machine learning
(ML) metrics, such as Intersection over Union (IoU) score (IoUscore = TP/(TP + FP + FN),
obtained on unseen data and analyzed with statistical methods to extrapolate the findings to the
whole national territory—improvements of maximum 11% in the studied performance metrics
were observed. Afterwards, a large-scale proof of concept was performed by qualitatively
evaluating a single representative cartographic sheet covering a land area of 28 km× 19 km
from the Spanish region of Murcia, unseen during training, to identify the strengths and
disadvantages of the proposed solution.

The main contributions of this research are to be applied to road mapping from aerial
image data with DL techniques and are summarized as follows.

1. A processing methodology that combines image classification, semantic segmenta-
tion, and post-processing operations with DL model components, which delivers
considerably improved road surface area extraction results when compared to other
state-of-the-art models trained for the same task, is proposed. To the best of our knowl-
edge, this is the first time such an objective has been approached, and a large-scale
production solution for road mapping has been applied in this manner.

2. The proposed end-to-end road mapping solution was implemented and evaluated at a
very large scale on the SROADEX dataset (containing image tiles of 256 × 256 pixels).
The application of the methodology resulted in a maximum increase in the IoU
score of 10.6% over the state-of-the-art U-Net [3]—Inception-ResNet-v2 [11] semantic
segmentation model (in a metrical comparison on a test set of more than 12,500 un-
seen images).

3. A large-scale, qualitative assessment of the capabilities was carried out on a single full,
unseen orthoimage covering 532 km2 to identify the advantages and challenges posed
by the proposed processing workflow, and future lines of work that could improve
the results are discussed.

The remainder of the manuscript is organized as follows. Section 2 describes works
related to road mapping using remotely sensed data and ML techniques and focuses on
discussing the main drawbacks found in existing literature and on explaining the design
decisions taken. Section 3 presents the proposed end-to-end road extraction procedure.
Section 4 describes the data used, the large-scale implementation of the extraction solution,
together with a metrical comparison of the results obtained by other state-of-art approaches
trained for the same task. In Section 5, the results delivered by the extraction solution
on a novel, unseen area are analyzed from a non-numerical, qualitative perspective. An
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extensive discussion regarding the advantages and disadvantages identified is carried out
in Section 6. Lastly, the conclusions of the research conducted are drawn in Section 7.

2. Related Work

One of the most important computer vision applications is related to the analysis of
remotely sensed images to detect and extract geospatial objects. However, most existing
works focus on geospatial objects with defined boundaries that are independent of the back-
ground. What happens when we have to deal with more difficult, continuous geospatial
objects such as the road transport network?

Many works tackling road extraction apply traditional ML and image segmentation
techniques. For example, Liu et al. [12] applied pre-processing with Gaussian filters to
remove input noise and enhance the secondary roads extracted with Hough Transform
from an orthoimage of 7000 × 6000 pixels. Mattyus et al. [13] extracted road edges and
centerlines from openly available OpenStreetMap data covering 1.5 km2 of an urban
scene using Support Vector Machine [14] combined with a Markov random field inference
parameterized in terms of the location. Wang et al. [15] proposed an urban road extract
approach based on spatial textures and, subsequently, selected feature like brightness,
standard deviation to build a road knowledge model based on mathematical morphology.
The traditional ML approach requires the analytical and mathematical modelling of the
input-output relations, and the models can deliver a good performance on small datasets
but are not suitable for tackling the geospatial complexity of the road transport network.
For this reason, a deep learning approach was chosen in this work, as it can deliver models
with a higher generalization capacity and can model more complex functions (more capable
of describing road-specific, complex features).

Hutchison et al. [16] were among first to approach the road detection task using deep
learning. The authors applied supervised methods to build a road extraction model and
used unsupervised learning to obtain filters that improved the performance and initial
predictions of the model. Post-processing the initial predictions has been traditionally
applied by means of conditional random fields (CRFs) [17]. In [18], the authors further
improved this proposed network by adding CRFs for sharpening the road predictions
and obtaining higher quality extraction results. Dong et al. [19] applied shape filtering
to improve the extraction the roads’ centerlines by combining high-resolution imagery
with LiDAR data and vectoral data from OpenStreetMap. Liu et al. [12] improved the
extracted road segments by constructing a geometric knowledge base of rural roads to
detect disconnected boundaries.

Various methods to extract roads from remote sensing images have been proposed
since then, and most of them focus on extracting the road surface area or extracting the
road edges and centerlines. The proposed studies generally apply supervised learning to
extract the road representations using radiometric, geometric, or photometric features and
transfer learning to improve the model’s performance. Existing research related to road
extraction with deep learning can be classified according to the type of neural network
(NN) applied [20] as follows.

2.1. Approaches Based on Convolutional Neural Networks

In works where the road extraction approach is based on convolutional neural net-
works (CNNs), the images are evaluated at a patch level using CNNs, and the road
predictions are delivered by combing the labelled patches. Zhong et al. [21] combined
the outputs of different types of pooling layer with the score of the final layers to ob-
tain extraction precision rates of maximum 78% on the Massachusetts road dataset [22],
containing optical satellite images with a spatial resolution of 1 m. Wei et al. proposed
RSRCNN [23], based on refined CNNs to road extraction in aerial images, and introduced
fusion layers to improve the road extraction operation. The model also incorporates a
cross-entropy loss based on minimum Euclidian distance between pixels belonging to the
same road section. Wang et al. [24] developed an NN for road extraction that incorporates
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a module that improves the classification operation by highlighting high-level information.
Alshehhi et al. [25] proposed a patch-based CNN to extract road elements and introduced a
post-processing operation based on spatial features to integrate low-level geometrics char-
acteristics and connect ungrouped road sections, achieving performance metrics as high as
82%. The CNN-based technique implemented by Li et al. [26] is capable of anticipating the
possibility of each pixel to belong to a road segment and features a centerline extraction
module with morphological operators to achieve an IoU score of 0.78.

2.2. Approaches Based on Semantic Segmentation Models

However, road extraction approaches based on semantic segmentation networks are
applied by most existing works. Here, the fully connected layers of a CNN are replaced by
layers that upsample the last feature maps to the height× width size of the input image to
predict the road labels. The approaches following the encoder–decoder learning structure,
where the input image is downsampled to extract the representations up a bottleneck, where
the process is reversed, and the feature maps are resized to the original height × width
dimensions [27].

Li et al. proposed Y-Net [28], which includes feature extraction modules (composed of
a downsampling–upsampling subnetwork combined with a convolutional subnetwork) for
a more detailed feature extraction operation and a fusion extraction module to combine
the segmented road classes and deliver improved road segment predictions. Xin et al.
implemented DenseUnet [8], based on U-Net’s encoder–decoder architecture to extract
low-level features such as road edges and textures, obtaining IoU scores of maximum
0.70 on the Massachusetts dataset [22]. Buslaev et al. [29] developed a model based on
U-Net [3] and ResNet [30] to extract roads from remotely sensed images and applied a
loss function combining binary cross-entropy with Jaccard score to reduce the model’s cost
and achieved an IoU score of 0.64 on unseen data. Xu et al. [31] introduced M-Res-U-Net,
a model based on U-Net and ResNet that features pre-processing with Gaussian filters
to reduce the noise. The model was trained on vectorial road data that were rasterized
but underperformed in areas where other geospatial objects had similar colors with the
road distribution. Zhang et al. developed ResUnet [6], an U-Net-like residual network
(decrease in the number of parameters of 75% when compared to U-Net) to semantically
segment roads from the Massachusetts roads dataset [22], and obtained In increIse in the
performance metrics of 1% when compared to the original U-Net.

Cheng et al. introduced CasNet [9], which includes two cascaded networks—one
for detecting road regions and the other for extracting the road centerlines, while taking
advantage of the feature maps learned by the first network. The model was trained and
tested on a dataset composed of 224 Google Earth images [23] and achieved an IoU score
of maximum 0.88. However, the authors recognized the unsuitability of the network for
processing areas where trees occlusions are present. Zhou et al. [32] introduced the D-
LinkNet model, also based on the encoder–decoder architecture, combined with dilated
convolutions and a pre-trained encoder to extract roads from RS imagery. The authors
raised concerns regarding the extraction of the road connection points.

Liu et al. built RoadNet [5], composed of a modified version of VGGNet [2] architecture
concatenated three times, to analyze and predict the surfaces, edges, and centerlines of
roads in urban scenes, and obtained an F1 score of maximum 94%. Wang et al. [33] used
VGGNet as backbone of the semantic segmentation model built for autonomous driving
and trained it to learn the features of road boundaries and extract them using RGB street
scenes tagged at pixel level. Panboonyuen et al. [34] modified SegNet [35] to incorporate the
Exponential Linear Unit (ELU) [36] activation function and trained the proposed network
for the road extraction task on the Massachusetts dataset while applied data augmentation
techniques (angle rotations).
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Doshi [37] integrated a ResNet-based model with an Inception [38]-like encoder to
extract roads from satellite imagery and obtained an IoU score of 0.61 on a dataset con-
taining 6226 images with a spatial resolution of 0.5 m. He et al. [39] fine-tuned the first
layers of an improved U-Net model with cross-modal data converted by an autoencoder.
However, the IoU score obtained was only 0.42, and an efficient road extraction approach
was not possible in areas where objects with a similar reflectance were present. Xia et al. [40]
focused on building a dataset containing roads that have different spectral signatures us-
ing a semiautomatic approach and applied the DeepLab [41] segmentation architecture
and post-processing by means of several morphological algorithms. The quality of the
predictions obtained demonstrate the challenging nature of the road extraction operation.

Gao et al. [42] introduced RDRCNN, a the framework based on a Residual Connected
Unit (consisting of a modified ResNet) and a Dilated Perception Unit (consisting of a dilated
convolution layer and a convolutional layer), combined with a post-processing stage to
extract roads from the Massachusetts dataset and achieve an IoU score of 0.66. Xie et al. pro-
posed HgNet [43], based on LinkNet [44], which introduced a block between the encoder
and decoder to “preserve global, long-distance context semantic information and the de-
pendencies among feature channels” ([43], page 11). The model obtained a IoU score of
0.71 on the SpaceNet dataset [45] (a publicly available dataset containing 2213 training and
567 test images of 512 × 512 pixels) and a IoU score of 0.83 on the DeepGlobe dataset [46]
(consisting of 4971, 622, and 622 training, validation, and test images, respectively, with a
resolution of 1024 × 1024 pixels).

As a consideration, in most existing research, the road elements tend to have ho-
mogenous hyperspectral signatures and are grouped into clearly defined regions covering
smaller areas. A large-scale road extraction operation must consider both structured roads
(clearly marked highways, together with rural and urban roads) and unstructured roads
(no obvious borderers), with distinct spectral characteristics caused by the various kinds
of materials used in pavement (e.g., asphalt, cement, gravel, etc.). This is challenging due
to the noise, obstructions, and complexity of the scenes, present in aerial imagery from
extended areas, which further complicate the road detection and extraction and the effect
that these scenarios have on the extraction operation needs to be reduced.

Furthermore, most relevant studies focus on reduced selected areas featuring favor-
able scenarios [7] that may not be representative for extracting road elements on a very
large scale (as also pointed out in [17]). For example, Kestur et al. [47] proposed UFCN,
based on the encoder–decoder structure but trained it on a dataset containing 76 images.
Henry et al. [48] obtained IoU scores of a maximum of 45.5% when evaluating the per-
formance of popular NNs in detecting and extracting roads from three test areas covered
by satellite images. Alshehhi et al. [25] developed an NN consisting of five convolu-
tion layers to extract road geometries from 50 publicly available urban aerial images of
1500 × 1500 pixels in size, with a spatial resolution of 1 m.

In this work, the mentioned drawbacks are addressed by applying the proposed extrac-
tion methodology to the SROADEX dataset, introduced in [49]. SROADEX contains openly
available road representations present in official cartography, namely aerial orthoimages
from extended areas of the Spanish territory, divided in tiles of 256 × 256 pixels, and their
correspondent segmentation masks. The dataset adds real-world complexity to the road
extraction task, avoiding focusing on ideal study scenes to achieve a deep learning-based
solution capable of delivering high quality results.

2.3. Approaches Based on Unsupervised Learning

Recently, the road extraction task started to be approached from an unsupervised
learning perspective. The identified studies are generally based on conditional genera-
tive adversarial networks (GANs), where a generator, G, which is trained to learn the
distribution of the data, is used to obtain the road representations. The training process
is carried out in an unsupervised setting, where G does not have access to the training
data and improves its predictions using the feedback provided by the discriminator D.
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In this task, G’s training objective is to “deceive” the discriminator by generating new,
artificial samples that are closely mimicking those coming from the real data distribution.
In parallel, the discriminator’s job is to better differentiate data coming from the real and
the fake distributions.

Varia et al. [50] proposed a model based on FCN [51] and Pix2pix [4] to extract roads
from a dataset containing 189 training and 23 test images, but observed high rates of FN
predictions. Shi et al. [52] developed a cGAN architecture using SegNet [35] (based on
the encoder–decoder architecture) as G to segment roads in aerial images and achieved
a 3.5% increase in the F1 score compared the network trained in a supervised setting.
Yang et al. [53] applied ensembling techniques to a standard GAN to extract road geometries
from rural areas in China and obtained an IoU score of 0.73. Hartmann et al. [54] trained a
GAN architecture to synthesize Ioad information and enrich the attributes in areas where
the extraction is complicated (e.g., where discontinuities are present, or in complex areas,
such as intersections or highway ramps). Costea et al. [55] proposed road extraction solution
featuring a GAN stage to detect road edges and a post-processing operation of the initial
results using smoothing-based methods. Zhang et al. implemented a Multi-conditional
Generative Adversarial Network (McGAN) [56] composed of two discriminators (one to
employ the original spectral information and the other to refine the road network topology)
and a generator based on ResNet to refine the road topology and obtain more complete
road networks graphs. Belli and Kipf [57] approach the road extraction task by using a
generative model that recurrently generates road graph candidates based on the conditional
information and a multilayer perceptron as attention mechanism. Liu et at. [58] focused on
modifying the standard Pix2pix model [4] to apply image-to-image translation and obtain
vectors of road markings using point clouds provided by mobile laser scanners.

As a consideration, post-processing extracted road geometries is an active area of
research, and unsupervised conditional learning is directly applicable to improving the
extraction of geospatial elements from remote sensing images. In this regard, conditional
generative learning for image-to-image translation was applied in [59] to transfer the images
from a source domain (initial segmentation results) to a target domain (road representation
from official cartography) to obtain high-quality road representations. In [60], a conditional
GAN architecture for deep inpainting operations, capable of filling the gaps present in
the extracted segmentation masks and significantly improving the performance metrics,
was implemented.

3. Methodology Proposal of an End-to-End Road Surface Area Mapping Solution
Combining Classification, Semantic Segmentation, and Post-Processing with
Conditional Generative Adversarial Learning

In this section, the novel processing design and approach for an end-to-end road
surface area mapping is presented. As mentioned previously, the methodology presented
in [10] is expanded to propose an end-to-end extraction procedure for multiline features
that is adapted to avoid the issues related to the extraction of road elements from aerial
orthoimages discussed in the “Introduction” section and in Section 2.

The unitary road extraction solution proposed in this work is based on a consecu-
tive execution of a framework for recognizing roads, a semantic segmentation model for
extracting their geometries, and a cGAN for post-processing the initial predictions. The pro-
posal features a road recognition stage, introduced before semantic segmentation (known
to be computationally expensive [61]), to determine whether the evaluated tile contains
or not a road element and to avoid unnecessarily evaluating of tiles that do not contain
roads. Second, a hybrid semantic segmentation model is implemented to semantically
segment only tiles that contain the studied geospatial element, reducing, in this way, the
false predictions. In this regard, modifications to avoid duplicated features caused by the
spatial overlap of adjacent orthoimage files are applied. Third, a post-processing step by
means of a conditional generative learning model is added to enhance the extracted road
features and translate the semantic segmentation predictions to the domain of the roads
present in manually tagged cartographic support. The end-to-end solution proposed can
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be considered a complete workflow for the road surface extraction from remote sensing
imagery and can evaluate large land areas and efficiently joining the predictions to deliver
higher quality results.

The methodological solution applied to extract the roads at state-level consists of a
script that processes each orthoimage file stored in ECW format, the national administrative
boundaries, stored in a shapefile, and the polygons that define the theoretical extent of each
orthoimage, also stored in a shapefile.

• The first step is the determination of the bounding box of the region to be processed
as the most restrictive coordinates between the orthoimage and the theoretical coor-
dinates for that orthoimage. This procedure is applied to avoid processing twice the
additional geographic extent covered by the orthoimages in ECW format.

• From the obtained bounding box, the number of tiles (columns× rows) to be processed
is determined, knowing that, for each 256 × 256-pixel tile, with resolution 0.5 m/pixel
extracted, only the central 192 × 192 pixels will be considered in the final predictions.
This reduces the problem of inaccurate extraction near the edges of the tiles displayed
by segmentation networks.

• Before processing each tile, it is checked whether it is contained in, or overlaps with,
national administrative boundaries, which allows to discard the processing tiles from
sea, or ocean areas, and outside the country’s borders.

• The tile satisfying the criteria is processed with the binary classification model, trained
for road recognition, to determine whether the tile contains road elements, or not (in
operation 1©). The pixels of the tiles not fulfilling these criteria will have a probability
p = 0 assigned. The training procedure of the road recognition DL component and
the relation between its input and output are presented in Section 4.2.

• If the tile contains roads (prediction p of road recognition model is higher than 0.5,
p > 0.5), it is processed with the semantic segmentation network (in operation 2©) and
stored as a georeferenced GeoTIFF image of a single band, containing the probability
that the tile pixels belong to the “Road” class. The stored tile maintains the original
size of 256× 256 pixels. On the contrary, a p = 0 will assigned to every pixel belonging
to tiles tagged with the “No_Road” label.

• To subsequently evaluate the results, the probability that the tile contains a road
(after passing through the recognition network) is stored in a PostgreSQL [62] with
PostGIS [63] database, together with the associated rectangle with its coordinates. The
training procedure of the DL component trained for the semantic segmentation of the
road surface areas and the relation between the encoding and decoding of the input
and output are presented in Section 4.3.

• The processing continues by binarizing the initial segmentation predictions with a
decision limit of 0.5.

• Next, the binarized semantic segmentation predictions are evaluated with the gener-
ator G of the cGAN network proposed in [59], trained on the SROADEX dataset (in
operation 3©), to obtain the post-processed, synthetic road predictions. The training
procedure and the relation between the input and output of the DL component trained
for the post-processing are presented in Section 4.4.

• The values obtained from the GAN network are binarized afterwards with the same
threshold p = 0.5, with the final result being a binary image that contains the
“Road”/“No_Road” labels, at pixel level. The file is stored as a single-band geo-
referenced image that contains only the central 192 × 192 pixels; adjacent tiles are
processed with the corresponding overlap of 10% (to reduce the effect of prediction
errors near image boundaries).
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• Finally, after processing all the tiles organized in rows and columns of the orthoimage
(approximately 59,000 tiles), a mosaic is constructed with the resulting post-processed
predictions and stored in a GeoTIFF file containing the final road mapping predictions.

The proposed methodology is described in pseudocode form in Algorithm 1 and
schematically represented in Figure 2. Regarding the notations used in Algorithm 1,
“tileij” refers to any processed image tile, “→” refers to the output of the mentioned step,
“p_tileij” refers to the prediction delivered by the recognition model (probability of a
tile to belong to the “Road” class), “p_pixelij” refers to the prediction delivered by the
semantic segmentation model (probability of a pixel to belong to the “Road” class), while
p_pixel_cGANij refers to the prediction delivered by the cGAN model (post-processed
probability of belonging to the “Road” class, at pixel level).

Algorithm 1: Road Mapping Procedure

Input: ECW orthoimage file, national boundary and official grid division limits, road recognition
model, semantic segmentation model, and cGAN model for postprocessing
Output: extracted road surface areas (image format)

1: Compute extension of image to process from ECW file and its grid division
2: Calculate #rows and #columns of 256 × 256 image to process
3: for i in #rows do
4: for j in #columns do
5: calculate tileij boundary
6: if tileij inside country boundary then
7: extract tileij from ECW file and store in memory
8: evaluate tileij with road recognition model→ p_tileij
9: if p_tileij > 0.5 then
10: evaluate tileij with semantic segmentation model→ p_pixelij ∈ [0, 1]
11: store p_pixelij as GeoTIFF file using tileij coordinates
12: else
13: store p_pixelij = 0 as GeoTIFF file
14: end if
15: end if
16: end for
17: end for
18: for each GeoTIFF image file stored do
19: read p_pixelij
20: binarize p_pixelij by applying threshold value p = 0.5
21: evaluate p_pixelij with postprocessing cGAN model→ p_pixel_cGANij ∈ [0, 1]
22: infer class by thresholding p_pixel_cGANij with decision limit p = 0.5
23: store binarized p_pixel_cGANij overwriting GeoTIFF image file
24: end for each
25: mosaic all GeoTIFF image files→ extracted road surface areas (image format)
26: clean intermediate files (GeoTIFF tiles)
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Figure 2. Flowchart describing the proposed end-to-end, large-scale road mapping procedure.

4. Implementation of the Proposed End-to-End Road Mapping Solution on the
SROADEX Dataset

The road extraction solution proposed in Section 3 takes as input orthoimages with
a spatial resolution of 0.5 m, divided in tiles of size 256 × 256 pixels—these tiles will
be processed with specialized DL models to recognize, extract, and improve the surface
area predictions of the road elements (an extended graphical description can be found
in Figure 3). To ensure a higher generalization capacity of the resulting DL models, the
three artificial neural network components were trained on the SROADEX large-scale
dataset [49]—an Ubuntu server featuring four Nvidia Tesla V100 Graphical Processing Units
with 16 GB of VRAM was employed to train the components and implement the solution.

Next, the three operations applied will be presented, and a discussion of the input-
output modelling of the will be introduced in the sections corresponding to the imple-
mentation of each DL component. It is important to mention that the image classification
and semantic segmentation are supervised operations (where the input data are remotely
sensed images and their corresponding tags, and the goal is to learn how to predict if an
image contains a road or not using the labels of the input data). On the contrary, conditional
generative learning is an unsupervised learning task, where only input variables, X, (and
no output variables, y), are given to the deep learning model.
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the perspective of the trained deep learning models).

4.1. Data

In previous studies [59,60,64,65], having used datasets containing around 10,000 tiles of
256 × 256 pixels from representative areas, it was observed that one of the main drawbacks
of the training processes was the lack of sufficient data, as inconsistent predictions were
frequently present. To implement and test the large-scale road extraction solution, the
SROADEX dataset [49] was used (hosted in the Zenodo repository [66], openly available
under a CC-BY 4.0 licence). The data were selected because the information and variables
it contains are produced and distributed by public agencies (under the supervision of the
National Geographical Institute of Spain). The strategy applied for creating the SROADEX
dataset is detailed in Section 2 of [49].

The SROADEX dataset covers a land area of 8636.94 km2 of the Spanish territory
and contains n = 527,157 tiles of 256 × 256 pixels with a spatial resolution of 0.5 m with
information related to main and secondary transport routes, urban, and rural roads (tile
examples can be found in Figure 2 of [49]). The first component of the SROADEX dataset is
represented by the digital RGB aerial orthophotographs from the entire Spanish territory
(distributed under the “National Plan of Aerial Orthophotography” [67], or PNOA product).
In this regard, the aerial imagery was acquired with calibrated instruments, corrected, and
rectified, and its traceability can be ensured. The second component of the SROADEX
dataset are the ground-truth predictions, coming from BTN information related to road
elements such as highways, conventional roads, tracks, and paths that were manually
checked and corrected by an operator (the ground truth road digitalization results have
been generated by specialized operator and crosschecked before being published). Finally,
the vectorial representations were rasterized to achieve the ground-truth masks of the road
elements and provide their pixel-level semantic representation.

SROADEX dataset was randomly pre-split with a division ratio of 90:5:5% (splitting
criterion chosen because it allows for more training data, as recommended in [64]) to
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generate the training, validation, and test sets, respectively, and ensure that the same data
are used for the training and testing of the models.

4.2. Road Classification Operation

In the proposed extraction workflow, the road recognition step is first applied to avoid
the unnecessarily processing of the areas with semantic segmentation models (as many
of the tiles do not contain road elements). For task 1©, the training approach described
in [64] was followed to obtain the classification models specialized in road recognition.
The data used for the road recognition task contain the same type of representations as
the tiles presented in Figures 1 and 2 of [64]. By applying the 90:5:5% data split crite-
rion to SROADEX, positive samples (tagged with “Road” label) were divided as follows:
225,397 for the training set, 12,523 in the validation set, and 12,522 for the test set; the
negative samples (tagged with “No_Road” label), were divided as follows: 249,043 in the
training set, 13,836 in the validation set, and 13,836 in the test set.

To lower and optimize the computational requirements of an ensemble framework
(stacking multiple weak learners together, although increases the performance, also in-
creases the computational needs and, consequently, the evaluation time—an important
aspect in the design of a production solution), two neural network architectures based
on VGGNet, named VGG-v1 (featuring 15,240,513 parameters), and VGG-v2 (featuring
25,733,953 parameters), were trained. These convolutional neural network architectures
networks were introduced in Table 1 of [10]. They both feature the default VGG16 configura-
tion as convolutional base but display a different disposition of the classifier layers. VGG-v1
features three fully connected (FC) layers of [512, 512, 1] units, while VGG-v2 features three
FC layers with [3072, 3072, 1] units. Both networks use MSRA initialization [68] for the first
FC layer of the classifier and apply the feature extraction method of transfer learning to
re-use the weights learned on the ImageNet Large Scale Visual Recognition Challenge [69].
For comparison reasons, the original VGGNet (featuring 65,058,625 parameters, for an
input size of 256 × 256 pixels) from scratch using random initialization was also trained.

As for the input–output modelling, each aerial image of 256 × 256 × 3 was first
downsampled (as shown in Figure 3) by being passed through the learning structure
defined by the convolutional base (composed of a succession of convolutional and pooling
layers). This enabled the recognition models to learn filters that detect different road-specific
features. In the classifier part of the model, the modelled classification function’s response
to the loss computed between the expected label input and the predicted label (a single
“Road”/“No_Road” tag, at tile level) controls the evolution of learned filter representations,
favoring those that helped obtain correct predictions. Additional explanations are provided
in Sections 4 and 5 of [64].

During training, a weight matrix, wj = nsamples/(nclasses × nsamplesj
) was applied to

increase the importance of the minority class (as the SROADEX data for road recognition
dataset is slightly imbalanced). The weight, w, for each class, j, was represented by the
division of the total number of tiles in the dataset and the product two classes in the dataset
and the number of tiles in the class j—resulting a weight matrix wi,j = {1.0525, 0.9525}.
Similarly to the learning approach presented in [64], the model’s loss was calculated with

the formula L(ŷi, yi) = 1
m

m
∑

i=1
yi ∗ log ŷi + (1− yi) ∗ log(1− ŷi), as the average negative

log-likelihood for each event output value over a target (considering the actual and the
predicted probabilities). To reduce the computed loss, backpropagation with the Adam [70]
optimizer with a weight update rule of 1e−5 was applied. The models were trained until
signs of overfitting were observed (lower cost on the training set when compared to the
validation set).

The experiments were repeated three times to obtain the mean values and the standard
deviation of the performance metrics. The performance reported by the trained architec-
tures can be found in Table 1, in terms of loss value and accuracy
((TP + TN)/(TP + FP + TN + FN)), precision (TP/(TP + FP)), recall (TP/(TP + FN)),
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F1 score
(

TP/
(

TP + 1
2 (FP + FN)

))
, and AUC-ROC score (shows how much a model is

capable of distinguishing between classes) metrics.

Table 1. Mean (M) and standard deviation (SD) of the performance metrics obtained by the configura-
tions trained for road recognition with n = 474,437 tiles on the validation (containing n = 26,359 tiles)
and the test set (containing n = 26,358 tiles).

Performance Metric
VGG-v1 VGG-v2 VGGNet Trained from Scratch

Validation Test Validation Test Validation Test

Loss
M 0.2536 0.2511 0.2550 0.2555 0.2622 0.2581
SD 0.0039 0.0023 0.0021 0.0033 0.0040 0.0046

Accuracy M 0.8956 0.8967 0.8946 0.8961 0.8928 0.8953
SD 0.0008 0.0007 0.0014 0.0018 0.0020 0.0017

Precision
(weighted)

M 0.8964 0.8974 0.8946 0.8961 0.8929 0.8953
SD 0.0006 0.0005 0.0015 0.0018 0.0019 0.0016

Recall
(weighted)

M 0.8956 0.8967 0.8946 0.8961 0.8928 0.8953
SD 0.0008 0.0007 0.0014 0.0018 0.0020 0.0017

F1 score
(weighted)

M 0.8957 0.8967 0.8946 0.8961 0.8928 0.8953
SD 0.0009 0.0007 0.0015 0.0018 0.0020 0.0017

AUC-ROC
score

M 0.9634 0.9640 0.9605 0.9608 0.9579 0.9590
SD 0.0003 0.0012 0.0008 0.0016 0.0004 0.0007

The best performing road classification architecture was VGG-v1, as it achieved the
lowest average loss and yielded higher average accuracy, recall, F1 and AUC-ROC scores
on the test set. The best performing VGG-v1 model obtained a minimum loss value of
0.2506 on the validation set used during training, and maximum accuracy, weighted pre-
cision, weighted recall, weighted F1 score, and AUC-ROC score values of 0.8957, 0.8961,
0.8957, 0.8957, and 0.9635, respectively; and a loss value of 0.2485 on the test set containing
unseen data, and accuracy, weighted precision, weighted recall, weighted F1 score, and
AUC-ROC score values of 0.8974, 0.8978, 0.8974, 0.8975, and 0.9639, respectively. This
network was trained for 30 epochs, with an average duration per epoch of 4985 s (approxi-
mately 1 h and 23 min) and delivered lower error ratios on the validation and test sets.

4.3. Semantic Segmentation of Road Surface Areas Operation

The semantic segmentation component was trained and tested on the aerial tiles la-
belled with the “Road” label in the SROADEX dataset, together with their corresponding
ground-truth masks (tagged with road information at pixel level, from MTN50), following
the learning techniques tested in [65]. The data covers a land area of 4103.24 km2 and
contains 250,442 pairs of tiles that were divided by applying the 90:5:5% data split crite-
rion. Road representations used for semantic segmentation are similar to the road data
presented in Figure 1 of [65]. Following the methodology described in Section 3, task 2©
will be applied only to tiles that contain road elements, due to the prior use of the road
recognition operation (in which the 65,536 pixels of tiles that do not contain road elements
are automatically tagged with the label corresponding to the “No_Road” category).

The models trained for Image segmentation are based on U-Net and were implemented
using the “Segmentation Model” deep learning library [71]. Following [65], the default
encoder and decoder backbones were replaced with NNs specialized in extracting more
complex objects. The semantic segmentation models considered for training are follow-
ing the architecture–backbone configurations described next: U-Net—SEResNeXt50 [72]
(featuring 34,594,177 parameters), together with the U-Net as base architecture, coupled
with Inception-ResNet-v2 (featuring 57,868,721 parameters), and the original U-Net ar-
chitecture from scratch (as proposed by the authors). These implemented configurations
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represent state-of-the-art semantic segmentation networks and follow the encoder–decoder
learning structure.

In line with the road extraction approach applied in [65], Adam optimizer [70]
was applied, with a variable learning rate and early stopping to optimize the binary
cross entropy combined with Jaccard loss function. The loss function,
L(gt, pr) = −gt× log(pr)− (1− gt)× log(1− pr), measures the similarity between pre-
diction (pr) and the ground-truth (gt) to reduce the cost via backpropagation. To control the
evolution of the training, performance metrics specific to image segmentation that correctly
handle the unbalanced nature of the two classes considered (“Road” and “No_Road”, as
road pixels generally occupy around 5–10% of the pixels in any given tile) were computed.

As for the input–output modeling, the training required pairs of aerial images of size
256 × 256 × 3 and their ground truth masks of size 256 × 256 × 1. The aerial images
were downsampled in the encoder by convolutional structures to extract road-specific
representations in feature maps, up to a bottleneck, when the process is reversed in the
decoder by means of transposed convolutions that upsample the tensor to its original
size. The encoder–decoder structure also uses skip connections to transfer information
between processing levels containing feature maps of same index (as shown in Figure 3).
The classifier part makes use of the filters learned (detecting road-specific features) to model
the function capable of delivering predictions at pixel level (keeping the depth-wise argmax
of each pixel) at pixel level, to output a single channel image of 256 × 256 × 1. Additional
explanations are provided in Section 4 of [65].

The training experiments were repeated three times to obtain their mean and standard
deviation of the IoU score, F1 score, precision, and recall (for both the positive and negative
class), and the pixel accuracy and the loss performance values were delivered by the
implemented semantic segmentation models. The results computed on the validation and
test sets are presented in Table 2.

Table 2. Mean (M) and standard deviation (SD) of the performance metrics obtained by the se-
mantic segmentation networks trained with n = 225, 397 tiles on the validation set (containing
n = 12, 523 tiles) and on the test set (containing n = 12, 522 tiles).

Performance Metric
U-Net (Trained from Scratch) U-Net—SEResNeXt50 U-Net—Inception-ResNet-v2

Validation Test Validation Test Validation Test

Loss
M 0.5527 0.5473 0.5170 0.5212 0.5057 0.5108
SD 0.0037 0.0212 0.0028 0.0027 0.0039 0.0040

IoU score (positive class) M 0.2941 0.2903 0.3197 0.3160 0.3470 0.3435
SD 0.0035 0.0034 0.0117 0.0115 0.0212 0.0214

IoU score (negative class) M 0.8674 0.8664 0.8798 0.8772 0.8887 0.8876
SD 0.0051 0.0055 0.0038 0.0042 0.0264 0.0274

IoU score
M 0.5808 0.5784 0.5998 0.5966 0.6179 0.6155
SD 0.0027 0.0029 0.0043 0.0039 0.0210 0.0216

F1 score (positive class) M 0.4271 0.4223 0.4555 0.4511 0.4848 0.4805
SD 0.0042 0.0043 0.0128 0.0128 0.0222 0.0225

F1 score (negative class) M 0.9148 0.9150 0.9230 0.9215 0.9277 0.9273
SD 0.0057 0.0060 0.0045 0.0048 0.0222 0.0230

F1 score
M 0.6709 0.6687 0.6893 0.6863 0.7062 0.7039
SD 0.0027 0.0029 0.0038 0.0042 0.0198 0.0203

Pixel accuracy M 0.8710 0.8701 0.8831 0.8806 0.8916 0.8907
SD 0.0051 0.0055 0.0038 0.0042 0.0262 0.0272

Precision (positive class) M 0.2986 0.2947 0.3242 0.3204 0.3527 0.3492
SD 0.0036 0.0035 0.0121 0.0120 0.0226 0.0229
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Table 2. Cont.

Performance Metric
U-Net (Trained from Scratch) U-Net—SEResNeXt50 U-Net—Inception-ResNet-v2

Validation Test Validation Test Validation Test

Precision (negative class) M 0.9977 0.9976 0.9979 0.9980 0.9978 0.9979
SD 0.0001 0.0001 0.0001 0.0000 0.0003 0.0002

Precision
M 0.6481 0.6462 0.6611 0.6592 0.6753 0.6735
SD 0.0018 0.0017 0.0061 0.0060 0.0112 0.0114

Recall (positive class) M 0.8597 0.8554 0.8695 0.8626 0.8662 0.8592
SD 0.0053 0.0013 0.0014 0.0008 0.0059 0.0064

Recall (negative class) M 0.8692 0.8682 0.8814 0.8788 0.8904 0.8893
SD 0.0051 0.0056 0.0038 0.0042 0.0265 0.0275

Recall
M 0.8644 0.8618 0.8755 0.8707 0.8783 0.8743
SD 0.0044 0.0022 0.0024 0.0024 0.0123 0.0126

The best performing segmentation architecture for road extraction was U-Net—Incepti-
onResNet-v2, because it achieved the lowest average loss and yielded the highest average
accuracy, recall, F1 and AUC-ROC scores, both on the test and the validation sets. The
results are aligned with the ones obtained in [65] but present an increase of 4–5% in the IoU
score, due to the use of a significantly bigger dataset. These performance values are to be
expected when performing a large-scale extraction of the road surface areas.

The best performing U-Net—Inception-ResNet-v2 model achieved a maximum IoU
and F1 scores of 0.6264 (0.3409 for the positive class and 0.9118 for the negative class),
and 0.7132 (0.4788 for the positive class and 0.9476 for the negative class), respectively, a
pixel accuracy of 0.9149, a mean precision of 0.6722 (0.3463 positive class, 0.9980 for the
negative class), and a mean recall of 0.8872 (0.8610 positive class, 0.9134 for the negative
class), together with a minimum loss of 0.5113. This model was trained for 30 epochs, with
an average duration per epoch of 6325 s (approximately 1 h and 45 min) and delivered the
lowest error ratios on the validation and test sets, in both the positive and negative classes.
The maximum values obtained by the best segmentation model represent the metrics that
are to be improved with the post-processing suboperation.

4.4. Post-Processing of the Initial Segmentation Masks with Conditional Generative
Adversarial Learning

Similar to [65] (where the results that state-of-the-art semantic segmentation architec-
tures deliver when trained for the road surface area extraction task were analyzed), in this
study, the predictions delivered by the best semantic segmentation model were not always
satisfactory (discontinuities, overlooked connection points, or isolated road segments were
present). For the post-processing operation 3©, the SROADEX training and validation
sets with the ground-truth masks from task 2©were joined to obtain a bigger training set
(resulting in 237,920 tiles, as unsupervised learning does not require a validation set). The
same test data from task 2© (containing 12,522 tiles) were used to evaluate the performance
of the trained cGAN. The data used for post-processing with cGANs are similar to the road
data representations from Figure 2 of [59], and Figure 2 of [60].

The post-processing operation, added to improve the initial segmentation results,
follows the learning procedure of the conditional GAN architecture proposed in [59]. The
initial segmentation mask (of size of 256 × 256 × 1) is added as a condition to the latent
space z (containing Gaussian noise), and the training goal is to obtain improved road repre-
sentations that are similar to the ground-truth domain (from an input of 256 × 256 × 1) via
image-to-image translation operations. The conditional model for post-processing is trained
through unsupervised learning from z.

The cGAN features a generator G, based on U-Net, which is trained to produce realistic
synthetic data, G(z|x), and a discriminator D based on PatchGAN, which is trained to
distinguish between real images (from the ground-truth domain, Y) and the fake generated
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data (G(z|x)). During training, the original ground-truth mask of 256 × 256 × 1 is only
provided to the discriminator. However, with the feedback received from the discriminator,
G will improve at generating realistic data, while D will become better at differentiat-
ing synthetic data to the real data distribution (target domain containing ground-truth
representations of roads). The objective function of the model can be expressed with
L(G, D) = Ex,y[log D(x, y|x)] + Ex,z(1− log D(x, G(z|x))) [59], Ex,z being the expected
value over all generated fake instances G(z|x), given the condition x, and Ex,y being
the expected value over all real data instances (belonging to the density distribution to
be replicated), given x [4,59]. After training, the trained G will be used to improve the
initial segmentation masks of size 256 × 256 × 1 and output an improved, post-processed
version of the same size. An in-depth explanation of the training procedure can be found
in Sections 3–6 of [59].

The cGAN model was trained three times to obtain the mean and standard deviations
of the IoU score, F1 score, precision, and recall (for both the positive and negative classes),
and the pixel accuracy performance values delivered by the implemented model. The
results computed on the test set present significant increases in the considered performance
metrics and can be found in Table 3.

Table 3. Comparison between the performance metrics obtained by applying the post-processing
operation with a conditional GAN trained on n = 237,920 tiles and the best performing semantic
segmentation model on the test set containing n = 12,522 unseen tiles (covering a land area of
205.16 km2).

Performance Metric
Best Semantic
Segmentation

Model (*)

Post-Processing with the cGAN Proposed in [59]

Mean Value and
Standard Deviation

Mean Percentage
Difference (**) Maximum Result Maximum

Improvement (***)

IoU score
(positive class) 0.3409 0.4959 ± 0.0053 +15.50% 0.5012 +16.03%

IoU score (negative class) 0.9118 0.9629 ± 0.0005 +5.11% 0.9628 +5.10%

IoU score 0.6264 0.7294 ± 0.0026 +10.30% 0.7320 +10.57%

F1 score (positive class) 0.4788 0.6118 ± 0.0051 +13.30% 0.6175 +13.87%

F1 score (negative class) 0.9476 0.9764 ± 0.0003 +2.88% 0.9763 +2.87%

F1 score 0.7132 0.7941 ± 0.0024 +8.09% 0.7969 +8.37%

Pixel accuracy 0.9149 0.9640 ± 0.0005 +4.91% 0.9639 +4.90%

Precision (positive class) 0.3463 0.6170 ± 0.0116 +27.07% 0.6088 +26.25%

Precision (negative class) 0.9980 0.9899 ± 0.0006 −0.81% 0.9904 −0.76%

Precision 0.6722 0.8034 ± 0.0056 +13.13% 0.7996 +12.75%

Recall (positive class) 0.8610 0.6592 ± 0.0190 −20.18% 0.6762 −18.48%

Recall (negative class) 0.9134 0.9725 ± 0.0010 +5.91% 0.9719 +5.85%

Recall 0.8872 0.8158 ± 0.0091 −7.14% 0.8241 −6.32%

Notes: (*) refers to the performance values obtained by the best semantic segmentation model (i.e., metrics to
be improved by the cGAN model); (**) refers to the difference with respect to the initial semantic segmentation
results; (***) refers to the difference between the maximum result and the initial semantic segmentation results.

In Table 3, it can be observed that the post-processing operation delivered a mean
IoU score of 0.7294 ± 0.003, an average increase of 10.3% over the maximum IoU score
of 0.6264 obtained by U-Net—Inception-ResNet-v2. The results are aligned with those
obtained and discussed in [59,60] and display the precision-recall trade-off scenario, where
an average of 7.14% of the recall performance delivered by the semantic segmentation
model was sacrificed to achieve average a mean increase of 13.1% in precision. This trade-
off scenario, where the precision values are increased at the cost of the recall metric (a higher
precision involves minimizing false positive rates; a higher recall involves minimizing
false negative rates) is to be expected, considering the imbalanced classes present in the
training data (featuring significantly fewer positive samples), due to the nature of the
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studied geospatial object. Nonetheless, precision and recall scores should not be discussed
in isolation, and for this reason, the F1 score, and the pixel accuracy performance values
were also computed. In this regard, the cGAN model achieved a mean increase of 8.1%
over the initial F1 score value of 0.7132. In addition, the correct predictions have a higher
ratio compared to the initial segmentation masks, a mean increase of 4.9% in the pixel
accuracy being observed when compared to the initial value of 0.9149 obtained by the
best-performing segmentation model.

5. Evaluation of a Single, Unseen Orthoimage File Covering 532 km2

Next, a large-scale evaluation of a new, unseen, and untagged area was performed
with the processing procedure proposed in Figures 2 and 3. For this proof-of-concept
pilot, a large-scale extraction of the road transport network from a selected territory in the
Region of Murcia (the PNOA orthoimage corresponding to the area covered by the sheet
0997-Águilas of MTN50) was conducted to study, in a qualitative manner, the significance
of the performance metrics was computed in Sections 4.2–4.4.

The selected PNOA orthophotograph covers a land area of approximately 28 km × 19 km,
is georeferenced in ETRS89 (compatible with WGS84), UTM zone 31, and can be down-
loaded in the ECW (Enhanced Compression Wavelet) file format from Centro de Descargas
del CNIG [73], maintained by the Spanish Instituto Geográfico Nacional. This land surface
was chosen for its localization within the Mediterranean region and features coastlines,
and hilly regions, dry and green vegetation—scenarios similar to those used for training
the DL models. The area was evaluated to identify the strengths and disadvantages of the
proposed method, and to compare the results with those obtained by the standard U-Net
trained from scratch.

Example of predictions from rural scenes can be found in Figure 4—the first column
presents the aerial orthoimages, the second column features the road predictions delivered
by U-Net trained from scratch, while the third column features the predictions obtained
with the proposed road mapping solution. Examples of results delivered in urban regions
are presented in Figure 5—the first column features the aerial orthoimages, the second
column represents the road predictions delivered by U-Net trained from scratch, while the
third column features the predictions obtained with the proposed end-to-end road surface
area extraction solution presented in this work.

Remote Sens. 2023, 15, 2099  17  of  25 
 

 

the studied geospatial object. Nonetheless, precision and recall scores should not be dis-

cussed in isolation, and for this reason, the F1 score, and the pixel accuracy performance 

values were also computed. In this regard, the cGAN model achieved a mean increase of 

8.1% over the initial F1 score value of 0.7132. In addition, the correct predictions have a 

higher ratio compared to the initial segmentation masks, a mean increase of 4.9% in the 

pixel accuracy being observed when compared to the initial value of 0.9149 obtained by 

the best-performing segmentation model. 

5. Evaluation of a Single, Unseen Orthoimage File Covering 532 km2 

Next, a large-scale evaluation of a new, unseen, and untagged area was performed 

with the processing procedure proposed in Figures 2 and 3. For this proof-of-concept pi-

lot, a large-scale extraction of the road transport network from a selected territory in the 

Region of Murcia (the PNOA orthoimage corresponding to the area covered by the sheet 

0997-Águilas of MTN50) was conducted to study, in a qualitative manner, the significance 

of the performance metrics was computed in Sections 4.2–4.4. 

The selected PNOA orthophotograph covers a land area of approximately 28 km × 19 

km,  is georeferenced  in ETRS89  (compatible with WGS84), UTM  zone  31,  and  can be 

downloaded  in  the ECW  (Enhanced Compression Wavelet) file  format  from Centro de 

Descargas del CNIG [73], maintained by the Spanish Instituto Geográfico Nacional. This land 

surface was chosen for its localization within the Mediterranean region and features coast-

lines, and hilly  regions, dry and green vegetation—scenarios similar  to  those used  for 

training  the DL models. The  area was  evaluated  to  identify  the  strengths  and disad-

vantages of the proposed method, and to compare the results with those obtained by the 

standard U-Net trained from scratch. 

Example of predictions from rural scenes can be found in Figure 4—the first column 

presents the aerial orthoimages, the second column features the road predictions deliv-

ered by U-Net trained from scratch, while the third column features the predictions ob-

tained with the proposed road mapping solution. Examples of results delivered in urban 

regions are presented in Figure 5—the first column features the aerial orthoimages, the 

second column represents the road predictions delivered by U-Net trained from scratch, 

while the third column features the predictions obtained with the proposed end-to-end 

road surface area extraction solution presented in this work. 

 

Figure 4. Examples of rural scenes considered in the qualitative evaluation of the road surface area
extraction process from a PNOA orthoimage covering 532 km2.



Remote Sens. 2023, 15, 2099 18 of 24

Remote Sens. 2023, 15, 2099  18  of  25 
 

 

Figure 4. Examples of rural scenes considered in the qualitative evaluation of the road surface area 

extraction process from a PNOA orthoimage covering 532 km2. 

The  semantic  segmentation with U-Net  trained  from  scratch delivered  the worse 

road extraction predictions, as the evaluated areas present high rates of false predictions 

(as found in Figures 4b and 5b)—the road geometries would require a lot of debugging 

by a mapping operator to generate a final road extraction dataset. In contrast, the consec-

utive execution of road recognition, road extraction via semantic segmentation step, com-

bined with the post-processing step resulted in significantly reduced processing artefacts 

and errors and improved road surface area predictions (as found in Figures 4c and 5c). 

The  proof-of-concept  experiment  supported  the  performance metrics  values  achieved 

throughout the project; the workflow delivered significantly improved road mapping re-

sults, and, subsequently, reduced the rates of FP and FN predictions. 

 

Figure 5. Examples of urban scenes considered in the qualitative evaluation of the road surface area 

extraction process from a PNOA orthoimage covering 532 km2. 

6. Discussion 

The road extraction solution proposed presented as an end-to-end processing strat-

egy based on deep learning models is capable of successfully analyzing extended, unseen 

areas,  and  evaluating  each  pixel  of  the  input  aerial  imagery  to  deliver  final 

“Road”/“No_Road” predictions. The objective of  this  study–automatically obtain  road 

representation similar to those present in official cartography by applying the proposed 

extraction workflow–was successfully reached, as the generated results display high per-

formance metrics, and the qualitative interpretations carried out proved the obtention of 

high-quality road representations. 

6.1. Advantages of the Proposed Solution 

The performance metrics obtained when training the component models show con-

siderable increases (gains in the IoU score of +10.57% when compared to U-Net—Incep-

tion-ResNet-v2), a significant reduction  in  the FP errors,  together with a significant  in-

crease in the TN ratios. In the qualitative evaluation of extended unseen areas, it was ob-

served that the predictions have notably improved when compared to U-Net model, prov-

ing that the extraction of the road surface areas using the proposed workflow can deliver 

Figure 5. Examples of urban scenes considered in the qualitative evaluation of the road surface area
extraction process from a PNOA orthoimage covering 532 km2.

The semantic segmentation with U-Net trained from scratch delivered the worse road
extraction predictions, as the evaluated areas present high rates of false predictions (as
found in Figures 4b and 5b)—the road geometries would require a lot of debugging by a
mapping operator to generate a final road extraction dataset. In contrast, the consecutive
execution of road recognition, road extraction via semantic segmentation step, combined
with the post-processing step resulted in significantly reduced processing artefacts and
errors and improved road surface area predictions (as found in Figures 4c and 5c). The proof-
of-concept experiment supported the performance metrics values achieved throughout
the project; the workflow delivered significantly improved road mapping results, and,
subsequently, reduced the rates of FP and FN predictions.

6. Discussion

The road extraction solution proposed presented as an end-to-end processing strategy
based on deep learning models is capable of successfully analyzing extended, unseen areas,
and evaluating each pixel of the input aerial imagery to deliver final “Road”/“No_Road” pre-
dictions. The objective of this study–automatically obtain road representation similar to those
present in official cartography by applying the proposed extraction workflow–was success-
fully reached, as the generated results display high performance metrics, and the qualitative
interpretations carried out proved the obtention of high-quality road representations.

6.1. Advantages of the Proposed Solution

The performance metrics obtained when training the component models show consid-
erable increases (gains in the IoU score of +10.57% when compared to U-Net—Inception-
ResNet-v2), a significant reduction in the FP errors, together with a significant increase
in the TN ratios. In the qualitative evaluation of extended unseen areas, it was observed
that the predictions have notably improved when compared to U-Net model, proving
that the extraction of the road surface areas using the proposed workflow can deliver im-
proved results when compared to existing implementations applied for the same large-scale
extraction task.

Different from existing road extraction solutions, here, the semantic segmentation
task is preceded by a road classification task (by means of a binary classification network)
that helps reduce the unnecessary processing of areas that do not contain road elements
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and is succeeded by a conditional GAN model (trained to improve the extracted road
representations). This approach eliminated the unnecessary processing of all the tiles with
semantic segmentation models (known to be computationally more expensive, and an
important source of the FP and FN predictions) by including a filtering of the images to be
semantically segmented and automatically tagging the pixels of tiles that do not contain
roads, or those that fall outside the administrative boundaries, with the “No_Road” label.

From an economic viewpoint, the proposal enables a higher degree of automation of
the road cartography generation and updating processes and has the potential to greatly
reduce costs by minimizing the human factors. Moreover, the proposed solution can play an
important role in road infrastructure monitoring and its digital data integration, as it enables
a great degree of exploitation of existing, openly available geographic support for automatic
extraction tasks. In this regard, the mapping procedure can be applied to enhance other
similar extraction tasks of continuous geospatial elements (such as the mapping of riverbeds
or railroads), by retraining the DL model components on datasets containing the specific
object considered. The research could also help map other non-continuous geospatial
objects (after large appropriate datasets were created for the supervised learning part) or
serve as base for developing additional extraction workflows from remote sensing images.

As for the development and efficiency of the proposed solution, the increased process-
ing complexity resulted from applying the three DL operations, was counterbalanced by
the delivery of a significantly higher quality road predictions in a processing procedure
that requires fewer debugging hours from part of a human operator (resulting in decreased
overall processing times). Therefore, although the total processing time has not significantly
decreased, the quality of the results delivered is higher.

Another important advantage of the proposed solution is the easy parallelization
of the extraction procedure to the level of the entire national territory, as this processing
procedure only needs to be replicated for the rest of 1061 PNOA orthoimages. From a data
processing viewpoint, the proposed methodology and the developed components make use
of the computing resources available on a machine and scale effectively, as the processing
jobs can be run in parallel into several machines using the same processing environment,
and the results can be stored in a centralized geospatial repository. However, due to the
large processing times and the additional computational power required, processing the
whole national territory falls beyond the objective of this research, but the proof-of-concept
experiments carried out proved the feasibility of the task.

Finally, the end-to-end solution is versatile, as it enables an easy integration of future
development in the field—the featured components can be easily replaced in the workflow
by newer models that improve the manipulation of geospatial data. The solution is also
capable of delivering results in the GeoTIFF format, compatible with geodatabases, which
further increases its applicability.

6.2. Challenges Posed by the Proposed Solution

The proposed processing strategy requires DL model components trained on large
datasets—the training operations can take several days of training per model, and it is
recommended that several training iterations are run to identify the best possible model.
We defer the analysis of additional DL models as DL components and the comparison and
explorations of additional road extraction methods to future work, due to the size of the
dataset considered for implementing the end-to-end solution and the long training times
and computational efforts required. Nonetheless, it is important to note that, once the
training is completed, the models perform the evaluation in very short times (by the orders
of milliseconds, for any given new tile of 256 × 256 pixels).

It was noticed that tiles where road elements occupy a very small part of the road
(in the corners of tiles, etc.) have a negative influence on the results delivered in the road
classification model. Regarding the segmentation operation, significant prediction artefacts
in tiles where the representations of the classes were very unbalanced were observed (when
more than 95% of the pixels in a tile belonged to a certain class). The IoU score is sensible in
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such scenarios, and the lower performance score computed can influence the evolution of
the training and the learned road representations. It is advised that we remove this type of
image data from the training set. For the final post-processing operation, the main challenge
was the unsupervised nature of the conditional GANs, where the learning evolution is
difficult to control and the interpretability decreases (several post-processing scenarios
where the initial road geometries were counterintuitively deleted were identified).

Important inaccuracies were observed in the road extraction from urban and hilly
areas, due to the natural underrepresentation of the mentioned areas in datasets covering
extended territories. Furthermore, urban regions feature additional challenges for the road
extraction (e.g., materials used in pedestrian pavements have similar spectral signatures,
increased presence of occlusions). Future implementation should consider the inclusion
of multiple specialized models, to increase the quality of the results from the mentioned
regression (for example, an additional semantic segmentation network specialized in
extracting road elements from urban areas).

Existing orthophotographs provided by public agencies are not radiometrically and
optically homogenous, and some of the artefacts and errors observed can be attributed to
imperfections present in the existing data (e.g., differences in brightness levels between
scenes). To reduce this effect, the networks were trained with significant data augmentation
levels (especially random changes in brightness, contrast and gamma shifts, and grid and
optical distortions) to expose the model to more aspects of data.

In addition, the available cartographic support does not have a uniform spatial reso-
lution, and the road representations present in cartographic support do not always cover
the full road surface area. Additional research on the influence of a tile’s size should also
be carried out, as false predictions might be reduced by using higher tile resolutions that
contain more road information (e.g., 512 × 512 pixels, or 1024 × 1024 pixels). From a repre-
sentation perspective, a reflection on symbolizing road elements with consistent notations
and labels should be carried out to enable a better extraction of the road transport network.

Many imperfections arise from the complex nature of the geospatial object. Roads
have different spectral signatures, depending on the material used in pavements and do
not feature consistent geometry. Furthermore, there are other similar geospatial objects
that can confuse the neural networks trained because of the similar shapes (e.g., rivers), or
spectral signatures (e.g., canals, or railroads). This will cause inaccuracies in the extracted
elements, even if state-of-the-art model components are trained on large-scale datasets.

Although the results generated are not perfect, they confirm the suitability of the
proposed workflow for extracting the road transport network, and the methodology can
be applied to achieve significant increases in the quality of results in tasks related to
the extraction of geospatial elements. To tackle the above-mentioned challenges, the
predictions delivered by the proposed end-to-end solution should still be systematically
revised by a specialized operator to remove false predictions from a cloned layer of the
results; nonetheless, this task would require far less working time when compared to
having to manually generate the road representations from scratch (the current approach
implemented by state agencies). This could be solved with the introduction of a module that
allows the human factor to intervene in the road mapping process, which is necessary in a
future update to solve artefacts predicted in complex areas and to discard false predictions.

7. Conclusions

In this work, a large-scale road mapping procedure based on the consecutive execu-
tion of 1© road recognition, 2© semantic segmentation of road surface areas, and 3© post-
processing with conditional generative learning operations, within a common processing
environment, was proposed. To the best of our knowledge, it is the first intent of road
surface area extraction solution applied and verified at a such a large scale. The research
can provide a technical base for other large-scale mapping projects where the requirements
are related to assigning pixel information with geographical information.
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The results obtained in Sections 4 and 5 and discussed in Section 6 prove the suitability
of approaching the road surface area mapping task with the proposed processing workflow.
In this regard, the implementation of the proposed solution delivered higher quality road
representations from aerial orthophotographs when compared to other DL implementations
trained for the same task. Furthermore, the versatility and flexibility of the mapping
solution given by the consecutive execution of the three operations proved its effectiveness
and enables the integration of an application that alleviates the manipulation of geospatial
data, while allowing for an easy integration of future models and algorithms.

Nonetheless, it is important to note that the extracted representations are not perfect,
and a fully automated road surface area extraction operation cannot be achieved by means
of current state-of-the-art technologies combined with artificial intelligence techniques. For
a final debugging of the results, a human operator should be introduced at the end of the
process—a task that would require considerably less time. In addition, it was found that
more research on (1) the effect of image resolution and image overlap and (2) the application
of super-resolution techniques to homogenize the spatial resolution of the orthoimages
should be carried out. However, by reducing reliance on human participation in the large-
scale mapping of the road transport network from aerial imagery, while obtaining high
efficiency levels, state administration can be assisted in automatically monitoring and
detecting changes in the road layout, while reducing costs, and consequently, the citizens
can be provided with up-to-date cartography faster.
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