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Abstract: Sustainable groundwater management requires high-quality and low-latency estimates
of changes in groundwater storage (∆Sgw). However, estimates of ∆Sgw produced using traditional
methods, including groundwater models and well-based measurements, typically lag years behind
the present because collecting the required on-the-ground data is a time consuming, expensive, and
labor-intensive task. Satellite remote sensing measurements provide potential pathways to overcome
these limitations by quantifying ∆Sgw through closing the water balance. However, the range of
spatial scales over which ∆Sgw can be accurately estimated using remote sensing products remains
unclear. To bridge this knowledge gap, this study quantified ∆Sgw for the period of 2002 through
to 2021 using the water balance method and multiple remote sensing products in two subbasins
(~2700 km2–3500 km2) within California’s Central Valley: (1) the Kaweah–Tule Subbasin, a region
where the pumping of groundwater to support agriculture has resulted in decades of decline in
head levels, resulting in land subsidence, damage to infrastructure, and contamination of drinking
water and (2) the Butte Subbasin, which receives considerably more rainfall and surface water and
has not experienced precipitous drops in groundwater. The remote sensing datasets which we
utilized included multiple sources for key hydrologic components in the study area: precipitation,
evapotranspiration, and soil moisture. To assess the fidelity of the remote sensing-based model, we
compared estimates of ∆Sgw to alternative estimates of ∆Sgw derived from independent sources of
data: groundwater wells as well as a widely used groundwater flow model. The results showed strong
agreement in the Kaweah–Tule Subbasin in long-term ∆Sgw trends and shorter-term trends during
droughts, and modest agreement in the Butte Subbasin with remote sensing datasets suggesting
more seasonal variability than validation datasets. Importantly, our analysis shows that the timely
availability of remote sensing data can potentially enable ∆Sgw estimates at sub-annual latencies,
which is timelier than estimates derived through alternate methods, and thus can support adaptive
management and decision making. The models developed herein can aid in assessing aquifer
dynamics, and can guide the development of sustainable groundwater management practices at
spatial scales relevant for management and decision making.

Keywords: remote sensing; hydrology; groundwater

1. Introduction

Groundwater depletion is a major problem in many areas around the world, including
India, China, Iran, and the United States. Hotspots of groundwater depletion include
northwestern India, the Malwa region in Punjab, the Central Valley of California, and
the Shabestar Plain in Iran. Studies of these regions have shown the rapid depletion
of groundwater storage in northwestern India, accompanied by spatial heterogeneity in
groundwater levels and storage changes [1]. In the Malwa region of Punjab, more than 30%
of tubewells showed an average depletion rate of about 40 cm/year [2]. At least 50 km3 of
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groundwater has been abstracted from the Central Valley of California since 1950 [3–6]. A
study in the Shabestar Plain, Iran evaluated the impact of climate change on groundwater
levels and found that future climate change scenarios will lead to a decline in groundwater
levels [7]. These studies highlight the urgent need for better groundwater management
and sustainable practices to ensure the future availability of groundwater resources.

Remote sensing has recently emerged as a powerful tool to advance groundwater
science and management. A rich array of recent studies has demonstrated that remote
sensing measurements from multiple sources of spaceborne data can be used to draw
novel insights about groundwater systems and thus support management and decision
making [4,6,8,9]. For instance, Argus et al. (2017) showed that Global Positioning System
(GPS) data can be used with a hydrological model to obtain spatially distributed estimates
of changes in groundwater storage for large regions. Vasco et al. (2022) showed how
measurements of ground deformation from Interferometric Synthetic Aperture Radar
(InSAR) and estimates of mass changes from the Gravity Recovery and Climate Experiment
(GRACE) can resolve changes in confined and unconfined aquifer storage. Kim et al.
(2021) highlighted the utility of remotely sensed data to support timely management and
decision-making in the context of the Sustainable Groundwater Management Act, which
was enacted in California in 2014. Ahamed et al. (2021) showed that remote sensing data
can be used in a water balance approach to derive low-latency estimates of groundwater
storage changes at coarse spatial scales.

Despite these advancements, remote sensing approaches applied at spatial scales and
with latencies relevant for adaptive groundwater management and decision-making remain
limited in practice. The de facto technique through which groundwater managers and
decision-makers assess the status of groundwater systems continues to be through use of
observations made in monitoring wells. Monitoring well networks are costly to maintain,
and the measurements of groundwater levels can be sparse in both space and time due
to the time and labor-intensive data collection process [10,11]. Timely information on
groundwater resources is critical, especially given that managers are typically balancing the
competing groundwater needs of agriculture, industry, ecosystems, and public supply at
any given time. Remote sensing methods and data can alleviate some of the dependence on
networks of monitoring wells, and serve as supplementary tools to groundwater managers
and decision makers.

The growing availability of remote sensing data describing the components of the
hydrologic cycle opens the possibility to estimate area-integrated changes in groundwater
storage (∆Sgw) through a water balance approach:

∆Sgw = P − ET + Qin − Qout − Qgw net + R −∆SSM − ∆SSWE − ∆SR, (1)

where P is precipitation; ET is evapotranspiration; Qin and Qout are surface water flow in
and out of the area; Qgw net is net groundwater flow in and out of the area; R is net runoff;
∆SSM is the change in soil moisture, defined as moisture contained within the soil and the
top few meters of the vadose zone; ∆SSWE is the change in snow water equivalent; and
∆SR is the change in surface water storage. Recent studies [6,12,13] have highlighted the
potential of this approach and demonstrated that low-latency estimates of ∆Sgw at coarse
spatial scales are achievable if remote sensing data is used to solve a form of the hydrologic
water balance shown in Equation (1).

The viability of the remote sensing estimates of ∆Sgw, however, depends on many
factors, including the ability of the available datasets for each variable to capture the key
hydrologic conditions specific to a given area. Factors that complicate the use of certain
remote sensing products can include irrigation (some remotely sensed ET datasets struggle
to capture irrigated conditions), elevation (remotely sensed P products can underestimate
magnitudes, especially in mountainous regions), surface water infrastructure (imported
and exported water must be accounted for), and groundwater inflow and outflow (must
be a relatively small component of overall water balance; groundwater flux is challenging
to reliably estimate by any method). Moreover, remote sensing datasets derived from a
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variety of sources can have different spatial and temporal sampling frequencies which
might not be suited to adequately capture dynamic conditions specific to smaller regions.

Here, we go beyond the remote sensing water balance framework described in
Ahamed et al. (2021) by applying the method to local scales and assessing the accu-
racy, uncertainty, and applicability of remote sensing data to estimate changes in ground-
water storage (∆Sgw) at spatial scales practical for management and decision making
(~2700 km2–3500 km2). We select two regions within California’s Central Valley, which are
characterized by contrasting surface hydrologic and hydrogeologic conditions, to assess the
range of suitable conditions over which the remote sensing water balance may be applied.

2. Study Area: Kaweah–Tule Subbasin and Butte Subbasin

We selected two subbasins defined in the California Central Valley Groundwater-
Surface Water Simulation Model (C2VSim) [14], shown in Figure 1, to test the approach
of solving the water balance through the use of remotely sensed data. The first subbasin
(C2VSIM Subregion 18) is located within the southern part of the Central Valley and con-
stitutes an area of 3537 km2. It falls within Tulare County and coincides roughly with the
Kaweah and Tule Subbasins defined by the Department of Water Resources [15]. Thus, we
will refer to this region as the Kaweah–Tule Subbasin. The aquifer system, which underlies
the Kaweah–Tule Subbasin, is comprised of two principle layers: an unconfined aquifer
composed primarily of unconsolidated alluvium which extends from the surface to the
Corcoran Clay lithologic unit (located at approximately 100–300 m depth). The Corcoran
Clay acts as the confining unit for a deeper confined layer composed mostly of clay [3].
There are 2003 available wells with periodic groundwater level measurements in the well
database maintained by DWR [16]. This region is characterized by severe groundwater
overdraft [14], which has led to land fallowing [17], significant land subsidence [18] result-
ing in damage to the infrastructure, and contamination of the groundwater by chemicals
such as arsenic [19].

The second subbasin (C2VSim Subregion 5) is located within the northern part of
the Central Valley and encompasses an area of 2794 km2. The entire northern half of the
area is located within Butte County, whereas the southern portion is split between Sutter
County to the west and Yuba County to the east. Thus, we refer to this region as the Butte
Subbasin. In contrast with the Kaweah–Tule Subbasin, the Butte Subbasin is characterized
by a shallow semiconfined aquifer [3] comprised mostly of unconsolidated alluvium, and
has not experienced dramatic declines in groundwater levels. For the Butte Subbasin,
the California Department of Water Resources well database [16] contains 587 wells with
periodic groundwater level measurements. Most of these wells are located in the northern
and eastern portions of the region, with far fewer wells in the central and western portions
of the study area.

The two regions have a contrasting hydrography, which makes them suitable test sites
to evaluate the range of conditions over which the remote sensing water balance approach
may be applied. The Kaweah–Tule Subbasin receives little natural surface water inflow; its
primary source of surface water inflow is the Friant Kern Canal, shown in Figure 1 in gray,
which transports water from Millerton Lake along the eastern margin of the Central Valley.
As an internally drained basin, the Kaweah–Tule Subbasin does not have a natural surface
water outlet. Principal reservoirs in the region include Lake Kaweah and Lake Success
(Figure 1, cyan circles), which have relatively small storage capacities of 0.23 and 0.1 km3,
respectively, when compared to reservoirs in the northern Central Valley.
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Figure 1. Map showing study areas. The Kaweah–Tule Subbasin and the Butte Subbasin (black
outlines), Subregions 18 and 5, respectively, within the C2VSim groundwater model, are outlined
in black (other subregions are outlined in red). Locations of reservoirs (cyan circles), and stream
gauges measuring inflow (blue circles) and outflow (purple circle) for each study region are depicted.
The Feather River, the source of Lake Oroville, is highlighted in blue. The Friant-Kern Canal, which
transports water from Millerton Lake to the Kaweah–Tule Subbasin, is highlighted in gray.
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In contrast, the Butte Subbasin receives abundant surface water from rivers originating
in the Cascade and Klamath Mountains to the north and the Sierra Nevada to the east,
including the Upper Feather River (shown in blue in Figure 1). The flow in some of these
rivers is measured by stream gauges operated by the United States Geological Survey
(Figure 1, blue circles). The Feather River and most other rivers flowing out of the region
eventually drain to the Sacramento River, which lies west of the region. The headwater
portion of the Feather River supplies water to Lake Oroville, the second largest reservoir in
California. Lake Oroville lies on the eastern margin of the Butte Subbasin and constitutes
the majority of the total surface water stored (total capacity of 4.3 km3) within and delivered
throughout the region.

3. Methods and Data

We adopted the methodological approach described in Ahamed et al. (2021), with the
minor modification of using exclusively remotely sensed data in the water balance. First,
for each water balance component shown in Equation (1), we compared summary statistics
(annual and monthly mean) and the full time series for all available data sources, which
included ground-based measurements, remotely sensed datasets, land surface models, and
reanalysis data. A key finding of previous studies [6,20] was that an evaluation of multiple
datasets describing each variable can help with uncertainty reduction, and can be used to
identify inaccurate datasets as well as guide the selection of appropriate datasets for a given
region. For each water balance component, we used all available datasets to qualitatively
assess seasonality and magnitude, and quantified the uncertainty and correlation among
datasets describing each variable.

Because the focus of this study was the use of remotely sensed data, we exclusively
selected remotely sensed data, where available, to construct ensemble water balance esti-
mates of ∆Sgw. This contrasts with the approach taken in Ahamed et al. (2021), where the
other available data derived from ground-based measurements and land surface models
were also used to obtain estimates of each water balance component. ∆Sgw was estimated
by using different combinations of available remotely sensed data. After estimates of ∆Sgw
were computed, the net changes, trends during droughts, and seasonality was assessed.
The fidelity of the remotely sensed ∆Sgw estimates were evaluated by comparing trends,
magnitudes, and seasonality with independent estimates from well data as well as out-
puts of the C2VSim groundwater model. In subsequent sections, we formulate the water
balance method, report the data sources used to estimate each variable, and describe the
comparison data used in the context of the above procedure.

3.1. Method to Compute Changes in Groundwater Storage (∆Sgw) from Remote Sensing
Mass Balance

The hydrologic water balance method was applied by solving Equation (1) to estimate
∆Sgw in the Kaweah–Tule Subbasin, referred to as ∆SKT

gw , as well as the Butte Subbasin,
referred to as ∆SB

gw. For each subbasin, minor modifications to Equation (1) were required
in order to accurately reflect their condition. Neither region receives a significant amount
of snow, so we removed changes in the snow water equivalent (∆SSWE). Moreover, we did
not account for net groundwater flow (Qgw net) for either subbasin because it is thought to
be relatively small for regions within the Central Valley [14].

The Kaweah–Tule (KT) Subbasin is internally drained, having no natural outlet; hence,
we also removed the Qout component from Equation (1) resulting in the following equation:

∆SKT
gw = P − ET + Qin + R − ∆SSM − ∆SR. (2)
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We note that the Qin term encompasses water deliveries from the Friant-Kern Canal,
shown in gray in Figure 1 on the eastern margin of the Kaweah–Tule Subbasin. Though the
source of the water, Millerton Lake, is relatively far outside the boundary of the Kaweah–
Tule Subbasin, the Friant-Kern Canal traverses much of the eastern portion of the basin,
supplying significant volumes of water for agriculture occurring within the basin; therefore,
it was factored into the estimates of inflow.

In the case of the Butte Subbasin, we found that we had inadequate measurements
of surface water inflows and outflows to reliably quantify Q for every river entering and
exiting the study area. To overcome this data limitation, we included the changes in the
volume of water stored in Lake Oroville in the ∆SR component, instead of considering
inflows and outflows from the Feather River, the primary source of water feeding and
draining Lake Oroville. Though Lake Oroville falls slightly (<4 km) outside the study
region, the water stored in the reservoir is driven by a flow originating in the mountains
to the north and east of the region, capturing the inflow component, while releases from
the reservoir subsequently flow downstream and dictate the streamflow exiting the region,
capturing the outflow component. This gives an equation to estimate ∆Sgw within the
Butte Subbasin:

∆SB
gw = P − ET + Qs + R − ∆SSM − ∆SR. (3)

For each of the two subbasins, we evaluated ∆Sgw estimates produced by
Equations (2) and (3) in order to better understand the behavior of ∆Sgw for management-
relevant local areas with significant differences in hydrologic conditions, and the availability
of validation datasets for each study area. For both the Kaweah–Tule and Butte Subbasins,
the performance of remotely sensed estimates of ∆Sgw was evaluated through a compar-
ison to independent ∆Sgw estimates derived from water level measurements made in
groundwater wells [21] and outputs of the C2VSim groundwater model [14].

3.2. Data Used in Water Balance

The sources of data used in this study are shown in Table 1, and can be grouped into
the following categories: (1) remote sensing data and models used in the water balance;
(2) ground-based measurements including those made in groundwater wells as well as
rain, stream, and reservoir staff gauges; (3) land surface models (LSMs); and (4) reanalysis
datasets. Each of these categories is denoted in the “Data Type” column shown in Table 1.
All of the data sources shown in Table 1 used to estimate the terms in Equations (2) and (3)
are publicly available. The following sections provide further details on the sources used to
estimate each of the variables used in the analysis.

Table 1. Data used in the water balance models developed for this study. Acronyms in the Data Type
column refer to: Ground-based Measurements (GBM), Remote Sensing (RS), Reanalysis data (RE),
and Land Surface Models (LSM). The optimal data selected for the Preferred Remote Sensing (PRS)
scheme, which is described in Section 3.4, are denoted with a *. For more information about each
source of data, including acronyms, retrieval methods, forcing data, model outputs, resolution, and
availability, see the references in the last column, and the full table in Ahamed et al. (2021).

Precipitation (P)

Source Data Type Spatial Resolution Availability Reference

PRISM AN81 GBM 800 m or 4 km 1895–Present [22]
Daymet v4 GBM 1 km 1980–Present [23]
GPM v6 * RS 10 km 2001–Present [24]
CHIRPS RS and GBM 5 km 1981–Present [25]

PERSIANN-CDR RS and GM 25 km 1983–2021 [26]
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Table 1. Cont.

Actual Evapotranspiration (AET)

Source Data Type Spatial Resolution Availability Reference

MODIS (MOD16) * RS 1 km 2001–Present [27]
SSEBop (MODIS) * RS 1 km 2002–2020 [28]

Terraclimate LSM 4 km 1958–Present [1]
FLDAS v1 LSM 10 km 1980–Present [29]

GLDAS v2.1 LSM 25 km 1980–Present [30]

Potential Evapotranspiration (PET)

Source Data Type Spatial Resolution Availability Reference

MODIS (MOD16) * RS 1 km 2001–Present [27]

Runoff (R)

Source Data Type Spatial Resolution Availability Reference

Terraclimate * LSM 4 km 1958–2021 [31]
ECMWF ERA5 * RE 10 km 1981–Present [32]

GLDAS v2.1 * LSM 25 km 1980–Present [30]
FLDAS v1 * LSM 10 km 1980–Present [29]

Soil Moisture (SM)

Source Data Type
Spatial

Resolution/Number of
Layers/Maximum Depth

Availability Reference

SMAP * RS 25 km/-/15–30 cm 2015–Present [33]
SMOS * RS 25 km/-/21 cm 2010–2019 [34]

GLDAS v2.1 LSM 25 km/4/2 m 1980–Present [30]
Terraclimate * LSM 4 km/1/6 m 1958–Present [31]

Reservoir Storage (SR)

Source Data Type Temporal Resolution Availability Reference

California Data Exchange Center
(CDEC) Monthly Reservoir Storage * GBM Monthly Varies [35]

Landcover and Crop Cover

Source Data Type Temporal Resolution Availability Reference

USGS National Landcover Database
(NLCD) * RS Varies; typically once per 3

years 1992–Present [36]

USDA Cropland Data Layer (CDL) * RS Annual 2008–Present [37]

Discharge (Q)

Source Data Type Spatial/Temporal
Resolution Availability Reference

USGS Stream Gauges * GBM Varies, typically daily or
15-min Varies [38]

3.2.1. Precipitation (P)

At local scales, both the footprint of remotely sensed measurements and the number
and spatial distribution of available rain gauges in the region will have an important impact
on the quality of satellite-based and gauge-based precipitation estimates, respectively. Here,
we included precipitation datasets based on remote sensing data as well as products based
on the interpolation of ground-based rain gauge measurements. Ground-based products
included the Daymet meteorological model [23] as well as the Precipitation Regression on
Independent Slopes Model (PRISM) [22]. Remotely sensed precipitation estimates included
the Global Precipitation Measurement Mission (GPM) [24]. Precipitation products that
combine estimates from ground-based and remote sensing measurements included: (1) the
Precipitation Estimation from Remotely Sensed Information using Artificial Neural Net-
works (PERSIANN) [26] model, and (2) the Climate Hazards Group InfraRed Precipitation
with Station Data (CHIRPS) [25].

The PRISM dataset utilizes an interpolation scheme which incorporates measurements
from five rain gauges falling within the Kaweah–Tule Subbasin and four additional stations
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within 10 km of the Kaweah Subbasin. There are no rain gauges located within the southern
half of the Kaweah Subbasin, which could lead to uncertainties in this region. PRISM also
contains measurements from six rain gauges falling within the Butte Subbasin and an
additional fifteen rain gauges that fall within 10 km of the Butte Subbasin. The GPM
satellite footprint is approximately 10 km, meaning that there are about 35 pixels which
intersect or fall entirely within the Kaweah–Tule Subbasin, while there are approximately
27 pixels which fall entirely within or intersect the Butte Subbasin. Fractional pixels which
intersect with each study area are scaled proportionally to remove the fraction which falls
outside the region. For instance, if one-third of a pixel falls within the study area, the rainfall
amount is scaled by 0.33 to reflect an accurate sumtotal and remove the precipitation which
falls within the pixel but outside of the region from the estimates of P.

3.2.2. Actual Evapotranspiration (AET)

Actual Evapotranspiration (AET) is defined as the amount of water transferred to
the atmosphere via evaporation from the land surface and shallow subsurface and via
transpiration from plants. Regardless of the measurement or modeling approach, AET can
be challenging to reliably estimate [39–42] due to the landscape as well as the assumptions
made throughout the modeling process. Ground-based measurements, remote sensing
data, and LSMs can all be used to estimate AET. One commonly used source of ground-
based data to evaluate AET at local scales is AmeriFlux [43]. However, the flux tower
data from AmeriFlux are sparsely available, both spatially and temporally—there are three
available AmeriFlux stations within the Kaweah–Tule Subbasin, and a single AmeriFlux
station within the Butte Subbasin, none of which contain long-period records of AET.
Meteorological data can also be used to estimate PET, which can then be used with crop
coefficients to estimate AET. The California Irrigation Management Information System
(CIMIS) [44] is a network of meteorological stations widely used in California for irrigation
management and scheduling. CIMIS contains five weather stations within Kaweah–Tule,
and two proximal weather stations which could be useful in an interpolation. The Butte
Subbasin contains only two CIMIS stations, and four additional proximal stations which
may be used in an interpolation scheme.

Remotely sensed and LSM-based estimates of AET have the advantage of broader spa-
tial coverage relative to in situ approaches. LSMs estimate AET by simulating the physics
of mass and energy transfer. LSMs are typically forced using weather and radiation data
and calibrated against ground-based measurements through data assimilation. However,
as many studies have noted (e.g., [5,6,45]), LSM-based estimates of AET tend to perform
poorly in irrigated and highly engineered areas, because irrigated conditions and water
deliveries are typically not incorporated into the models. Hence, they are included in this
study as a basis for comparison, but are not used to produce estimates of ∆Sgw through the
water balance approach.

For remotely sensed estimates of AET, we consider data from the Operational Sim-
plified Surface Energy Balance (SSEBop) model [28], as well as NASA’s MOD16 ET prod-
uct [27]. Both products have demonstrated favorable agreement when compared against
ground-based measurements of AET made in flux towers. Moreover, both products have
global coverage and may be applied to local areas due to relatively high (1 km) spatial reso-
lution. However, these products have also been shown to underestimate AET in irrigated
agricultural settings [46,47] like much of the study area. To overcome this, we applied
a third remote sensing-based approach to estimate AET, which estimates AET through
scaling the potential evapotranspiration (PET) by a dimensionless crop coefficient [48] for
irrigated regions, as determined from the National Landcover Database [36], and uses
MOD16 actual evapotranspiration data to estimate AET for non-irrigated regions. The
approach is described in greater specificity in Ahamed et al. (2021).
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3.2.3. Stream Discharge (Q) and Surface Runoff (R)

Stream discharge is comprised of the inflows and outflows to and from the study areas
resulting from natural rivers and streams as well as manmade aqueducts and canals. For
both the Kaweah–Tule Subbasin and the Butte Subbasin, discharge was quantified using
streamflow data from the USGS [38] (gauges shown in Figure 1). In total, we identified six
stream gauges measuring inflows to the Kaweah–Tule Subbasin, which drains internally
and hence does not have any outflows, as well as three stream gauges measuring inflows
and one stream gauge measuring the outflow from the Butte Subbasin.

Despite the availability of data, an estimation of the true inflow and outflow for the
Butte Subbasin is complicated, due to boundary conditions and ungauged canals and
diversions. Regarding the former, both the western and southern margins are proximal
to the Sacramento River and the Bear River, respectively, the source areas of which differ
geographically from the Butte Subbasin, which is not a closed watershed. Regarding the
latter, there are numerous diversions from the Sacramento River and the Feather River
which transport water in and out of the study region; these include the Sutter Bypass, Sutter
Extension Canal, Butte Slough, the West Borrow Ditch, and East Borrow Ditch, for which
there are limited available data to rigorously determine inflow and outflow. Rather than
explicitly account for the complex engineered network of diversions, canals, and aqueducts,
we elected instead to use estimates of changes in reservoir storage for Lake Oroville as the
estimate of inflow (Qin) and outflow (Qout) for the Feather River. This reservoir is 4 km
outside the study region, but acts as the primary regional driver in terms of regulating
flows to and from the Butte Subbasin.

The runoff accounts for a relatively small percentage of inflow relative to Q [3,49].
However, it can still contribute meaningful volumes of water to a given area during periods
of intense precipitation. Some smaller watersheds cross the subbasin boundaries and thus
contribute to diffuse surface water runoff to the basins, as opposed to streamflow at a
single point [14]. Thus, we include runoff entering the Kaweah–Tule and Butte subbasins
by including the small watersheds defined in C2VSIM adjacent to both subbasins, and the
collected runoff data available from Terraclimate, GLDAS, and FLDAS LSMs for these areas.
We also included runoff from the European Center for Medium-Range Weather Forecasting
(ECMWF) produced as part of the ECMWF Re Analysis version 5 (ERA5) [32], which uses
historical observations and numerical weather models to estimate runoff.

3.2.4. Reservoir Storage Changes (∆SR)

Reservoirs are an important component of changes in surface water storage [50],
especially within the Central Valley [6]. For the reservoirs falling within each study region,
monthly data describing volumetric changes in reservoir storage were accessed from
the California Data Exchange Center [35]. Within the Kaweah–Tule Subbasin, there are
two reservoirs: Lake Kaweah and Lake Success. For the Butte Subbasin, CDEC (2022)
contains data for five reservoirs, including Lake Oroville, Thermalito, Thermalito Afterbay,
Thermalito Forebay, and Thermalito Divers Pool. Lake Oroville constitutes >95% of the
total ∆SR for the Butte Subbasin, and falls 4 km outside of the Butte Subbasin, but was
included within our analysis to account for the inflows and outflows from the Feather
River, which were difficult to quantify using gauge-based data (as described in the previous
section). To determine the monthly fluctuations in water stored within the Kaweah–Tule
Subbasin and the Butte Subbasin, the total storage volume for all reservoirs falling within
each region was compiled and summed. To determine storage changes, which serve as
inputs to the water balance model, summed reservoir storage volumes were differenced
from the starting value at the beginning of the study period (1 October 2001). Because
water storage in rivers, lakes, aqueducts, and streams is a negligible portion of the overall
water budget, we did not include estimates of volumetric changes in these surface water
bodies in our calculations.
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3.2.5. Soil Moisture Water Storage Changes (∆SSM)

Soil moisture measurements acquired from in situ sensors are sparsely distributed—the
Soil Climate Analysis Network (SCAN) [51], which is a network of monitoring sites maintained
and operated by the Natural Resource Conservation Service, contains just 15 stations within
California; most have data for the last 8–12 years. We therefore considered alternative data
sources, namely remote sensing and LSM-based datasets, in order to estimate ∆SSM. In
terms of remote sensing, reliable estimates of soil moisture can be obtained using passive
microwave-based radiometers. These include the Soil Moisture Ocean Salinity (SMOS) [34]
satellite, which contains data for 2010 to 2019; as well as the Soil Moisture Active-Passive
satellite (SMAP) [33,34] which contains data for 2015 to present. Land Surface Models which
simulate ∆SSM dynamics are available for the entirety of our study period between 2002–2021;
these include GLDAS [30] and Terraclimate [31].

Within land surface models, soil moisture is a state variable, and is often partitioned
between depth intervals. The total soil moisture can be obtained by summing the soil
moisture across all depth intervals. Hence, for each LSM, we summed the soil moisture for
each time step across all of the layers in order to determine the total soil moisture. Depth
intervals are model specific: GLDAS contains four depth intervals: 0–10 cm, 10–40 cm,
40–100 cm, and 100–200 cm. In contrast, Terraclimate uses spatially distributed single-layer
depth intervals, as described in Wang-Erlandsson et al. (2016), which, within the study
regions, range from 1 m to 6 m in depth.

3.3. Estimate of Correlation among Water Balance Components and Uncertainty
within Components

We quantified the correlation and uncertainty associated with each water balance
component as described in Ahamed et al. (2021), first determining the correlation between
the datasets describing each water balance variable, then assessing the uncertainty in the
water balance components. To estimate correlation, we used the Pearson’s correlation
coefficient [52] between two variables x and y:

Pxy =
∑n

i=1 (x i−
−
x)(y i −

−
y)√

∑n
i=1 (x i−

−
x)

2
√

∑n
i=1 (y i −

−
y)

2
(4)

where xi and yi are the elements of each variable, and
−
x and

−
y are the mean of each variable.

To estimate uncertainty, we used Triple Collocation (e.g., [53–57]), which has been
shown to be a suitable uncertainty and error estimation approach for data describing hydro-
logic and meteorological measurements. Given at least three independent and collocated
datasets describing the same variable, Triple Collocation approximates the random error
variances (σ2) associated with each dataset. For three area-averaged collocated estimates of
the same variable, the random error variances (σ2) are given by:

σ2
x = 〈(x−ys)(x−zs)〉

σ2
y = 〈(y−xs)(y−zs)〉

σ2
z = 〈(z−xs)(z−ys)〉, (5)

where brackets indicate the temporal mean, x, y, and z are the three datasets, and the
subscript s denotes the scaling of the x, y, or z dataset to the mean and standard de-
viation of the reference dataset [54]. If more than three datasets are available for a
single variable, we considered each unique combination of triplets, estimated σ2 as in
Equation (5), and reported the mean σ for all triplets containing each specific dataset. For
example, if six datasets of the same variable were available, the number of unique triplets is
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6!/(6 − 3)! = 120. Of the 120 unique triplets, each individual dataset appears
(3/6) × 6!/(6 − 3)! = 60 times. For the 60 triplets where a dataset appears, the ran-
dom error variance (σ) is computed. We then report the mean and standard deviation of σ
(in mm) across the 60 triplets as the uncertainty associated with the dataset in question.

3.4. Estimation of Changes in Groundwater Storage

Estimates of ∆Sgw derived from solving Equations (2) and (3) can vary depending
on the data sources used. What is not well known is to what extent the use of various
input datasets can affect the ∆Sgw in terms of magnitude, seasonality, and trends during
extremes. Moreover, it is not well understood how remotely sensed estimates of ∆Sgw,
derived through the water balance, compare with estimates of ∆Sgw derived from other
methods (e.g., wells and groundwater flow models). Ahamed et al. (2021) compared
estimates of ∆Sgw derived from LSMs, ground-based measurements, and remote sensing
data with independent estimates from the Gravity Recovery and Climate Experiment, as
well as wells and C2VSim, finding that remote sensing-based estimates of ∆Sgw were able
to effectively capture seasonal fluctuations, net changes, and trends during droughts when
compared to validation datasets. Therefore, in this study, we focus on the application of
remote sensing data using the water balance approach to recover ∆Sgw at local scales for the
Kaweah–Tule and Butte Subbasins. This will allow us to better understand the applicability
limits of remotely sensed data and analyses, which typically are applied to larger spatial
scales than the Kaweah–Tule Subbasin and Butte Subbasin analyzed in this study. We
considered two scenarios to estimate ∆Sgw:

(1) Ensemble Remote Sensing scenario (ERS): Estimates of ∆Sgw were computed using an
ensemble approach which considers the inputs of remotely sensed data for all hydrologic
variables when available, those being three for P, three for AET, and three for SM.
Because remotely sensed estimates of SM are available only from 2010 onwards, we used
Terraclimate from 2002–2021, SMOS from 2010–2019, and SMAP from 2015–2021 for
the ERS scenario ensembles. Lastly, R was derived from the three LSMs and the ERA5
Reanalysis dataset, resulting in 108 distinct scenario combinations for both subbasins
(NP × NET × NSM × NR × NQ × NSR = 3 × 3 × 3 × 4 × 1 × 1 = 108).

(2) Preferred Remote Sensing (PRS) scenario: Estimates of ∆Sgw were computed using
a subset of all remote sensing datasets used in the ERS scenario. We selected the
remote sensing data for different hydrologic components that are generally found
to exhibit a lower error than others in the selected study regions. The basis of the
selection of the preferred datasets includes two factors: (1) a review of the literature for
each data source, in order to determine the range of applicable conditions, and (2) an
assessment of the seasonality, magnitudes, correlation, and uncertainty present for
the estimates of each variable shown in Table 1 and described in the previous section.
For precipitation, we used the state-of-the-art and newly released GPM Integrated
Multisatellite Retrievals (IMERG) as our remote sensing estimate because of higher
accuracies relative to legacy products [58]. For AET, we used the temporal mean of
SSEBop and MODkc estimates, because of the sensitivity to ET dynamics in irrigated
regions [28], which is a key feature of the study regions. The MOD16 product, in
contrast with SSEBop and MODkc, is known to underestimate ET in croplands [45]
For the case of SM, there is no available remotely sensed estimate that covers the
entire study period. To approximate a continuous timeseries of SM, which is required
in order to complete our analysis over the study period, we computed the temporal
average across all data sources in the ERS scenario (Terraclimate, SMOS, and SMAP),
and used that as our final SM estimate. Similarly, for the case of R, we used three
LSMs and ECMWF ERA5 reanalysis datasets to compute the temporal mean, which
was used in the water balance model. The dataset used in the PRS scenario is marked
with a * in Table 1.
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Both the trend and seasonality of ∆Sgw estimates generated from the remote sensing
and water balance approach were used to assess performance. To better identify these
dynamics, we differenced each scenario’s time series estimate of ∆Sgw from the mean of the
first five years. This procedure effectively decreases the variability among estimates while
still capturing the prevailing long-term trends. The 5-year mean differencing procedure is
identical to the 5-year calibration period used in Ahamed et al. (2021), where it was found to
provide a good balance between characterizing the seasonal cycle and recovering long-term
trends. In addition, the 5-year calibration period is commonly applied to time-varying
gravity data from GRACE in order to estimate the changes in stored groundwater for larger
regions. For the ERS scenario specifically, we computed the mean ∆Sgw across all ensembles,
and used the mean ∆Sgw as the final estimate.

3.5. Validation of Remotely Sensed ∆Sgw Estimates

In order to be deemed effective for quantifying ∆Sgw at any given spatial and temporal
scales, a method should ideally characterize the long-term changes, seasonal fluctuations,
and capture extreme events, whether those are droughts or wet periods. Validating the
estimates of ∆Sgw remains challenging, since well-based estimates can have spatial and
temporal data gaps, biases, and uncertainties (Section 2) [10,11], and estimates derived
from groundwater models are calibrated on available well data. Despite these factors,
wells and groundwater models are the most widely used sources of data currently used
to measure and monitor changes in groundwater storage. Thus, in order to determine the
fidelity of ∆Sgw estimates determined using the remote sensing water balance approach,
we compared each scenario to estimates of ∆Sgw derived independently, which we describe
here. The independent sources of data used to estimate ∆Sgw are based on: (1) groundwater
levels measured in wells over the period 2002–2019 [21], and (2) outputs of the C2VSim
groundwater flow model [14], which are available during the time period from 2002–2015.
In the next section, we describe each of the comparison sources in more detail, and detail
the metrics which are used for validation of the remote sensing approach.

3.5.1. Changes in Groundwater Storage Estimated from Wells

We used data obtained from wells describing groundwater levels for the time period
2002–2019 [21] in order to calculate ∆Sgw for the both the Kaweah–Tule and Butte Sub-
basins. Past studies (e.g., [6,21,59]) have also used groundwater level measurements to
estimate ∆Sgw for the entire Central Valley. The data describing groundwater levels were
obtained from the California Department of Water Resources (DWR) California Statewide
Groundwater Elevation Monitoring (CASGEM) database [16]. This database contains mea-
surements from wells used for a variety of purposes, including groundwater monitoring,
irrigation, and domestic uses. The Kaweah–Tule Subbasin contains measurements from
2003 wells, while the Butte Subbasin contains measurements from 587 wells. In order to
estimate ∆Sgw from water level data, we multiplied water level changes with the area of
each subbasin and a storage coefficient, which captures the spatial variability in an aquifer’s
volumetric yield for a unit decrease in water level. A three-step procedure (described in
detail in [6]) was employed in order to estimate ∆Sgw from the well data: In the first step,
well-based measurements of groundwater levels were spatially interpolated using inverse
distance weighting at grid cell size of 10 km. It should be noted that this interpolation
scheme permits the inclusion of wells which fall outside the subbasin boundaries in order
to estimate groundwater level changes near the borders. In the second step, the water level
data were used to estimate monthly water level changes for each grid cell. In the final step,
monthly water levels were multiplied by spatially distinct storage coefficients weighted
based on (1) the magnitude of water level fluctuation at a given grid cell and (2) the specific
storage and specific yield values from C2VSim and the Central Valley Hydrologic Model
(CVHM) [3]. The methodological details of steps 1–3 are given in Alam et al. (2021).
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3.5.2. Model-Based Estimates of Changes in Groundwater Storage

The Central Valley Groundwater-Surface Water Simulation Model (C2VSim) [14] is a
widely-used model created by California’s Department of Water Resources (DWR). C2VSim
simulates water fluxes through the land surface, root zone, and groundwater system on a
finite-element grid. A fine scale version of C2VSim (C2VSimFG), calibrated on observed
surface water flows, groundwater heads, groundwater head differences between well
pairs, and stream–groundwater flows for the period between September 1975 and October
2003 [60] has a spatial resolution of ~1.5 km, covering the 1975–2015 hydrologic years.
The model’s elements are grouped into 21 subregions, shown in Figure 1. We used the
outputs for subregions 18 and 5, referred to as the Kaweah–Tule and Butte Subbasins
(Section 3; Figure 1), to estimate model-based ∆Sgw in our study regions. Since it was
first calibrated in 2013 [14], many studies have used C2VSim to analyze surface and
groundwater dynamics within the Central Valley (e.g., [61–64]. Of all the subbasins within
the Central Valley, C2VSimFG suggests that the Kaweah–Tule Subbasin has experienced the
most groundwater loss (−0.75 km3/yr) since 1960, while Butte has experienced a minimal
loss (~0 km3/yr) of groundwater [65].

3.5.3. Evaluation of Remotely Sensed ∆Sgw Estimates

A comparison between various approaches to estimate ∆Sgw is essential to determine
the range of suitable estimation approaches, which in turn depends on the size of the
area, current and historic instrumentation, boundary conditions, and a host of region-
specific factors (e.g., rain vs. snow dominated, irrigated vs. natural vegetation, natural vs.
engineered surface water bodies). An important finding of Ahamed et al. (2021) was that in
order to produce reliable estimates of ∆Sgw through the remote sensing approach, there must
be accurate data describing the water balance components with the greatest contribution, in
terms of magnitude, to the overall water budget in an area. For example, accurate estimates
of the snow water equivalent were essential to resolve ∆Sgw for the entire Central Valley
Watershed (~150,000 km2), which includes the Sierra Nevada mountains, while accurate
estimates of ET were essential to resolve ∆Sgw for the Central Valley (~55,000 km2), a highly
irrigated agricultural region.

There are a number of criteria which could qualify a high-quality estimate of ∆Sgw. These
include the ability to recover: (1) seasonality, (2) long term changes, and (3) dynamics during
extreme events (e.g., multiyear droughts). A comparison of multiple approaches to estimate
∆Sgw for a given area can reveal the strengths and weaknesses of various measurement
approaches (e.g., wells, models, water balance, gravity, etc.) and enhance our understanding
of which are best suited to capture the dynamics of hydrologic systems, especially across
spatial scales and domains. Each single source of data describing ∆Sgw has inherent limitations,
but earlier studies have successfully compared ∆Sgw from multiple approaches in order to
understand ∆Sgw behavior in the Central Valley region [3–6,14,59,66–68]. Thus, in this study,
we included multiple ∆Sgw estimates from independent sources, and adopt the following
metrics to evaluate the performance of ∆Sgw estimates: (1) the net change in ∆Sgw for three
time windows (long term: 2002–2021; multi-year droughts: October 2006–September 2009
and October 2011–September 2015), (2) the rate of change in ∆Sgw (km3/year) during each
drought period (2006–2009 and 2011–2015), and (3) the seasonality ∆Sgw estimates derived
from each water balance scenario and the two sources of validation data.

4. Results and Discussion

The remote sensing water balance approach was used to estimate ∆Sgw for the Kaweah–
Tule and Butte Subbasins for the hydrologic years 2002–2021. First, we compare the magni-
tudes of water balance components for each of the subbasins and assess the correlations
and uncertainties among water balance variables. Next, we discuss the ability of the remote
sensing approach to produce high-quality estimates of ∆Sgw by comparing water balance
results with those derived wells and C2VSim. Lastly, we discuss the limitations associated
with the approach, and highlight future research opportunities and challenges.
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4.1. Correlations and Uncertainty for Water Balance Components

The datasets shown in Table 1 were collected and analyzed for the Kaweah–Tule and
Butte subbasins. For each variable, the magnitudes, seasonality, uncertainty, and time
series for each of the data sources is shown for Kaweah–Tule in Figures 2 and 3 and for
Butte in Figures 4 and 5. In general, we observe that the Kaweah–Tule Subbasin has less
annual precipitation, runoff, and changes in reservoir storage relative to the Butte Subbasin,
consistent with the regional hydroclimatic differences described in Section 3. The following
sections highlight the key differences, including correlations and uncertainties, among
datasets describing each water balance component in the study areas.

4.1.1. Precipitation (P)

Generally, the estimates of precipitation within the Kaweah–Tule Subbasin
(Figures 2A and 3A) and Butte Subbasin (Figures 4A and 5A) agree between remotely
sensed and ground-based datasets in terms of seasonality and magnitudes. This is consis-
tent with the findings of Ahamed et al. (2021), which suggested strong overall agreement
between ground-based and remotely sensed precipitation datasets for the Central Valley
and Central Valley Watershed. However, there are region-specific differences between pre-
cipitation datasets. In the case of the Kaweah–Tule Subbasin, we find that the gauge-based
estimates of P derived from PRISM and Daymet are marginally higher (~100 mm/year) than
the remotely sensed estimates derived from GPM, PERSIANN, and CHIRPS (Figure 2A).
This may be due to the lack of rain gauge coverage in the southern half of the Kaweah–Tule
Subbasin, described in Section 4.2.1, which could lead to higher uncertainties associated
with gauge-based products in this region. In contrast, we find that for the Butte Subbasin,
the remotely sensed estimates of P derived from GPM, PERSIANN, and CHIRPS tend to be
higher than the ground-based estimates of P derived from PRISM and Daymet (Figure 4A).
We attribute this difference to two factors: (1) relatively sparse rain gauge coverage within
both study regions, which may not capture localized storms, and (2) uncertainties associ-
ated with remotely sensed precipitation data tend to decrease over larger spatial domains,
which can persist at smaller scales [69] such as the Butte Subbasin. For both the Kaweah–
Tule and Butte Subbasins, PERSIANN had the highest Triple Collocation errors relative
to other sources of data, shown in the fourth column of Figures 2A and 4A respectively.
PERSIANN also has the highest uncertainties across the Central Valley and Central Valley
Watershed, which encompass both the Kaweah–Tule and Butte Subbasins [6], suggesting
that other products may be better suited to capture regional precipitation patterns.

4.1.2. Evapotranspiration (ET)

Among input water balance components, evapotranspiration contains the highest
variance between datasets. Ahamed et al. (2021) also highlighted ET as the most variable
and uncertain water balance component for the Central Valley and Central Valley Watershed
areas. As noted in Section 4.2.2, LSM-based estimates of ET struggle to accurately simulate
the highly irrigated and engineered conditions specific to the Central Valley, including the
Kaweah–Tule and Butte Subbasins. Figures 2 and 4 show that LSM-based estimates of ET,
which include GLDAS, FLDAS, and Terraclimate, suggest a maximum ET in April and
May, which is inconsistent with the timing of irrigation in the region. This problem is not
exclusive to LSM-based data; the MOD16 ET product [27], known to underestimate ET in
croplands [45], also suggests peak ET during the spring season, both for the Kaweah–Tule
Subbasin (Figure 2B) and Butte Subbasin (Figure 4B). In contrast, remotely sensed estimates
of ET, which are constructed to be more sensitive to irrigation, the SSEBop [28] and MODkc
approaches register a more realistic ET peak for irrigated conditions occurring during the
summer months of June–August for both Kaweah–Tule (Figure 2B) and Butte (Figure 4B).
The correlation matrix in the 4th column of Figures 2A and 4A also show that there is a high
correlation between ET datasets which are sensitive to irrigation (SSEBop and MODkc), and
a high correlation between ET datasets which are insensitive (GLDAS, FLDAS, Terraclimate,
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MOD16). Triple Collocation suggests a mean error of approximately 20–40 mm across all
datasets for both the Butte Subbasin and Kaweah–Tule Subbasin.
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Figure 2. Comparison of datasets describing each variable used in the Kaweah–Tule Subbasin model.
The rows show (A) Precipitation, (B) Evapotranspiration, (C) Changes in Soil Moisture and Reservoir
Storage, and (D) Discharge and Runoff. The columns show (1) annual means, standard deviations,
and outliers, (2) monthly means, with error bars corresponding to standard deviations, (3) Pearson’s
correlation matrix showing the correlations between datasets, (4) Triple Collocation errors (mm),
including standard deviations and outliers.
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Figure 3. Monthly time series (mm) from 2002–2021 are shown for each of the datasets used in the
Kaweah–Tule Subbasin water balance model. Each row shows a different variable: (A) Precipitation,
(B) Evapotranspiration, (C) Changes in Soil Moisture and Reservoir Storage, and (D) Discharge
and Runoff.
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Figure 4. Comparison of datasets describing each variable used in the Butte Subbasin model. The
rows show (A) Precipitation, (B) Evapotranspiration, (C) Changes in Soil Moisture and Reservoir
Storage, and (D) Discharge and Runoff. The columns show (1) annual means, standard deviations,
and outliers, (2) monthly means, with error bars corresponding to standard deviations, (3) Pearson’s
correlation matrix showing the correlations between datasets, (4) Triple Collocation errors (mm),
including standard deviations (whiskers) and outliers (circles).
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Figure 5. Monthly time series (mm) from 2002–2021 are shown for each of the datasets used in
the Butte Subbasin water balance model. Each row shows a different variable: (A) Precipitation,
(B) Evapotranspiration, (C) Changes in Soil Moisture and Reservoir Storage, and (D) Discharge
and Runoff.

Our findings support the emerging critical need for high-quality datasets describing ET
over longer timescales, which do not require landcover maps or crop coefficients to produce
accurate estimates across a range of conditions. One such project that has the potential
to meet this need, especially for irrigated regions, is Open ET [70], which simplifies the
dissemination of high-resolution remotely sensed ET datasets. The numerous ET models
within OpenET (i.e., [71–77]) improve the spatial resolution and ability to capture irrigation
relative to LSMs and legacy ET products.
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4.1.3. Soil Moisture Changes (∆SSM)

Remotely sensed estimates of soil moisture [33,34] are a relatively recent advancement
in remote sensing science, with ∆SSM estimates from the Soil Moisture Ocean Salinity
(SMOS) satellite being available from 2009–2019 and estimates from the Soil Moisture
Active Passive (SMAP) satellite available from 2015 until present. Along with the estimates
of ∆SSM derived from LSMs, satellite-based estimates are shown for the Kaweah–Tule
Subbasin in Figures 2C and 3C and for the Butte Subbasin in Figures 4C and 5C.

Passive microwave-based remotely sensed data are directly sensitive to moisture con-
tent, allowing for high quality estimates of soil moisture, albeit with a coarse resolution
of approximately 25 km. In contrast, LSMs represent SM as a state variable, allowing for
surface and subsurface mass exchanges, but typically contain a highly simplified version
of the subsurface [78,79]. Moreover, the coarse resolution of most LSMs makes it chal-
lenging to capture surface–subsurface interactions [80] that are driven by topographic
and geologic features at much finer scales. The estimates of soil moisture derived from
remotely sensed data and LSMs are consistent in terms of seasonality and differ in terms of
magnitude—LSMs tend to have a greater ∆SSM magnitude than remotely sensed datasets.
This could be due to (1) a relatively shallow penetration depth of satellite-based estimates
and/or (2) simplified LSM subsurface interactions—some of the soil moisture fluctua-
tion may instead be attributable to groundwater, as opposed to soil moisture. One LSM
with lower magnitude fluctuations in ∆SSM is Terraclimate, which has a high correlation
(0.75–0.9) with both passive microwave remote sensing data sources, for both the Butte
and Kaweah–Tule subbasins (shown in Figures 2C and 4C, respectively). In contrast with
other LSMs, Terraclimate is a relatively high-resolution model (4 km) and contains a spa-
tially varying depth component [81], which may be able to capture some of the local scale
subsurface interactions and therefore improve upon other LSM-based estimates of ∆SSM.

Agreement between Terraclimate with SMOS and SMAP, suggested by a strong corre-
lation, consistent seasonality, and comparable magnitudes, facilitated the temporal extrap-
olation performed in the PRS scenario, where Terraclimate LSM estimates of ∆SSM were
for the time period which predates the availability of passive microwave remote sensing
products (2002 to 2010). As shown in Figures 2–4, estimates of ∆SSM have a higher variance
than estimates of P, but a lower variance than estimates of ET—this may simply reflect the
maturity of remote sensing science and algorithm development for each of these hydrologic
variables. P is the most studied due to its importance in weather forecasting; ∆SSM is the
next most studied, due to its importance in climate modeling; and ET was the least studied
until recent times, when a growing focus on water management has led to an increase in
ET research and product development (e.g., [70]).

4.1.4. Runoff (R), Discharge (Qin and Qout), and Reservoir Storage (∆SR)

A comparison of Figures 2D and 4D shows that the Butte Subbasin receives consider-
ably more runoff than the Kaweah Subbasin, which is consistent with regional hydroclimatic
conditions. For both the Butte Subbasin and the Kaweah–Tule Subbasin, estimates of runoff
agree in terms of magnitude and seasonality, with the majority of runoff occurring during
the spring period from approximately February to May. Runoff is the smallest component
in the water balance for both the subbasins, and has an overall low triple collocation error
of approximately 10–20 mm across datasets.

Estimates of inflow and outflow can be challenging to compile for highly engineered
regions where structures divert and channel water. These systems often do not have reliable
flow records (described in Section 3.2.3). However, these data are important components of
the overall water balance, and reasonable estimates are needed in order to reliably estimate
the inflow and outflow traveling to and from a region. For the case of the Kaweah–Tule
Subbasin, we included the Friant-Kern Canal as the inflow, because much of this water
travels from Millerton Lake to the Kaweah–Tule Subbasin. For the Butte Subbasin, we could
not find adequate gauges in order to accurately estimate the inflows and outflows specific
to the Feather River. Noting these limitations, and recognizing the highly engineered
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nature of the system, we elected to incorporate changes in reservoir storage (∆SR) for Lake
Oroville as a proxy for the inflow and outflow of the Feather River. Though Lake Oroville
falls slightly outside of the study area, the reservoir is the second largest in California with
a storage capacity of 4.3 km3, and therefore constitutes a critical component of regional
surface water dynamics in and around the Butte Subbasin.

4.2. Comparison and Evaluation between Estimates of ∆Sgw Derived from Remote Sensing, Wells,
and Groundwater Model

We compared monthly ∆Sgw estimates during 2002–2021 for the remote sensing sce-
narios (described in Section 3.4) against the independent ∆Sgw estimates derived for well
data (Section 3.5.1) and C2VSim (Section 3.5.2), available from 2002–2019 and 2002–2015,
respectively. The ∆Sgw results are shown in Figure 6; the ERS scenario ensembles are shown
in light red, with the ensemble mean as a red dashed line, the PRS scenario is shown as
a blue line, C2VSim estimates are shown as a green line, and well-based estimates are
shown as an orange line. Figure 6A shows the results for the Kaweah–Tule Subbasin, and
Figure 6B shows the results for the Butte Subbasin. Trendlines for each estimate of ∆Sgw,
along with annual rates of depletion, are shown with the same color scheme during the
2006–2009 and 2011–2015 droughts.
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Figure 6. Comparison of changes in groundwater storage derived from remote sensing and vali-
dation data. (A) Shows results for the Kaweah–Tule Subbasin and (B) shows results for the Butte
Subbasin, calculated from: (1) ERS Scenario (light red line) and ERS ensemble mean (red dashed
line), (2) Preferred Remote Sensing (PRS) Estimate (blue line), (3) C2Vsim (green line), and (4) wells
(orange line).
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4.2.1. Evaluation of Remote Sensing Results for Kaweah–Tule Subbasin

Remote sensing results show a strong agreement in terms of seasonality, net change,
and drought dynamics when compared to the validation estimates of ∆Sgw determined
from wells and the C2VSim groundwater model (Figure 6A; Table 2) within the Kaweah–
Tule Subbasin. The PRS-based estimate has high Pearson’s correlations (Section 3.3) of 0.89
when compared to the well-based estimates and 0.93 when compared to the C2VSim-based
estimates of ∆Sgw, while the ERS-based ensemble mean has a Pearson’s correlation of 0.91
when compared to the well-based estimates and 0.93 when compared to C2VSim-based
estimates. The strong agreement between remotely sensed estimates of ∆Sgw with wells
and C2VSim, defined in terms of consistent seasonality, correlation, and comparable net
change, is similar to the findings for the remote sensing approach applied to the entire
Central Valley, described in Ahamed et al. (2021). These findings suggest that the remote
sensing approach is able to recover ∆Sgw very similar to existing methods, but with the
benefits of lower latencies and fewer on-the-ground data requirements: estimates of ∆Sgw
shown in Figure 6 are available until the hydrologic year 2022, whereas well-based and
C2VSim-based estimates are years out of date.

Table 2. Summary of net ∆Sgw (km3) changes derived from each dataset within the Kaweah–Tule
and Butte Subbasins for the comparison period (second column), 2006–2009 drought (third column),
and the 2011–2015 drought (right column).

Kaweah–Tule

Estimate Net ∆Sgw (km3) 2006–2009 Net ∆Sgw (km3) 2011–2015 Net ∆Sgw (km3)

ERS (2002–2021) −8.4 (−0.44/yr) −2.7 (−0.9/yr) −5.6 (−1.4/yr)
PRS (2002–2021) −7.3 (−0.38/yr) −2.7 (−0.9/yr) −5.6 (−1.4/yr)

C2VSIM (2002–2015) −8.1 (−0.62/yr) −3.6 (−1.2/yr) −5.2 (−1.3/yr)
Wells (2002–2019) −6.5 (−0.39/yr) −2.0 (−0.7/yr) −6.0 (−1.5/yr)

Butte

Estimate Net ∆Sgw (km3) 2006–2009 Net ∆Sgw (km3) 2011–2015 Net ∆Sgw (km3)

ERS (2002–2021) −1.3 (−0.07/yr) −2.1 (−0.7/yr) −0.8 (−0.2/yr)
PRS (2002–2021) −6.6 (−0.35/yr) −2.7 (−0.9/yr) −2.4 (−0.6/yr)

C2VSIM (2002–2015) −0.6 (−0.04/yr) −0.6 (−0.2/yr) −0.8 (−0.2/yr)
Wells (2002–2019) −0.7 (−0.06/yr) −0.6 (−0.2/yr) 0 (0/yr)

The Kaweah–Tule Subbasin receives far less surface water from rivers, reservoirs,
canals, and aqueducts; these sources collectively constitute a far lower magnitude volu-
metric surface water flux (<0.5 km3/year; shown in Figures 4 and 5) and a far smaller
proportion of the overall water balance. Similarly, inflows, outflows, and changes in the
reservoir storage represent a relatively small magnitude compared to other water balance
components at the larger scale of the Central Valley (55,000 km2).

4.2.2. Evaluation of Remote Sensing Results for Butte Subbasin

Within the Butte Subbasin study area, there are significant variations between remotely
sensed and validation datasets describing ∆Sgw, both in terms of seasonal fluctuations and
longer-term trends (Figure 6B; Table 2). Remote sensing estimates of ∆Sgw, shown in
Figure 6B as red (ERS) and blue (PRS) lines, suggest larger annual fluctuations, and greater
long-term declines in groundwater than estimates based on wells and C2VSim, shown in
green and orange, respectively, which show almost no seasonal variation or longer-term
trend. Lack of monitoring wells within the western portion of the Butte Subbasin may
result in an inability to capture the true magnitude of seasonal fluctuations. Unrealistically
high magnitude fluctuations produced by the remotely sensed ∆Sgw estimates are likely
due to the inclusion of changes in reservoir storage within the water balance model. As
discussed in Section 4.1, Lake Oroville has a profound impact on surface water storage, as
well as the inflows and outflows to and from the Butte Subbasin. The impact of storage
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changes at Lake Oroville on the overall water balance is especially visible during 2016–2017
in the remote sensing estimates of ∆Sgw for the Butte Subbasin, shown in Figure 6B. The
correlation between remotely sensed and validation data is considerably lower for the Butte
Subbasin: the PRS-based estimate has modest Pearson’s correlations (Section 3.3) of 0.65
with a well-based estimate and 0.59 with a C2VSim-based estimates of ∆Sgw. The ERS-based
ensemble mean has a slightly lower Pearson’s correlation of 0.56 with a well-based estimate
and 0.53 with the C2VSim-based estimates, but matches more closely in terms of net ∆Sgw
over the length of the study period (Table 2).

The difference in the seasonal magnitude of ∆Sgw estimates derived from the remote
sensing estimates and validation estimates of ∆Sgw highlights an important limitation of the
water balance method: accurate estimates of inflow and outflow are essential in order to
close the water balance. The inability of the remote sensing method to recover reasonable
seasonal changes comparable to validation datasets within the Butte Subbasin demonstrates
the importance of boundary conditions on estimates of ∆Sgw. Ideally, the remote sensing
water balance may be applied with confidence to a watershed with a single outlet, for
which there are continuous, long-term, and high-quality estimates of discharge available.
Confidence in the water balance method decreases with an increasing number of engineered
or natural sources of inflow or outflow for which measurements are not available.

4.2.3. Evaluation of Net Changes and Trends during Droughts for Study Areas

To assess the quality of the remote sensing approach, ∆Sgw estimates for each of the
remote sensing and validation approaches were evaluated over three timescales: (1) the
entire period of availability for each dataset, and each of the drought periods occurring
(2) between 2006–2009 and (3) from 2011–2015. Table 2 shows the ∆Sgw results during
each time interval for both the Butte and Kaweah Subbasins. Every approach suggests
that the Kaweah–Tule Subbasin experienced greater groundwater loss compared to the
Butte Subbasin during the entire period between 2002–2021, as well as during each of the
droughts occurring from 2006–2009 and 2011–2015.

The Kaweah–Tule Subbasin experienced rapid declines in groundwater storage during
both the 2006–2009 drought and 2011–2015, shown in Figure 6 and Table 2. All remotely
sensed and validation estimates of ∆Sgw suggest that annual rates of groundwater decline
during the second drought were 50–100% greater than the rates of groundwater decline
during the first drought. Our analysis suggests that ∆Sgw in Kaweah–Tule accounts for a
significant proportion of the total decrease in groundwater storage for the Central Valley
over the same time period. This finding is consistent with C2VSim results [14] and other
studies [6,65]. The finding of more severe groundwater depletion for the 2011–2015 drought
in comparison to the 2006–2009 drought is also consistent with many previous studies
(e.g., [4–6]) which quantified drought dynamics for the Central Valley region, including
both the Butte and Kaweah–Tule subbasins, for the same time periods.

In contrast to the drought dynamics in the Kaweah–Tule Subbasin, data describing
∆Sgw for the Butte Subbasin suggest that the 2006–2009 drought caused more groundwater
loss than the 2011–2015 drought, shown in Table 2. This is corroborated by the results
from the ERS scenario, PRS scenario, and well data, while C2VSim suggests comparable
amounts of groundwater loss during each drought, with the 2011–2015 drought causing
slightly more groundwater storage loss. The widely used Palmer-Drought-Severity-Index
(PDSI) [82], suggests that the Butte Subbasin was in a drought for 67% of the 2006–2009
period, while the region was in a drought for only 55% of the 2011–2015 period, indicating
that the 2006–2009 drought may have been slightly more severe than the 2011–2015 period
within the Butte region. It is possible that the limited number of wells, especially in the
western portion, reduces the quality of well-based and model-based estimates of ∆Sgw, since
dense coverage is needed to compute robust well-based estimates of ∆Sgw and model-based
estimates are calibrated on the measurements made in wells.

We observed differences in ∆Sgw between the two study domains, both in terms of
trend and net change. Such differences can be explained by the difference in seasonal water
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demand coupled with the magnitude and timing of the available water supply. For instance,
water demand is significantly high in late spring and summer in both regions, but due to
greater agricultural production in the south and lower precipitation, more groundwater
is extracted in Kaweah compared to Butte [14,21]. Human intervention in these regions
impacts groundwater use and supply in important ways—reservoirs store winter flows
and release them to the Central Valley during late spring and summer when crop water
demand is at its highest. The amount of water availability is thus highly dependent on the
water stored in the reservoirs, and reservoir releases have a large impact on groundwater
recharge through (1) the provision of irrigation water, some of which is not consumed by
crops and (2) recharge occurring from losing stream channels and leaking aqueducts, which
also recharges groundwater.

4.3. Limitations and Outlook for Remote Sensing Water Balance

This study showed that local-scale remote sensing water balance estimates of ∆Sgw
can be comparable in trend, magnitude, and seasonality to independent estimates of
∆Sgw obtained through well-based measurements, and through groundwater flow models.
Despite advantages of the remote sensing approach, including rapid computation, low
latency relative to current methods, and a growing number of datasets available to assess
uncertainty in the estimates, there are four key limitations associated with the approach
that must be considered when evaluating the potential application to alternative areas.

Firstly, the method produces area-integrated estimates, while well-based estimates
and groundwater models can produce a higher spatial resolution and gridded estimates of
∆Sgw, as long as dense well coverage is available. Secondly, as shown in this study and as
discussed in Sections 4.2.1 and 4.2.2, boundary conditions describing surface water inflow
and outflow to a region can be a critical component of the overall water balance. In regions
without such data, the water balance technique may be subject to large errors, or may
prove impossible altogether. This data requirement may be alleviated by the Surface Water
Ocean Topography (SWOT) satellite mission [83]. Launched in December 2022, SWOT will
measure terrestrial surface elevations via altimetry, thereby providing the supplementary
data needed to accurately estimate Q and SR, critical components required to accurately
estimating ∆Sgw through the water balance approach.

Thirdly, errors associated with input datasets can propagate through to estimates
of changes in groundwater storage. For example, some remotely sensed estimates of ET
struggle to capture irrigated dynamics, which skew ∆Sgw estimates computed using these
data sources. This problem can be alleviated through ensemble modeling, and through
the selection of the most accurate available data to adequately reflect the most critical
water balance components specific to a given region (e.g., irrigation, snow, surface water
infrastructure). The satellite footprint and resolution of various remotely sensed datasets is
also a limitation–errors and uncertainties in remotely sensed data can be averaged out over
larger regions, which may explain the strong remote sensing results at the Central Valley
Scale described in Ahamed et al. (2021), but uncertainties and errors tend to persist at
smaller scales (e.g., [69]), which may explain the poor results for the Butte Subbasin. Lastly,
the application of the remote sensing water balance approach is not advised for regions
where net groundwater inflow/outflow is a relatively large component of the overall water
balance compared to other components. Regions with significant groundwater fluxes likely
require advanced modeling approaches as well as additional measurements in order to
accurately quantify groundwater flux and estimate ∆Sgw.
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5. Conclusions

This study assessed the potential of a remote sensing water balance approach to
accurately recover groundwater storage changes, ∆Sgw, at local scales (~2700 km2 to ~3500
km2) highly relevant for the management of groundwater resources. The method was
applied to the Butte and Kaweah–Tule Subbasins, which both fall within California’s
Central Valley, but have substantially different hydrologic conditions in terms of surface
water dynamics, available reservoir storage, and groundwater loss over the last 20 years.
The remote sensing method was compared with estimates of ∆Sgw independently derived
from groundwater wells and a widely-used groundwater flow model. The results showed
a strong agreement between remotely sensed ∆Sgw estimates in the Kaweah–Tule region,
but a limited agreement and higher seasonal variability within the Butte Subbasin. Part of
the explanation for unrealistically high seasonal variability is the requirement of accurate
inflow and outflow estimates for a study region, a data gap which SWOT may help to
address. Future work will apply the analysis to basins with natural conditions, which will
allow for an assessment of the influence of water management practices such as irrigation
and water storage and distribution in reservoirs and canals. While more work is needed to
understand the limitations and potential application of remotely sensed datasets to recover
the changes in groundwater storage at local scales, the results suggest that the remote
sensing approach can provide accurate estimates in some regions with the added benefits
of low latency, rapid computation, and scale independence. These positive attributes can
improve our understanding of aquifer dynamics, and facilitate up-to-date monitoring and
adaptive management of groundwater resources.
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