
Citation: Rakhmanov, A.; Wiseman,

Y. Compression of GNSS Data with

the Aim of Speeding up

Communication to Autonomous

Vehicles. Remote Sens. 2023, 15, 2165.

https://doi.org/10.3390/rs15082165

Academic Editors: Yuwei Chen,

Changhui Jiang, Qian Meng, Bing Xu,

Wang Gao, Panlong Wu,

Lianwu Guan and Zeyu Li

Received: 6 March 2023

Revised: 1 April 2023

Accepted: 13 April 2023

Published: 19 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

Compression of GNSS Data with the Aim of Speeding up
Communication to Autonomous Vehicles
Amnon Rakhmanov 1 and Yair Wiseman 2,*

1 Computer Science Department, Holon Institute of Technology, Holon 5810201, Israel
2 Computer Science Department, Bar-Ilan University, Ramat-Gan 5290002, Israel
* Correspondence: wiseman@cs.biu.ac.il

Abstract: Autonomous vehicles contain many sensors, enabling them to drive by themselves. Au-
tonomous vehicles need to communicate with other vehicles (V2V) wirelessly and with infrastructures
(V2I) like satellites with diverse connections as well, to implement safety, reliability, and efficiency.
Information transfer from remote communication appliances is a critical task and should be accom-
plished quickly, in real time and with maximum reliability. A message that arrives late, arrives
with errors, or does not arrive at all can create an unsafe situation. This study aims at employing
data compression to efficiently transmit GNSS information to an autonomous vehicle or other in-
frastructure such as a satellite with maximum accuracy and efficiency. We developed a method for
compressing NMEA data. Furthermore, our results were better than other ones in current studies,
while supporting error tolerance and data omission.

Keywords: GNSS; data compression; autonomous vehicles

1. Introduction

Autonomous vehicles [1,2] are able to control a full car system in collaboration with
human interaction. Sometimes, the vehicle’s control and computer system can also take
full control when the driver cannot handle them, as in falling asleep behind the steering
wheel, experiencing an emergency medical situation, or undergoing a vehicle emergency
due to a flat tire or a mechanical problem. One of the challenges today is gaining public
trust in the concept of autonomous driving [3].

Today, technology giants and automakers have been working toward full automation
with the goal of selling cars that can drive safely and efficiently with an emphasis on
reducing GNSS errors [4]. In our former paper, we explained the correlation between
compression and errors [5].

Ideally, essential information passes in a fraction of a second and without delays and
losses. Unfortunately, navigation software is often slow in delivering initial results, or,
when there are no satellite signals, the navigation software works well because it receives
wrong data. The compression and decompression methods presented in this investigation
endeavor to improve this situation.

We review in this paper some relevant aspects of the suggested system—autonomous
vehicles, Data Compression, GNSS devices and the NMEA Standard [6]. We deal with
several compression methods, some of them known; however, we made an effort to produce
a new (hybrid) method that is based on known methods and algorithms.

During our research, we noticed that adjacent frames of GNSS data are frequently
very similar; accordingly, we looked for a compression method that efficiently works with
differences to prepare the data for an entropy encoder like Huffman coding. We analyzed
several compression methods, eliminating ones like JPEG2000 [7] because, not making use
of the comparison of frames, they were unsuitable for our method as a preprocessing step.

The aim of this work is not to correct errors but to suggest a time-saving method
to transmit information with no less reliability than raw information transmission. If

Remote Sens. 2023, 15, 2165. https://doi.org/10.3390/rs15082165 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15082165
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-4221-1549
https://doi.org/10.3390/rs15082165
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15082165?type=check_update&version=2

Remote Sens. 2023, 15, 2165 2 of 22

the original information is invalid, our algorithm will filter out the errors before the
compression process begins, as can be seen in Figure A3 in Appendix A.

Many kinds of data like video, audio, images, and many other information files are
usually compressed. Therefore, it is very important to have good and fast compression and
decompression methods for many applications in autonomous vehicles.

The method presented below is very similar to the well-known H.264. It is a relatively
simple standard that plays an important role in many consumer electronics applications,
including VCDs, DVDs, video phones, portable media players, video conferencing, video
recording, e-learning, etc. It is mainly employed when there is a need to find solutions of
relatively high quality, low transmission rate and good compression ratios [8,9]. H.264 takes
advantage of the frequent similarity of adjacent frames. GNSS systems usually produce
information that also has this attribute of similarity between adjacent blocks; thus, we have
adapted the concept of H.264.

During this research, an algorithm that is a cornerstone and foundation in computer
science, Huffman coding, was used as part of the compression process. Using this algorithm,
we have achieved particularly high durability and survivability compared to other existing
methods. In this study we investigate and show different methods for compressing GNSS
data in vehicles to a good level of about 12% with the critical attribute of error correction.

The rest of this paper is organized as follows: Section 2 gives a background of au-
tonomous vehicles, data compression, GNSS, and the NMEA standard. Section 3 reviews
literature and related works on GNSS data compression. Section 4 explains how and why
we employ H.264-like compression. Section 6 describes the testbed for our experiments.
Section 7 presents the results while Section 8 concludes and discusses the implications of
this research and future investigations.

2. Background
2.1. Autonomous Vehicles

By using autonomous vehicles, we endeavor to reduce human errors (currently re-
sponsible for more than 90% of accidents), but there are also machine errors [10].

One of the causes of safety failure is a delay in information transfer between V2V
autonomous vehicles or between autonomous vehicles and infrastructures such as the
GNSS (V2I). Unlike traditional vehicles, autonomous vehicles transmit a considerable
amount of information over a network. Therefore, it is essential to take care of data
compression to reduce the amount of information that needs to be sent and, as a result,
increase the speed of information transmission.

Furthermore, in cases of communication failures, it is necessary to provide error
resilience to omissions or mistakes in information with a system that knows how to au-
tonomously operate according to a self-recovery protocol [11,12].

2.2. Data Compression

Data compression is usually used to save storage and to reduce data transmission,
thereby speeding up transmission of data from one endpoint to another. We can compress
not only text but also images, audio, and video files. Several techniques of data compression,
such as Huffman Code, Shannon Fano Code, and Lempel Ziv are designed to ensure that
the size of the compressed file is smaller than the original [13,14].

As in many contemporary applications, we will make use of the Huffman Codes [15]
because they can easily recover from errors and faults.

The Huffman Codes were invented in 1952 by a student who studied with Prof. Fano
from MIT. At the time, the Shannon-Fano Codes were the best available method for data
compression. While Huffman was thinking about doing research, however, he came up
with an algorithm called “Symbol Coding Method”, “Prefix Coding” or “Huffman Coding”.
This compression technique offers encoding symbols such as text characters without data
loss [16].

Remote Sens. 2023, 15, 2165 3 of 22

The Huffman Codes are an algorithm that belongs to a group called prefix codes. This
algorithm provides good data compression and stores the items in a minimum number
of bits when their frequency is high—according to the probabilities at which each item
appears. This method is based on assigning a variable-length code to each item according to
its frequency, so that a frequent item will be represented by a small number of bits whereas
an infrequent item will be represented by a longer code.

Huffman’s coding has a legendary and important status in the field of computer
science and engineering, for its simplicity and applicability make it an idyllic example
in algorithm courses. Moreover, it is one of the most common techniques used for data
compression [17].

2.3. Global Navigation Satellite System

The Global Navigation Satellite System (GNSS) makes use of satellites in space around
the Earth. The idea began in the 1970s among the U.S. military as Americans sought a
way to overcome the difficulties of previous navigation systems in use. GNSS began to be
extensively used in the 1990s [18].

The principle of the GNSS is sending the location of the transmitter to the receiver
in space (satellite) and next retrieving information from the receiver to the transmitter on
Earth [19]. GNSS transmitters require access to open skies; otherwise, interference or loss
of GNSS signals can occur. This type of communication experiences failures in areas where
construction is very high or in areas of forests or mountains. GNSS tracking is applied in a
variety of fields, including animals, car travel, hiking, and even sports [20–22].

The GNSS device is essential to autonomous vehicles in need of high availability
and accuracy. A vehicle can plot a pre-known or pre-programmed route autonomously
without any human control [23]. Therefore, it is very important that an autonomous
vehicle is able to receive and send its location promptly to the mobile network and/or
satellite communication. A major advantage of using GNSS is that the data do not depend
on previously received information and therefore localization errors do not accumulate
over time.

One of the GNSS’s essential attributes is its accuracy, which depends on the envi-
ronment in which the GNSS transmitter is located and the number of satellites it reads at
any given time, alongside the location of the transmitter and the environment in which it
is located: for example, in an urban environment, underground parking, a forest, or an
open space.

2.4. NMEA Standard

The NMEA (National Marine Electronics Association) standard, also known as Stan-
dard 0183, was introduced in 1983 as a standard for data communication between ships.
The NMEA protocol uses ASCII codes, and the data transfer is slow at 4800 bytes per
second. However, it is still widely used and is perfectly suited to situations where one end,
such as a GNSS device, needs to be connected to another end, such as a satellite [24,25].

The default transmission rate of the NMEA GNSS standard is 4.8 kb/s. It uses 8 bits
for the data of ASCII characters and 1 stop bit. More than a few years later, the NMEA2000
protocol, much more advanced than the previous one, was invented. The new protocol
allows multiple units to transmit and receive data simultaneously; its cables are less
sensitive to noise (with wired connections) and its information transfer is superior to that
of NMEA0183.Furthermore, it allows data transfer rates up to 250 kb/s (about 50 times
faster) [6].

The use of NMEA in ships is very significant and important because in the sea we do
not have signs, and one of the options to navigate at sea in the modern world is through
GNSS, in contrast with other transportation such as vehicles that can navigate the roads
thanks to road signs and directions.

Most systems that provide real-time placement ensure that the data are in NMEA
form. These data include, among others, PVT: Position, Velocity and Time [26]. Most often

Remote Sens. 2023, 15, 2165 4 of 22

we will see standard NMEA sentences in any GNSS devices commercial production [27]. It
is also possible to define unique, proprietary sentences for a particular purpose instead of
existing ones. For example, a Garmin sentence would start with PGRM [28]. We discuss
standard sentences below, and all the sentences have something in common.

Each NMEA sentence is represented by ASCII codes, starting with a $ sign and a prefix
of “GP”, which defines GNSS receivers. Three letters mark this type of sentence [29].

For example, most popular types:

• GPGGA—fix information
• GPGSV—detailed satellite data
• GPRMC—recommended minimum data for GNSS.
• GPGSA—overall satellite data

Each NMEA sentence type can contain no more than 80 characters of plain text, with
data items separated by commas. In each type of data, a checksum is included for the
sentences. These begin with ‘*’ and two HEX digits representing the XOR action of all
characters between the ‘$’ (not including) and up to ‘*’. A test amount is not required for
all the sentences.

In autonomous vehicles and vehicles in general, NMEA sentences are used in the
following formats: GPGGA, GPGSV, GPGSA, GPRMC [30].

3. GNSS Data Compression Review and Related Work

Today, the processors are very powerful and can process data and RAM rapidly. Never-
theless, a busy communication channel can be challenging. The busier the communication
channel and the more information passes through it, the more information can be delayed.
The transmission time is significantly greater than the processing time, which is negligible
in the transmission time [31]. That is why previous investigations have assessed the amount
of information transferred and not the processing times [32], A procedure we follow later
in the results section.

Among several recent studies and articles about GNSS data compression, one that
was recently carried out examined the compression of GNSS data in maritime usage by
ships and vessels. To the best of our knowledge, there is no study of data compression
originating from GNSS in combination with autonomous vehicles. This work reports on
the ability to compress data at a very high efficiency’ obtaining a compression ratio of about
4% of the raw information [33]. However, naval vessels generally avoid turns due to their
dimensions and usually perform only prearranged turns in very wide areas. Commonly,
ships do not navigate many turns or U-turns, unlike vehicles, but rather go in straight
lines [34]. Therefore, the changes in the GNSS information are typically small and yield a
much better compression ratio.

A recently published paper explored and proposed GNSS data compression in IOT
components and trajectory reconstruction. Unlike in our data, the authors of this paper
consider several different trajectory typologies. They compress this data employing a
combination of their suggested technique with a lossless compression method, trying as a
lossless method the well-known methods—Huffman, LZ77 and LZW. Nonetheless, they
came to a similar conclusion that combining the Huffman codes with another method
indeed gives better results than just compressing the data using Huffman codes [35].

The subject of GNSS data compression has already previously been studied; how-
ever, the studies are from different directions with usually dissimilar approaches, unlike
our research.

Some of the studies that have been done on the subject compress completely differ-
ent information [36]. One proposed compression algorithm [37] requires accompanying
hardware and other supporting equipment such as a server that performs data analysis,
compression and transmission. Working with a server cannot be practical for our research
because it works in a real time environment.

An algorithm more similar to our work is suggested in [38]. It analyzes NMEA data
compression using some combinations with LZ77 and Huffman coding. The compression

Remote Sens. 2023, 15, 2165 5 of 22

results in this paper are an output of about 30% of the original information. Furthermore,
the writers have taken out some of the information so that all the records will have the
same fields and the compression ratio will be enhanced. Even with these features, this
paper achieved significantly inferior results because the differences method, such as H.264,
which can substantially improve the performance, is not employed. In our research, we
made use of H.264 and as a result were able to get much better results of about 13%.

The goal of compression is to efficiently reduce the amount of information transmitted
by GNSS. Raw data transmitted by GNSS is very expensive, costing thousands of dollars
per day and millions of dollars per year for only about 4000 vehicles that use it [39].

Today every vehicle (even non-autonomous) has built-in GNSS components [40], but
the topic becomes very significant when we talk about GNSS in autonomous vehicles [41].
The amount of information that these vehicles transmit will be significantly bigger. One
of the components constantly changed and transmitted across bandwidths is the location
data of the vehicle.

This research presents a method for compressing GNSS data as a difference between
location and time. An additional example can be found in [42], which shows that GNSS
information contains many commas between the parameters. Commas are information
repeated over and over again within the message [It undoubtedly takes up bandwidth and
therefore needs to be more efficiently compressed (e.g., Huffman code).

In the algorithm discussed above, compressed information is transferred most of the
time, but occasionally full information is transferred to avoid retaining errors over time.

4. Employing H.264-Like Compression

The main objectives of the H.264/AVC standardization efforts were improving the
compression performance, providing “network-friendly” video representation, and com-
pressing the information more efficiently than in previous standards, such as H.263 [43].

H.264/AVC represents advances in standard video encoding technology, improving en-
coding efficiency and flexibility for use in a wide range of networks and applications [43,44].

H.264 provides about 50%-bit rate savings for equal perceptual quality compared to
the performance of previous standards, such as H.263 [45,46].

H.264 makes use of three frames (I- FRAMES, P-FRAMES and B- FRAMES) to im-
prove error resilience, avoid failures in video streaming, and improve the efficiency of
compression and the compressed stream [46–48].

Compression can be improved by further modifications, such as by using differences
between time and location data and compressing the commas by using the Huffman Code.
Moreover, vehicles often get stuck in traffic jams; the more vehicles, the bigger the traffic
jams will be [49]. The average speed today in big cities can be even under 30 km/h, as in
New York [50] or Tel Aviv (around 15 km/h).

Beyond the traffic jams, the vehicles idle at traffic lights or stop for various purposes.
On all these occasions, the vehicle sends information about its location using the method
described in [42] but with several changes.

In autonomous vehicles, several types of connections help vehicles to receive infor-
mation from the environment (other AVs) and vice versa, as with vehicle-to-vehicle (V2V),
vehicle-to-infrastructure (V2I), and vehicle-to-everything (V2X) [51].

H.264 takes advantage of the property that adjacent video frames are usually very
similar. Therefore, the values of the adjacent blocks’ differences will be zero or close to zero.
The more zeros we obtain, the better the Huffman coding efficiency. The information that
GNSS generates also usually has this feature of similarity between adjacent blocks, so we
adapted the idea of H.264 and achieved an effective and efficient preprocessing step.

We analyzed the GNSS data compression and decompression, which can affect the
total time and resources used by the GNSS. The differences between the consequent NMEA
sentences will be compressed in the way that H.264 handles consequent frames with
small differences.

Remote Sens. 2023, 15, 2165 6 of 22

5. Methodology

This investigation was performed with several compression and optimization tools
and methods, which we describe below, explaining their advantages and disadvantages.
We furthermore explain why some of the methods achieved better results than others we
tried but rejected. Our tool for compression and decompression was written by us in C#,
along with another tool written by us, which aims at comparing results and checking them
visually. Examples of output files from the C# tool are shown in Figures A1–A5. The visual
tool is explained in more detail below in Section 7.

Accordingly, the algorithm for encoding a raw GNSS data file is (Algorithm 1):

Algorithm 1: Compression GNSS data

Input: Raw GNSS data
Output: compressed binary data

(1) Checking the correctness of the information from the GPS data

by using GPRMC protocol like indecation in 3rd parameter
(V=invalid data).

(2) If (information is incorrect) do:

Remove incorrect information from the data file

(3) Performing preprocessing compression using the difference method (very

similar to the existing H.264 method).

(4) If (its first time running algorithm) do:

(a) Generate prefixes configuration
(b) Execute mapping file
(c) Generate Huffman configuration

(5) Performing a more significant compression by the Huffman code.

Correspondingly, the algorithm for decoding data file is (Algorithm 2):

Algorithm 2: Decompression GNSS data

Input: compressed binary data
Output: Decompressed GNSS data

(1) Performing decompression employing Huffman Codes.
(2) Performing decompression using the difference method.

6. Experiments

Data was collected by traveling on many roads in several vehicles with the same
receiver (smartphone). First, for data collection, the following NMEA LOGGER application
was utilized during the trips [52].

This application allowed us to record NMEA data in raw form and transfer the
data file to a computer for analysis and further analysis. The application is intended
for use on smartphones using the Android operating system from Google Play. In our
research, the NMEA LOGGER application version 2.3.35 was used on a Samsung S20
ULTRA device (Samsung, Seoul, South Korea) running the Android operating system.
Aiming at analyzing information and collecting data, we incorporated urban and intercity
routes and interspersed long and short ranges.

This application can create a large log file with all the GNSS data and sub-protocols.
We did not need some of the data for this study, so we filtered it for only the relevant data.

Remote Sens. 2023, 15, 2165 7 of 22

Nowadays, a filtering method before analyzing results or performing actions is prevalent
in many applications, as in [53].

Several short and long samples have been extracted and are shown in the tables that
appear in the Results section. The shortest trip was about 50 km in 20 min, and the longest
was about 4.5 h and 300 km, which included driving on a highway and standing in urban
traffic jams.

In Figure A1 in Appendix A, we see many information lines not relevant to the content
that we want to compress. For us it is a sort of noise that we have filtered out.

The content of the desirable protocols has been extracted. The extracted protocols are:

• GPGGA
• GPGSV
• GPGSA
• GPRMC

The contents of the desired protocols are extracted. After the filtering out of this noise,
a new text file was built and through it, repeating patterns within each line of each protocol
were examined. An example of a filtered file can be seen in Figure A2 in Appendix A,
which includes only the four protocols mentioned above.

For example, one of the methods tried in the research was calculating differences
between rows’ values in each block. This shows very good compression data, but it is very
difficult to recover information, so we rejected this method.

Sometimes the vehicle sends or receives incorrect satellite information, which can
happen for many reasons. For example, the vehicle enters an underground parking lot
or tunnel, or a momentary malfunction occurs in the reception of GNSS satellites [54–56].
During the first step, it was decided to remove incorrect information.

In Figure A3 in Appendix A, we see noises in both the GPGSA and GPRMC protocols,
which are incorrect data. These noises cause an omission of most of the information
block that includes additional protocols, as seen, for example, in the GPRMC protocol
when its third value is the V value, which means the information is incorrect. Also,
incorrect information can be detected in the GPGSA protocol when the third parameter is 1
(Mode: 1 = Fix not available).

If there is incorrect information for any reason, the algorithm will delete most of the
block with the incorrect information, as exemplified in Figure A3 in Appendix A.

We suggest calculating differences between the rows with the same protocol like it is
done in the H.264 method. For example, in each block there are k rows where:

• 5 ≤ k ≤ 13.
• GPGGA is a 1-line message.
• GPGSV is 1–9 lines of messages.
• GPGSA is 2-lines of messages.
• GPRMC is a 1-line message.

The example in Figure 1 demonstrates how it works:

Remote Sens. 2023, 15, 2165 8 of 22

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 21

• GPRMC is a 1-line message.
The example in Figure 1 demonstrates how it works:

Figure 1. Example of using H.264 concept.

One of the difficulties was with GPGSV. The challenge emerges when in certain
blocks in the GPGSV protocol, we have a certain number of lines, and then after a few
iterations, a block appears with the GPGSV protocol with a different number of lines
(more lines or less).

Figure A4 in Appendix A shows a case with a different number of GPGSV lines. In
iteration 4 (line 22–29), the GPGSV lines are not the same as the GPGSV lines of iteration
1 (line 1–7).

Since the H.264-like algorithm employs differences between iterations, it is
important for us to have the same number of rows in each iteration to calculate a
difference from another line or a difference from the average.

Monitoring and testing made it possible to see that the changes are made
infrequently, so it was decided to split the file. That is, as soon as an iteration is received
in which the number of lines in the GPGSV protocol differs from the previous number of
lines, the file is closed, and a new file initialized with a number of lines in the latest
GPGSV, and so on.

In the process of building a binary file, another problem was detected. When a
computer writes a file, the size of the file will be rounded to a multiple of 8 bits because
computers work with bytes. This caused a problem in the decoding stage as the
decoding came out wrong due to the added bits at the end of the file.

As a result, it was decided to add another byte at the end of the binary file, in which
it is indicated how many zeros that were added as padding must be removed from the
previous byte.

An issue that should be handled occurs when there are lines from different
iterations with different fields. Figure A5 in Appendix A shows such a case, where there
is a value between the commas, and the algorithm needs to make a difference from a
row from an upper block where there is no value between the commas (NULL) or vice
versa. For such cases we used a special pattern, seen in Figure 2.

Figure 1. Example of using H.264 concept.

One of the difficulties was with GPGSV. The challenge emerges when in certain blocks
in the GPGSV protocol, we have a certain number of lines, and then after a few iterations,
a block appears with the GPGSV protocol with a different number of lines (more lines
or less).

Figure A4 in Appendix A shows a case with a different number of GPGSV lines. In
iteration 4 (line 22–29), the GPGSV lines are not the same as the GPGSV lines of iteration 1
(line 1–7).

Since the H.264-like algorithm employs differences between iterations, it is important
for us to have the same number of rows in each iteration to calculate a difference from
another line or a difference from the average.

Monitoring and testing made it possible to see that the changes are made infrequently,
so it was decided to split the file. That is, as soon as an iteration is received in which the
number of lines in the GPGSV protocol differs from the previous number of lines, the file is
closed, and a new file initialized with a number of lines in the latest GPGSV, and so on.

In the process of building a binary file, another problem was detected. When a
computer writes a file, the size of the file will be rounded to a multiple of 8 bits because
computers work with bytes. This caused a problem in the decoding stage as the decoding
came out wrong due to the added bits at the end of the file.

As a result, it was decided to add another byte at the end of the binary file, in which
it is indicated how many zeros that were added as padding must be removed from the
previous byte.

An issue that should be handled occurs when there are lines from different iterations
with different fields. Figure A5 in Appendix A shows such a case, where there is a value
between the commas, and the algorithm needs to make a difference from a row from an
upper block where there is no value between the commas (NULL) or vice versa. For such
cases we used a special pattern, seen in Figure 2.

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 21

Figure 2. Handling different fields.

When a difference from the average must be calculated (as the B-frame in H.264),
for example:

Block 2 − ୪୭ୡ୩ ସ ା ୪୭ୡ୩ ଵଶ .

It would be helpful if the rows had matching fields or no values in the same fields
(which are also matching), but sometimes, as shown above, in certain lines between
commas contain a value compared to the average where there is no value between
commas (or vice versa).

An example of this is:
AVG EXAMPLE → (4 + 1)/2
1,2,3 = 1
1,2,3,4 = 4
1,2,3, EOL,4 = avg
Or vice versa
AVG EXAMPLE → (4 + 1)/2
1,2,3,4 = 1
1,2,3 = 4
1,2,3 = avg

It is possible to stop counting after
ଷାଷଶ and saving all the information after index 3

(4 + null) because iteration 1 (iterative) exists all the time and can be easily
restored/decoded.

Similarly, when we calculate the average (AVG), for example,
୪୭ୡ୩ ସ ା ୪୭ୡ୩ ଵଶ ,

there may be no values between commas in block 4 in a certain protocol compared to
block 1 (or vice versa).

An example for such a case:
AVG → (4 + 1)/2 (4 on the left, 1 on the right)
3,6,9, , = 1
1,2,3,4 = 4
2,4,6,#4 (complete to the left side of 4)
Or vice versa:
AVG → (4 + 1)/2 (4 on the left, 1 on the right)
3,6,9,5, = 1
1,2,3, , = 4
2,4,6, -#5 (minus means the number after # put on the right side of 1)

When a row in which we want to make a difference or a difference from the
average, it is shorter (or longer) than a row from another block, respectively. That is, a
certain row has more fields (or fewer) than a corresponding row.

An example of such a case:
AVG → (4 + 1)/2
3,6,9 = 1
1,2,3,4,5,6,7 = 4

Figure 2. Handling different fields.

Remote Sens. 2023, 15, 2165 9 of 22

When a difference from the average must be calculated (as the B-frame in H.264),
for example:

Block 2− Block 4 + Block 1
2

It would be helpful if the rows had matching fields or no values in the same fields
(which are also matching), but sometimes, as shown above, in certain lines between commas
contain a value compared to the average where there is no value between commas (or
vice versa).

An example of this is:

AVG EXAMPLE→ (4 + 1)/2
1,2,3 = 1
1,2,3,4 = 4
1,2,3, EOL,4 = avg
Or vice versa
AVG EXAMPLE→ (4 + 1)/2
1,2,3,4 = 1
1,2,3 = 4
1,2,3 = avg

It is possible to stop counting after 3+3
2 and saving all the information after index

3 (4 + null) because iteration 1 (iterative) exists all the time and can be easily restored/decoded.
Similarly, when we calculate the average (AVG), for example, Block 4+Block 1

2 , there may
be no values between commas in block 4 in a certain protocol compared to block 1 (or
vice versa).

An example for such a case:

AVG→ (4 + 1)/2 (4 on the left, 1 on the right)
3,6,9, , = 1
1,2,3,4 = 4
2,4,6,#4 (complete to the left side of 4)
Or vice versa:
AVG→ (4 + 1)/2 (4 on the left, 1 on the right)
3,6,9,5, = 1
1,2,3, , = 4
2,4,6, -#5 (minus means the number after # put on the right side of 1)

When a row in which we want to make a difference or a difference from the average,
it is shorter (or longer) than a row from another block, respectively. That is, a certain row
has more fields (or fewer) than a corresponding row.

An example of such a case:

AVG→ (4 + 1)/2
3,6,9 = 1
1,2,3,4,5,6,7 = 4
2,4,6, EOL,4,5,6,7 (once we see EOL we put all the info after EOL to left side of 4)

Another example is vice versa but a little bit different:

AVG→ (4 + 1)/2 (4 on the left, 1 on the right)
3,6,9,1,2,4 = 1
1,2,3,4 = 4
2,4,6

We stopped calculating after (9 + 3)/2 and we do not need to save all the information
after index 4 (2 + null) because we have iteration 1 (it appears iteratively) all the time and it
can be simply recovered/decoded.

After performing the actions mentioned above, we get a difference file, saving only
around 28% in space. At this point, we achieve a file with many repeating zeroes, which

Remote Sens. 2023, 15, 2165 10 of 22

allows us to use Huffman coding more efficiently and thus attain a better compression
ratio later.

An example of the different file is shown in Figure A6 in Appendix A.

• After receiving the different file in Figure A6 in Appendix A, the algorithm prepares a
file that contains very long prefixes that usually repeat in various files. Our algorithm
maps each of these prefixes with a distinct symbol.

• The algorithm takes the output file from step 1 and executes a mapping file, creating a
Huffman encoding for the file from step 1.

A simulation program was built for compression and decompression in C#. This tool
tests and calculates different compression, coding, and decoding methods.

A diagram illustrating the compression is in Figure 3.

Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 21

2,4,6, EOL,4,5,6,7 (once we see EOL we put all the info after EOL to left side of 4)
Another example is vice versa but a little bit different:

AVG → (4 + 1)/2 (4 on the left, 1 on the right)
3,6,9,1,2,4 = 1
1,2,3,4 = 4
2,4,6

We stopped calculating after (9 + 3)/2 and we do not need to save all the
information after index 4 (2 + null) because we have iteration 1 (it appears iteratively) all
the time and it can be simply recovered/decoded.

After performing the actions mentioned above, we get a difference file, saving only
around 28% in space. At this point, we achieve a file with many repeating zeroes, which
allows us to use Huffman coding more efficiently and thus attain a better compression
ratio later.

An example of the different file is shown in Figure A6 in Appendix A.
• After receiving the different file in Figure A6 in Appendix A, the algorithm

prepares a file that contains very long prefixes that usually repeat in various files.
Our algorithm maps each of these prefixes with a distinct symbol.

• The algorithm takes the output file from step 1 and executes a mapping file,
creating a Huffman encoding for the file from step 1.
A simulation program was built for compression and decompression in C#. This

tool tests and calculates different compression, coding, and decoding methods.
A diagram illustrating the compression is in Figure 3.

Figure 3. The compression algorithm.

We developed simulation software to implement the suggestions of this work. The
interface of the simulation program is shown in Figure 4.

Figure 3. The compression algorithm.

We developed simulation software to implement the suggestions of this work. The
interface of the simulation program is shown in Figure 4.

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 21

Figure 4. The simulation program.

This simulator is given a raw GNSS data file. The course of action is:
A. For encoding:

a. Load text file (GNSS logs).
b. Create a difference file based on the H.264-like algorithm.
c. For first run:

1. Generate prefix configuration file.
2. From a mapping file.
3. Produce Huffman configuration file.

d. Execute Huffman coding algorithm (creates .bin file)
B. For decoding:

e. Load Huffman coding file (the .bin file)
f. Decode bin file using Huffman algorithm.
g. Execute reversed difference file based on the H.264-like algorithm.

7. Results
This compression method contains three steps:

1. The difference method is based on H.264.
2. Mapping.
3. Huffman coding.

One of the significant advantages of this compression method (compared to zip
compression) is that ours has error resilience because of the Huffman Codes [5].

ZIP does not have this attribute of error resilience, and it is almost impossible to
recover damaged files. In addition, if the files using ZIP were sent in parts and one part
were not received, then the information could not be recovered at all [57].

In each message transmission using the method proposed in this paper, we send a
first packet that is always original and without any changes. Therefore, because of this
feature, we recover the subsequent packets.

If some of the packages are lost, because of the Huffman property of
synchronization, we would recover the rest of the information at a relatively high speed.
In addition, the first packet is transmitted at a certain frequency each time the number of
messages in the GPGSV protocol changes.

Therefore, when there is a change in the GPGSV protocol, the existing file is closed,
and a new file is opened in a renewed procedure, and thus we create additional error
resilience to information loss due to the repeatability of the first package.

Figure 4. The simulation program.

This simulator is given a raw GNSS data file. The course of action is:

A. For encoding:

a. Load text file (GNSS logs).
b. Create a difference file based on the H.264-like algorithm.
c. For first run:

Remote Sens. 2023, 15, 2165 11 of 22

1. Generate prefix configuration file.
2. From a mapping file.
3. Produce Huffman configuration file.

d. Execute Huffman coding algorithm (creates .bin file)

B. For decoding:

e. Load Huffman coding file (the .bin file)
f. Decode bin file using Huffman algorithm.
g. Execute reversed difference file based on the H.264-like algorithm.

7. Results

This compression method contains three steps:

1. The difference method is based on H.264.
2. Mapping.
3. Huffman coding.

One of the significant advantages of this compression method (compared to zip
compression) is that ours has error resilience because of the Huffman Codes [5].

ZIP does not have this attribute of error resilience, and it is almost impossible to
recover damaged files. In addition, if the files using ZIP were sent in parts and one part
were not received, then the information could not be recovered at all [57].

In each message transmission using the method proposed in this paper, we send a first
packet that is always original and without any changes. Therefore, because of this feature,
we recover the subsequent packets.

If some of the packages are lost, because of the Huffman property of synchronization,
we would recover the rest of the information at a relatively high speed. In addition, the
first packet is transmitted at a certain frequency each time the number of messages in the
GPGSV protocol changes.

Therefore, when there is a change in the GPGSV protocol, the existing file is closed,
and a new file is opened in a renewed procedure, and thus we create additional error
resilience to information loss due to the repeatability of the first package.

This durability does not exist in the Zip compression method (not in real time). If
some of the information does not arrive or goes wrong in transmission, ZIP will not be
able even partially to restore the information. The suggested method of compression has
been evaluated by several benchmark tests employing real GNSS information obtained
from the GNSS of real vehicles. We tried Zip as it is, as well as Diff’ the method employing
the concept of H.264 described above. The output of Diff was sent to Huffman, Zip, and a
mapping of repeated strings before doing the Zip.

We have marked in bold in the following tables the method we propose in this study,
the winning method among all those tested and reviewed. The results of the first benchmark
are detailed in Table 1 (GNSS data file and compression results).

Table 1. Comparison between different compression methods–source file is 286 KB.

Name and Pure
Size of File:

Compression Method and Ratio.
Ratio=100− result

Total×100

Test 1 = 286 KB
(Total)

Zip Diff Diff&Huff Diff&Zip Diff&Mapping&Zip

28 KB
90.21%

207 KB
27.62%

37 KB
87.1%

25 KB
91.26%

19 KB
93.36%

In the next results, we will be able to see a slight improvement with larger files, but
at a certain stage, the improvement is not significant, and the results remain about the
same numbers.

We see that after calculating and using the difference method (Diff file), which is a
preprocessing stage, we get a reduction of 28%. The significant gain is not just the gain

Remote Sens. 2023, 15, 2165 12 of 22

of 28% but the number of zeros we get after the differences. These help us to compress
the information more efficiently using the Huffman code and achieving better significant
compression percentages.

After using the difference method, which is a preprocessor for Huffman coding,
we will get a significantly better compression ratio (compared to the original file), of
about 87%.Nevertheless, if we want to improve and compete with ZIP, first we perform
the difference method, which preprocesses for Huffman, and then directly apply ZIP
compression and thus get a better compression percentage of about 91.3% compared to
about 90% by directly using ZIP on an original file

Furthermore, it is possible to compress even better after performing the difference
method, then using the mapping method, and then Zip; the result is significantly
better—93.4%.

Naturally, we must take into account that the world is not perfect and sometimes
successes come at the expense of something else. The high compression rates we get here,
which are better than with Zip, come at the expense of not being able to recover if the file
or parts of it are damaged during transmitting or building (survivability).

We also tried some larger files, and the results were a little bit better. The results of the
larger files can be found in Table 2 (GNSS data file and compression results).

Table 2. Comparison between different compression methods–source files are 556 KB–9158 KB.

Name and Pure
Size of File:

Compression Method and Ratio.
Ratio=100− result

Total×100

Test 2 = 556 KB
(Total)

Zip Diff Diff&Huff Diff&Zip Diff&Mapping&Zip

53 KB
90.47%

401 KB
22.30%

70 KB
87.4%

45 KB
93.91%

34 KB
93.88%

Test 3 = 929 KB
(Total)

87 KB
90.64%

671 KB
27.8%

118 KB
87.3%

75 KB
91.93%

57 KB
93.86%

Test 4 = 9158 KB
(Total)

861 KB
91.5%

6231 KB
31.96%

1061 KB
88.41%

730 KB
92.03%

563 KB
93.85%

Figure 5 compares the average percentages of size that have been saved by each of
the methods. It can be concluded that Diff&Mapping&Zip gives the best compression, but
there is no error resilience in this method, whereas Diff&Huffman, even with somewhat
lower results, has the feature of automatic error resilience.

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 21

Figure 5 compares the average percentages of size that have been saved by each of
the methods. It can be concluded that Diff&Mapping&Zip gives the best compression,
but there is no error resilience in this method, whereas Diff&Huffman, even with
somewhat lower results, has the feature of automatic error resilience.

Another option that has been tested is performing ZIP compression and then
running compression using our algorithm. This option was ruled out because after
doing ZIP, a file that is mostly random will be created, and random files cannot be
compressed [58].

Huffman coding is a very popular method used by many applications such as MP3
and JPEG. At the same time, another method can be used—that of Shannon Fano [59],
but its compression is inferior to Huffman coding [60]. Therefore, we preferred Huffman
codes.

Figure 5. Average ratio between compression methods (percentages).

In the table in Appendix B, we see how many bits we save per symbol by using
Huffman codes. However, we save even more because the compression method
presented here has several stages, so in the preliminary stage we have already converted
a sequence of repeating characters (prefixes) into one symbol and have already made
some reduction in the data size.

To evaluate the efficiency of the proposed method, we calculate Shannon Entropy.
Shannon Entropy Formula is S(x) = − p(x୧) logଶ(p(x୧)) ୬୧ୀ where p(x୧) is the
probability of getting the value x୧. More explanation of the Shannon Entropy formula
can be found in [61].

It can be seen in the detailed spreadsheet in Appendix B that Shannon’s entropy
gives a result of 5.548, which is indeed optimal. This entropy is very close to the result
obtained in this work by using Huffman coding 5.581. The results are shown in Figure 6.

90.71

87.55

93.74

84
86
88
90
92
94
96

Ratio = 100 - result/Total*100

Average ratio of all tests (in %)

Zip Diff&Huff Diff&Mapping&zip

5.548

5.581

5.53

5.54

5.55

5.56

5.57

5.58

5.59

Ratio entropy to avg bits per symbol

Entropy Average bits per symbol

Figure 5. Average ratio between compression methods (percentages).

Remote Sens. 2023, 15, 2165 13 of 22

Another option that has been tested is performing ZIP compression and then running
compression using our algorithm. This option was ruled out because after doing ZIP, a file
that is mostly random will be created, and random files cannot be compressed [58].

Huffman coding is a very popular method used by many applications such as MP3
and JPEG. At the same time, another method can be used—that of Shannon Fano [59], but
its compression is inferior to Huffman coding [60]. Therefore, we preferred Huffman codes.

In the table in Appendix B, we see how many bits we save per symbol by using
Huffman codes. However, we save even more because the compression method presented
here has several stages, so in the preliminary stage we have already converted a sequence
of repeating characters (prefixes) into one symbol and have already made some reduction
in the data size.

To evaluate the efficiency of the proposed method, we calculate Shannon Entropy.
Shannon Entropy Formula is S(x) = −∑n

i=0 p(xi)log2(p(xi)) where p(xi) is the probability
of getting the value xi. More explanation of the Shannon Entropy formula can be found
in [61].

It can be seen in the detailed spreadsheet in Appendix B that Shannon’s entropy gives
a result of 5.548, which is indeed optimal. This entropy is very close to the result obtained
in this work by using Huffman coding 5.581. The results are shown in Figure 6.

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 21

Figure 5 compares the average percentages of size that have been saved by each of
the methods. It can be concluded that Diff&Mapping&Zip gives the best compression,
but there is no error resilience in this method, whereas Diff&Huffman, even with
somewhat lower results, has the feature of automatic error resilience.

Another option that has been tested is performing ZIP compression and then
running compression using our algorithm. This option was ruled out because after
doing ZIP, a file that is mostly random will be created, and random files cannot be
compressed [58].

Huffman coding is a very popular method used by many applications such as MP3
and JPEG. At the same time, another method can be used—that of Shannon Fano [59],
but its compression is inferior to Huffman coding [60]. Therefore, we preferred Huffman
codes.

Figure 5. Average ratio between compression methods (percentages).

In the table in Appendix B, we see how many bits we save per symbol by using
Huffman codes. However, we save even more because the compression method
presented here has several stages, so in the preliminary stage we have already converted
a sequence of repeating characters (prefixes) into one symbol and have already made
some reduction in the data size.

To evaluate the efficiency of the proposed method, we calculate Shannon Entropy.
Shannon Entropy Formula is S(x) = − p(x୧) logଶ(p(x୧)) ୬୧ୀ where p(x୧) is the
probability of getting the value x୧. More explanation of the Shannon Entropy formula
can be found in [61].

It can be seen in the detailed spreadsheet in Appendix B that Shannon’s entropy
gives a result of 5.548, which is indeed optimal. This entropy is very close to the result
obtained in this work by using Huffman coding 5.581. The results are shown in Figure 6.

90.71

87.55

93.74

84
86
88
90
92
94
96

Ratio = 100 - result/Total*100

Average ratio of all tests (in %)

Zip Diff&Huff Diff&Mapping&zip

5.548

5.581

5.53

5.54

5.55

5.56

5.57

5.58

5.59

Ratio entropy to avg bits per symbol

Entropy Average bits per symbol

Figure 6. Calculation of entropy and average bit per symbols.

The slight increment occurs because the Huffman algorithm rounds off the number
of bits for each codeword and therefore a very close entropy is obtained by the Huffman
algorithm, even if not optimal.

8. Conclusions

Several compression methods as well as a combination of different compression
methods and their results have been presented. Compression using only Zip is about a
saving of 90%. This is undoubtedly a substantial compression ratio, but unfortunately with
quite a few shortcomings as noted in this work.

It is possible to compress with a full method as suggested in this research and obtain
a reduction of over 87% of all the raw information. Considering the good error resilience
because of Huffman and sometimes sending raw information, it can be concluded that
there is an evident trade-off here with a cost of about 3% compared to ZIP.

A better compression ratio can be obtained by combining part of the method developed
in this paper and then performing compression by ZIP. This algorithm outperforms the two
previous and obtains a data reduction of about 94% (3% better than ZIP and 6% better than
the Huffman-based method which we suggested here). Nevertheless, it should be noted
that in the combined method, there is no good error resilience because Huffman Coding is
not used.

Our choice and recommendation are to use the difference method together with
Huffman rather than a pure ZIP method or other combinations that we mentioned above.

Remote Sens. 2023, 15, 2165 14 of 22

We prefer the difference method together with Huffman because the other methods do not
provide error resilience, even though they can slightly improve the compression ratio.

It should also be noted that during the coding, we used static and not dynamic coding
tables. This feature has pros and cons. It is common to have a static and known table in
advance, because this is efficient and saves the need to update and transfer the compression
tables. Everyone has the known tables and there is no need that the transferred information
to include new tables each time. Yet, a custom table can generate a shorter average code-
word. Therefore, we chose to use static tables as customary in most compression methods
such as JPEG, TIFF, MP3 and more.

We believe that using the methods presented in this paper can significantly improve
the efficiency and speed of information transfer. This is particularly important nowadays
since there is no use of NMEA data compression in GNSSes and not enough research
and work has been done on this subject. Therefore, further attention should be given to
NMEA raw data that is currently transmitted uncompressed. In a future study, we suggest
checking how to improve the compression and reach optimal results by using alternative
codes for Huffman’s. Other methods that can be used without rounding the bits up like
Arithmetic Coding should be considered. Also, a possibility of adding error resilience
and/or error checking like checksum to the more efficient zip methods presented here
(Diff&Mapping&Zip) can be considered.

The Huffman code synchronizes after an error with almost 100% probability. That is,
after several wrong code words, the Huffman algorithm automatically comes back to itself
and starts reading real code words. In contrast, arithmetic coding does not synchronize
after an error and all the data that is read and decoded after the error is wrong. The proposal
to work with arithmetic coding improves the compression percentages, but it comes at the
cost of no synchronization after an error, so a mechanism for synchronization after errors
such as a checksum may possibly be considered.

We also suggest considering in advance the possibility of not transmitting unchanged
information in relation to the previous information (for example, if the vehicle is stopped
at traffic lights or in a traffic jam).

Author Contributions: Conceptualization, Y.W. and A.R.; methodology, A.R.; software, A.R.; valida-
tion, A.R.; formal analysis, A.R. and Y.W.; investigation, A.R.; resources, A.R.; data curation, A.R.;
writing—original draft preparation, A.R.; writing—review and editing, A.R. and Y.W.; supervision,
Y.W.; project administration, A.R. and Y.W.; All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: We are very grateful to all those who contributed to the success of this research.
First and foremost, we would like to thank Eduard Yakubov and Eugen Mandrescu for all their
support and encouragement throughout the process of research. Also, we would like to express
our gratitude to Radel Ben-Av, who provided valuable information, insights and assistance with his
extensive experience in the field. In addition, many thanks to my good friend Alrajoub Eyas for his
contribution in supporting the development of tools that were very important to the success of this
research, and we are grateful for his intense and dedicated help.

Conflicts of Interest: The authors declare no conflict of interest.

Remote Sens. 2023, 15, 2165 15 of 22

Appendix A

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 21

We also suggest considering in advance the possibility of not transmitting
unchanged information in relation to the previous information (for example, if the
vehicle is stopped at traffic lights or in a traffic jam).

Author Contributions: Conceptualization, Y.W. and A.R.; methodology, A.R.; software, A.R.;
validation, A.R.; formal analysis, A.R. and Y.W; investigation, A.R.; resources, A.R.; data curation,
A.R.; writing—original draft preparation, A.R.; writing—review and editing, A.R. and Y.W;
supervision, Y.W.; project administration, A.R and Y.W.; All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: We are very grateful to all those who contributed to the success of this
research. First and foremost, we would like to thank Eduard Yakubov and Eugen Mandrescu for
all their support and encouragement throughout the process of research. Also, we would like to
express our gratitude to Radel Ben-Av, who provided valuable information, insights and
assistance with his extensive experience in the field. In addition, many thanks to my good friend
Alrajoub Eyas for his contribution in supporting the development of tools that were very
important to the success of this research, and we are grateful for his intense and dedicated help.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Figure A1. Untouched file from NMEA Logger before filtering. Figure A1. Untouched file from NMEA Logger before filtering.

Remote Sens. 2023, 15, x FOR PEER REVIEW 16 of 21

Figure A2. File after filtering.

Figure A3. Example of incorrect information in a database.

Figure A4. Case with different number of GPGSV lines.

Figure A2. File after filtering.

Remote Sens. 2023, 15, 2165 16 of 22

Remote Sens. 2023, 15, x FOR PEER REVIEW 16 of 21

Figure A2. File after filtering.

Figure A3. Example of incorrect information in a database.

Figure A4. Case with different number of GPGSV lines.

Figure A3. Example of incorrect information in a database.

Remote Sens. 2023, 15, x FOR PEER REVIEW 16 of 21

Figure A2. File after filtering.

Figure A3. Example of incorrect information in a database.

Figure A4. Case with different number of GPGSV lines. Figure A4. Case with different number of GPGSV lines.

Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 21

Figure A5. Different fields in the same type of line.

Figure A6. Difference file (Diff file).

Appendix B
This spreadsheet is a static conversion table for each symbol. This table also shows

the occurrence frequency of each symbol and its Huffman coding. We can see in
addition in this table how much per-symbol space we were able to save and an entropy
calculation in relation to the per-character average.

Average bits per symbol is 5.5814.
Entropy is 5.5481.

Table A1. Fixed character encoding and decoding map used in this study.

Symbols Frequency Huffman Coding
Num of

bits Space Savings (bits) Saved Bits Freq× num of
bits

Entropy

0 193,868 010 3 193,868 × 8–193,868 × 3 = 969,340 969,340 581,604 0.3401972807
% 128,388 1011 4 128,388 × 8–128,388 × 4 = 513,552 513,552 513,552 0.2663735204

Figure A5. Different fields in the same type of line.

Remote Sens. 2023, 15, 2165 17 of 22

Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 21

Figure A5. Different fields in the same type of line.

Figure A6. Difference file (Diff file).

Appendix B
This spreadsheet is a static conversion table for each symbol. This table also shows

the occurrence frequency of each symbol and its Huffman coding. We can see in
addition in this table how much per-symbol space we were able to save and an entropy
calculation in relation to the per-character average.

Average bits per symbol is 5.5814.
Entropy is 5.5481.

Table A1. Fixed character encoding and decoding map used in this study.

Symbols Frequency Huffman Coding
Num of

bits Space Savings (bits) Saved Bits Freq× num of
bits

Entropy

0 193,868 010 3 193,868 × 8–193,868 × 3 = 969,340 969,340 581,604 0.3401972807
% 128,388 1011 4 128,388 × 8–128,388 × 4 = 513,552 513,552 513,552 0.2663735204

Figure A6. Difference file (Diff file).

Appendix B

This spreadsheet is a static conversion table for each symbol. This table also shows the
occurrence frequency of each symbol and its Huffman coding. We can see in addition in
this table how much per-symbol space we were able to save and an entropy calculation in
relation to the per-character average.

Average bits per symbol is 5.5814.
Entropy is 5.5481.

Table A1. Fixed character encoding and decoding map used in this study.

Symbols Frequency Huffman
Coding Num of Bits Space Savings (Bits) Saved Bits Freq × Num

of Bits Entropy

0 193,868 010 3 193,868 × 8 − 193,868 × 3 = 969,340 969,340 581,604 0.3401972807

% 128,388 1011 4 128,388 × 8 − 128,388 × 4 = 513,552 513,552 513,552 0.2663735204

- 97,393 0110 4 97,393 × 8 − 97,393 × 4 = 389,572 389,572 389,572 0.2229590946

1 91,188 0010 4 91,188 × 8 − 91,188 × 4 = 364,752 364,752 364,752 0.2134148223

, 82,150 11110 5 82,150 × 8 − 82,150 × 5 = 246,450 246,450 410,750 0.1989196096

¦ 81,703 11101 5 81,703 × 8 − 81,703 × 5 = 245,109 245,109 408,515 0.1981833350

© 74,786 11010 5 74,786 × 8 − 74,786 × 5 = 224,358 224,358 373,930 0.1865413311

2 61,997 10011 5 61,997 × 8 − 61,997 × 5 = 185,991 185,991 309,985 0.1636685171

5 52,276 10000 5 52,276 × 8 − 52,276 × 5 = 156,828 156,828 261,380 0.1449276078

3 49,158 01110 5 49,158 × 8 − 49,158 × 5 = 147,474 147,474 245,790 0.1386305132

y 41,594 111110 6 41,594 × 8 − 41,594 × 6 = 83,188 83,188 249,564 0.1226949237

< 38,094 111000 6 38,094 × 8 − 38,094 × 6 = 76,188 76,188 228,564 0.1149702278

I 35,174 110010 6 35,174 × 8 − 35,174 × 6 = 70,348 70,348 211,044 0.1083353318

Remote Sens. 2023, 15, 2165 18 of 22

Table A1. Cont.

Symbols Frequency Huffman
Coding Num of Bits Space Savings (Bits) Saved Bits Freq × Num

of Bits Entropy

F 35,146 110001 6 35,146 × 8 − 35,146 × 6 = 70,292 70,292 210,876 0.1082708225

> 31,515 101001 6 31,515 × 8 − 31,515 × 6 = 63,030 63,030 189,090 0.0997533134

4 29,563 100101 6 29,563 × 8 − 29,563 × 6 = 59,126 59,126 177,378 0.0950422933

r 27,118 100010 6 27,118 × 8 − 27,118 × 6 = 54,236 54,236 162,708 0.0889993603

§ 26,345 011111 6 26,345 × 8 − 26,345 × 6 = 52,690 52,690 158,070 0.0870539414

6 25,197 011110 6 25,197 × 8 − 25,197 × 6 = 50,394 50,394 151,182 0.0841320976

ˆ 24,585 001111 6 24,585 × 8 − 24,585 × 6 = 49,170 49,170 147,510 0.0825579785

24,135 001101 6 24,135 × 8 − 24,135 × 6 = 48,270 48,270 144,810 0.0813930080

¤ 23,174 001100 6 23,174 × 8 − 23,174 × 6 = 46,348 46,348 139,044 0.0788831806

9 22,641 000110 6 22,641 × 8 − 22,641 × 6 = 45,282 45,282 135,846 0.0774778937

7 22,606 000101 6 22,606 × 8 − 22,606 × 6 = 45,212 45,212 135,636 0.0773852757

} 22,419 000011 6 22,419 × 8 − 22,419 × 6 = 44,838 44,838 134,514 0.0768897164

* 22,347 000010 6 22,347 × 8 − 22,347 × 6 = 44,694 44,694 134,082 0.0766985905

@ 22,144 000001 6 22,144 × 8 − 22,144 × 6 = 44,288 44,288 132,864 0.0761587499

8 21,345 1111111 7 21,345 × 8 − 21,345 × 7 = 21,345 21,345 149,415 0.0740197954

v 19,685 1110010 7 19,685 × 8 − 19,685 × 7 = 19,685 19,685 137,795 0.0695006163

t 18,883 1101110 7 18,883 × 8 − 18,883 × 7 = 18,883 18,883 132,181 0.0672788481

ú 18,839 1101101 7 18,839 × 8 − 18,839 × 7 = 18,839 18,839 131,873 0.0671562004

x 18,544 1101100 7 18,544 × 8 − 18,544 × 7 = 18,544 18,544 129,808 0.0663318331

(17,649 1100110 7 17,649 × 8 − 17,649 × 7 = 17,649 17,649 123,543 0.0638082439

‘ 16,978 1100000 7 16,978 × 8 − 16,978 × 7 = 16,978 16,978 118,846 0.0618932344

ô 16,539 1010110 7 16,539 × 8 − 16,539 × 7 = 16,539 16,539 115,773 0.0606292513

¿ 15,878 1010101 7 15,878 × 8 − 158,78 × 7 = 15,878 15,878 111,146 0.0587089325
3
4 15,584 1010001 7 15,584 × 8 − 15,584 × 7 = 15,584 15,584 109,088 0.0578479990

X 15,133 1010000 7 15,133 × 8 − 15,133 × 7 = 15,133 15,133 105,931 0.0565189165

Â 14,659 1001001 7 14,659 × 8 − 14,659 × 7 = 14,659 14,659 102,613 0.0551107992

E 14,002 1000111 7 14,002 × 8 − 14,002 × 7 = 14,002 14,002 98,014 0.0531392767

| 11,595 0001111 7 11,595 × 8 − 11,595 × 7 = 11,595 11,595 81,165 0.0457024780

u 11,549 0001110 7 11,549 × 8 − 11,549 × 7 = 11,549 11,549 80,843 0.0455568088

± 11,140 0001000 7 11,140 × 8 − 11,140 × 7 = 11,140 11,140 77,980 0.0442552980

z 10,792 0000000 7 10,792 × 8 − 10,792 × 7 = 10,792 10,792 75,544 0.0431387351

/ 10,575 11111101 8 10,575 × 8 − 10,575 × 8 = 0 0 84,600 0.0424380946

¥ 10,471 11111100 8 10,471 × 8 − 10,471 × 8 = 0 0 83,768 0.0421010826

. 9949 11100110 8 9949 × 8 − 9949 × 8 = 0 0 79,592 0.0403972615

û 9833 11011111 8 9833 × 8 − 9833 × 8 = 0 0 78,664 0.0400157852

ä 9040 11001111 8 9040 × 8 − 9040 × 8 = 0 0 72,320 0.0373787946

) 8945 11001110 8 8945 × 8 − 8945 × 8 = 0 0 71,560 0.0370593545

é 8514 11000011 8 8514 × 8 − 8514 × 8 = 0 0 68,112 0.0356001401

_ 8466 11000010 8 8466 × 8 − 8466 × 8 = 0 0 67,728 0.0354365961

s 8130 10101001 8 8130 × 8 − 8130 × 8 = 0 0 65,040 0.0342858027
1
2 7315 10010001 8 7315 × 8 − 7315 × 8 = 0 0 58,520 0.0314487129

Š 6900 10001101 8 6900 × 8 − 6900 × 8 = 0 0 55,200 0.0299774250

U 5907 00111000 8 5907 × 8 − 5907 × 8 = 0 0 47,256 0.0263758905

~ 5459 00000011 8 5459 × 8 − 5459 × 8 = 0 0 43,672 0.0247097701

î 5024 111001110 9 5024 × 8 − 5024 × 9 = −5024 −5024 45,216 0.0230646747

« 4314 101011111 9 4314 × 8 − 4314 × 9 = −4314 −4314 38,826 0.0203154453

þ 4142 101011110 9 4142 × 8 − 4142 × 9 = −4142 −4142 37,278 0.0196363053

œ 4106 101011101 9 4106 × 8 − 4106 × 9 = −4106 −4106 36,954 0.0194934655

ï 3857 101010001 9 3857 × 8 − 3857 × 9 = −3857 −3857 34,713 0.0184986608

+ 3636 100100000 9 3636 × 8 − 3636 × 9 = −3636 −3636 32,724 0.0176052864

Remote Sens. 2023, 15, 2165 19 of 22

Table A1. Cont.

Symbols Frequency Huffman
Coding Num of Bits Space Savings (Bits) Saved Bits Freq × Num

of Bits Entropy

w 3229 001110111 9 3229 × 8 − 3229 × 9 = −3229 −3229 29,061 0.0159322230

ç 3089 001110110 9 3089 × 8 − 3089 × 9 = −3089 −3089 27,801 0.0153477517

¬ 3062 001110101 9 3062 × 8 − 3062 × 9 = −3062 −3062 27,558 0.0152344723

p 3024 001110011 9 3024 × 8 − 3024 × 9 = −3024 −3024 27,216 0.0150747286

q 2818 000100110 9 2818 × 8 − 2818 × 9 = −2818 −2818 25,362 0.0142021730

ñ 2796 000100100 9 2796 × 8 − 2796 × 9 = −2796 −2796 25,164 0.0141083110

ê 2665 000000100 9 2665 × 8 − 2665 × 9 = −2665 −2665 23,985 0.0135465855

D 2600 1110011111 10 2600 × 8 − 2600 × 10 = −5200 −5200 26,000 0.0132660257

ö 2583 1110011110 10 2583 × 8 − 2583 × 10 = −5166 −5166 25,830 0.0131924417

K 2344 1101111010 10 2344 × 8 − 2344 × 10 = −4688 −4688 23,440 0.0121484651

Á 2310 1101111001 10 2310 × 8 − 2310 × 10 = −4620 −4620 23,100 0.0119984550

¶ 2160 1101111000 10 2160 × 8 − 2160 × 10 = −4320 −4320 21,600 0.0113319272

m 2002 1010111000 10 2002 × 8 − 2002 × 10 = −4004 −4004 20,020 0.0106210870

f 1867 1010100000 10 1867 × 8 − 1867 × 10 = −3734 −3734 18,670 0.0100060762

õ 1840 1001000011 10 1840 × 8 − 1840 × 10 = −3680 −3680 18,400 0.0098821815

Q 1665 1000110001 10 1665 × 8 − 1665 × 10 = −3330 −3330 16,650 0.0090714919

o 1531 0011101001 10 1531 × 8 − 1531 × 10 = −3062 −3062 15,310 0.0084411465

ð 1528 0011101000 10 1528 × 8 − 1528 × 10 = −3056 −3056 15,280 0.0084269329

e 1509 0011100101 10 1509 × 8 − 1509 × 10 = −3018 −3018 15,090 0.0083368070

Ì 1469 0011100100 10 1469 × 8 − 1469 × 10 = −2938 −2938 14,690 0.0081464584

ø 1428 0001001110 10 1428 × 8 − 1428 × 10 = −2856 −2856 14,280 0.0079504731

® 1415 0001001011 10 1415 × 8 − 1415 × 10 = −2830 −2830 14,150 0.0078881418

J 1365 0000001011 10 1365 × 8 − 1365 × 10 = −2730 −2730 13,650 0.0076475342

n 1330 11011110111 11 1330 × 8 − 1330 × 11 = −3990 −3990 14,630 0.0074782658

i 1040 10101110011 11 1040 × 8 − 1040 × 11 = −3120 −3120 11,440 0.0060462641

k 1019 10101000011 11 1019 × 8 − 1019 × 11 = −3057 −3057 11,209 0.0059403145

l 929 10010000101 11 929 × 8 − 929 × 11 = −2787 −2787 10,219 0.0054823489

j 906 10010000100 11 906 × 8 − 906 × 11 = −2718 −2718 9966 0.0053642520

Ž 898 10001100111 11 898 × 8 − 898 × 11 = −2694 −2694 9878 0.0053230692

Œ 895 10001100110 11 895 × 8 − 895 × 11 = −2685 −2685 9845 0.0053076114

? 893 10001100101 11 893 × 8 − 893 × 11 = −2679 −2679 9823 0.0052973018

N 884 10001100100 11 884 × 8 − 884 × 11 = −2652 −2652 9724 0.0052508657

í 812 10001100000 11 812 × 8 − 812 × 11 = −2436 −2436 8932 0.0048767525

Space 724 00010011110 11 724 × 8 − 724 × 11 = −2172 −2172 7964 0.0044127160

a 709 00010010101 11 709 × 8 − 709 × 11 = −2127 −2127 7799 0.0043328166

g 679 00000010101 11 679 × 8 − 679 × 11 = −2037 −2037 7469 0.0041722735

µ 659 00000010100 11 659 × 8 − 659 × 11 = −1977 −1977 7249 0.0040646756

ß 616 110111101101 12 616 × 8 − 616 × 12 = −2464 −2464 7392 0.0038317250

ÿ 607 110111101100 12 607 × 8 − 607 × 12 = −2428 −2428 7284 0.0037826782

T 520 101011100101 12 520 × 8 − 520 × 12 = −2080 −2080 6240 0.0033029709

ü 495 101010000101 12 495 × 8 − 495 × 12 = −1980 −1980 5940 0.0031631097

M 444 101010000100 12 444 × 8 − 444 × 12 = −1776 −1776 5328 0.0028746957

ó 402 100011000010 12 402 × 8 − 402 × 12 = −1608 −1608 4824 0.0026337800

b 352 000100111110 12 352 × 8 − 352 × 12 = −1408 −1408 4224 0.0023424939

L 345 000100101001 12 345 × 8 − 345 × 12 = −1380 −1380 4140 0.0023012906

O 345 000100101000 12 345 × 8 − 345 × 12 = −1380 −1380 4140 0.0023012906

Z 293 1010111001001 13 293 × 8 − 293 × 13 = −1465 −1465 3809 0.0019915935

æ 223 1010111001000 13 223 × 8 − 223 × 13 = −1115 −1115 2899 0.0015630521

c 221 1000110000111 13 221 × 8 − 221 × 13 = −1105 −1105 2873 0.0015505795

Y 219 1000110000110 13 219 × 8 − 219 × 13 = −1095 −1095 2847 0.0015380928

Remote Sens. 2023, 15, 2165 20 of 22

Table A1. Cont.

Symbols Frequency Huffman
Coding Num of Bits Space Savings (Bits) Saved Bits Freq × Num

of Bits Entropy

ë 186 0001001111110 13 186 × 8 − 186 × 13 = −930 −930 2418 0.0013299109

ù 92 00010011111110 14 92 × 8 − 92 × 14 = −552 −552 1288 0.0007080876

£ 62 000100111111111 15 62 × 8 − 62 × 15 = −434 −434 930 0.0004961866

€ 32 0001001111111101 16 32 × 8 − 32 × 16 = −256 −256 512 0.0002725284

Í 1 0001001111111100 16 1 × 8 − 1 × 16 = −8 −8 16 0.0000112073

Total freq:
1,858,212

Saved bits:
4,494,225 10,371,471 Entropy:

5.5481

References
1. Raviteja, T.; Vedaraj, I.R. An Introduction of autonomous vehicles and A brief survey. J. Crit. Rev. 2020, 7, 13.
2. Wiseman, Y. Autonomous Vehicles. In Encyclopedia of Information Science and Technology, 5th ed.; IGI Global: Hershey, PA, USA,

2020; Volume 1, Chapter 1; pp. 1–11.
3. Parekh, D.; Poddar, N.; Rajpurkar, A.; Chahal, M.; Kumar, N.; Joshi, G.P.; Cho, W. A review on autonomous vehicles: Progress,

methods and challenges. Electronics 2022, 11, 2162. [CrossRef]
4. Cosgun, A.; Ma, L.; Chiu, J.; Huang, J.; Demir, M.; Anon, A.M.; Lian, T.; Tafish, H.; Al-Stouhi, S. Towards full automated drive in

urban environments: A demonstration in GoMentum Station, California. In Proceedings of the 2017 IEEE Intelligent Vehicles
Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; IEEE: Piscataway, NJ, USA, 2017.

5. Klein, S.T.; Wiseman, Y. Parallel Huffman Decoding with Applications to JPEG Files. Comput. J. 2003, 46, 487–497. [CrossRef]
6. Krile, S.; Kezić, D.; Dimc, F. NMEA Communication Standard for Shipboard Data Architecture. NAŠE MORE Znan. Časopis More

Pomor. 2013, 60, 68–81.
7. Marcellin, M.W.; Gormish, M.J.; Bilgin, A.; Boliek, M.P. An overview of JPEG-2000. In Proceedings of the DCC 2000. Data

Compression Conference, Snowbird, UT, USA, 28–30 March 2000; IEEE: Piscataway, NJ, USA, 2000.
8. Nurrohman, A.; Abdurohman, M. High performance streaming based on H264 and real time messaging protocol (RTMP).

In Proceedings of the 2018 6th International Conference on Information and Communication Technology (ICoICT), Bandung,
Indonesia, 3–5 May 2018; IEEE: Piscataway, NJ, USA, 2018.

9. Chen, J.W.; Kao, C.Y.; Lin, Y.L. Introduction to H. 264 advanced video coding. In Proceedings of the 2006 Asia and South Pacific
Design Automation Conference, Yokohama, Japan, 24–27 January 2006.

10. Taeihagh, A.; Lim, H.S.M. Governing autonomous vehicles: Emerging responses for safety, liability, privacy, cybersecurity, and
industry risks. Transp. Rev. 2019, 39, 103–128. [CrossRef]

11. Hacohen, S.; Medina, O. Autonomous Vehicle, Sensing and Communication Survey; Ariel University: Ariel, Israel, 2020.
12. UK Government. The Key Principles of Vehicle Cyber Security for Connected and Automated Vehicles; Centre for Connected and

Autonomous Vehicles, Department for Transport Guidance: London, UK, 2017.
13. Fitriya, L.A.; Purboyo, T.W.; Prasasti, A.L. A Review of Data Compression Techniques. Int. J. Appl. Eng. Res. 2017, 12, 19.
14. Svanberg, J.; Palmkvist, K. Lightweight Real-Time Lossless Software Compression of Trace Data. Master’s Thesis, Department of

Electrical Engineering, Linköping University, Linköping, Sweden, 2021.
15. Huffman, D.A. A Method for the Construction of Minimum-Redundancy Codes. Proc. IRE 1952, 40, 1098–1101. [CrossRef]
16. Alistair, M. Huffman Coding. ACM Comput. Surv. 2019, 52, 4.
17. Hashemian, R. Memory efficient and high-speed search Huffman coding. IEEE Trans. Commun. 1995, 43, 2576–2581. [CrossRef]
18. Shen, L.; Stopher, P.R. Review of GPS Travel Survey and GPS Data-Processing Methods. Transp. Rev. 2014, 34, 316–334. [CrossRef]
19. Abulude, F.; Akinnusotu, A.; Adeyemi, A. Global Positioning System and Its Wide Applications. Wilolud J. 2015, 9, 22–30.
20. Curry, A. The internet of Animals. Nature 2018, 562, 322–326. [CrossRef] [PubMed]
21. Martin, B. Technology to the Rescue. In Survival or Extinction? Springer: Berlin/Heidelberg, Germany, 2019; pp. 319–330.
22. Buchheit, M.; Al Haddad, H.; Simpson, B.M.; Palazzi, D.; Bourdon, P.C.; Di Salvo, V.; Mendez-Villanueva, A. Monitoring

Accelerations with GPS in Football: Time to Slow Down? Int. J. Sports Physiol. Perform. 2014, 9, 442–445. [CrossRef]
23. Rahiman, W.; Zainal, Z. An Overview of Development GPS Navigation for Autonomous Car. In Proceedings of the 2013 IEEE 8th

Conference on Industrial Electronics and Applications (ICIEA), Melbourne, Australia, 19–21 June 2013; IEEE: Piscataway, NJ,
USA, 2013; pp. 1112–1118.

24. Mathiesen, T.T. GPS, NMEA, WGS-84, GIS and VB.NET. Available online: http://www.tma.dk/gps/ (accessed on 16 July 2008).
25. Langley, R. Nmea 0183: A gps receiver. GPS World 1995, 6, 54–57.
26. Si, H.; Aung, Z.M. Position Data Acquisition from NMEA Protocol of Global Positioning System. Int. J. Comput. Electr. Eng. 2011,

3, 353–357. [CrossRef]
27. Lever, R.; Hinze, A.; Buchanan, G. Compressing gps data on mobile devices. In On the Move to Meaningful Internet Systems 2006:

OTM 2006 Workshops: OTM Confederated International Workshops and Posters, AWeSOMe, CAMS, COMINF, IS, KSinBIT, MIOS-CIAO,
MONET, OnToContent, ORM, PerSys, OTM Academy Doc-Toral Consortium, RDDS, SWWS, and SeBGIS 2006, Montpellier, France, 29
October–3 November 2006; Proceedings, Part II; Springer: Berlin/Heidelberg, Germany, 2006.

https://doi.org/10.3390/electronics11142162
https://doi.org/10.1093/comjnl/46.5.487
https://doi.org/10.1080/01441647.2018.1494640
https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.1109/26.469442
https://doi.org/10.1080/01441647.2014.903530
https://doi.org/10.1038/d41586-018-07036-2
https://www.ncbi.nlm.nih.gov/pubmed/30327529
https://doi.org/10.1123/ijspp.2013-0187
http://www.tma.dk/gps/
https://doi.org/10.7763/IJCEE.2011.V3.340

Remote Sens. 2023, 15, 2165 21 of 22

28. DePriest, D. NMEA Data. Available online: https://web.fe.up.pt/~ee95080/NMEA%20data.pdf (accessed on 16 August 2021).
29. Novatel, H. GNSS Logs. 2022. Available online: https://docs.novatel.com/OEM7/Content/Logs/Core_Logs.htm (accessed on

16 August 2021).
30. Rahnamai, K.; Gorman, K.; Gray, A.; Arabshahi, P. Formations of Autonomous Vehicles Using Global Positioning Systems (GPS).

In Proceedings of the 2005 IEEE Aerospace Conference, Big Sky, Montana, 5–12 March 2005; IEEE: Piscataway, NJ, USA, 2005.
31. Ulku, E.E.; Bekmezci, I. Multi token based location sharing for multi UAV systems. Int. J. Comput. Electr. Eng. 2016, 8, 197.

[CrossRef]
32. Kakad, S.; Sarode, P.; Bakal, J.W. A survey on query response time optimization approaches for reliable data communication in

wireless sensor network. Int. J. Wirel. Commun. Netw. Technol. 2012, 1, 31–36.
33. Jurdana, I.; Lopac, N.; Wakabayashi, N.; Liu, H. Shipboard Data Compression Method for Sustainable Real-Time Maritime

Communication in Remote Voyage Monitoring of Autonomous Ships. Sustainability 2021, 13, 8264. [CrossRef]
34. Kabir, M.; Kang, M.J.; Wu, X.; Hamidi, M. Study on U-turn behavior of vessels in narrow waterways based on AIS data. Ocean

Eng. 2022, 246, 110608. [CrossRef]
35. Correia, S.D.; Perez, R.; Matos-Carvalho, J.; Leithardt, V.R.Q. µJSON, a Lightweight Compression Scheme for Embedded GNSS

Data Transmission on IoT Nodes. In Proceedings of the 2022 5th Conference on Cloud and Internet of Things (CIoT), Marrakech,
Morocco, 28–30 March 2022; IEEE: Piscataway, NJ, USA, 2022.

36. Zhou, F.; Zhao, L.; Li, L.; Hu, Y.; Jiang, X.; Yu, J.; Liang, G. GNSS Signal Acquisition Algorithm Based on Two-Stage Compression
of Code-Frequency Domain. Appl. Sci. 2022, 12, 6255. [CrossRef]

37. Ansari, B.; Kaushik, V.; Biswas, S.K. Raw GNSS Data Compression using Compressive Sensing for Reflectometry Applications.
In Proceedings of the 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science,
Rome, Italy, 29 August–5 September 2020; IEEE: Piscataway, NJ, USA, 2020.

38. Perez, R.; Leithardt, V.R.Q.; Correia, S.D. Lossless Compression Scheme for Efficient GNSS Data Transmission on IoT Devices. In
Proceedings of the 2021 International Conference on Electrical, Computer and Energy Technologies (ICECET), Cape Town, South
Africa, 9–10 December 2021; IEEE: Piscataway, NJ, USA, 2021.

39. Muckell, J.; Hwang, J.H.; Patil, V.; Lawson, C.T.; Ping, F.; Ravi, S.S. SQUISH: An online approach for GPS trajectory compression.
In Proceedings of the 2nd International Conference on Computing for Geospatial Research & Applications, Washington, DC,
USA, 23–25 May 2011.

40. Sichitiu, M.L.; Kihl, M. Inter-vehicle communication systems: A survey. IEEE Commun. Surv. Tutor. 2008, 10, 88–105. [CrossRef]
41. Hussein, H.H.; Radwan, M.H.; El-Kader, S.M.A. Proposed localization scenario for autonomous vehicles in GPS denied environ-

ment. In Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2020, Cairo, Egypt, 19–21
October 2020; Springer: Berlin/Heidelberg, Germany, 2021.

42. Gakstatter, E. What Exactly Is GPS NMEA Data? 4 February 2015. Available online: https://www.gpsworld.com/what-exactly-
is-gps-nmea-data/ (accessed on 30 December 2021).

43. Kwon, S.K.; Tamhankar, A.; Rao, K.R. Overview of H. 264/MPEG-4 part 10. J. Vis. Commun. Image Represent. 2006, 17, 186–216.
[CrossRef]

44. Lin, Y.; Han Hsu, H. General architecture for MPEG-2/H. 263/H. 264/AVC to H. 264/AVC intra frame transcoding. J. Signal
Process. Syst. 2011, 65, 89–103. [CrossRef]

45. Wiegand, T.; Sullivan, G.J.; Bjontegaard, G.; Luthra, A. Overview of the H.264/AVC Video Coding Standard. IEEE Trans. Circuits
Syst. Video Technol. 2003, 13, 560–576. [CrossRef]

46. Sullivan, G.J.; Wiegand, T. Video compression-from concepts to the H. 264/AVC standard. Proc. IEEE 2005, 93, 18–31. [CrossRef]
47. Vijayanagar, K.R. I, P, and B-frames—Differences and Use Cases Made Easy. 14 December 2020. Available online: https:

//ottverse.com/i-p-b-frames-idr-keyframes-differences-usecases/ (accessed on 19 August 2022).
48. Romero, A. IBM Watson Media. 13 April 2021. Available online: https://blog.video.ibm.com/streaming-video-tips/keyframes-

interframe-video-compression/ (accessed on 28 August 2022).
49. Wang, W.X.; Guo, R.J.; Yu, J. Research on road traffic congestion index based on comprehensive parame-ters: Taking Dalian city

as an example. Adv. Mech. Eng. 2018, 10, 1687814018781482.
50. Plitt, A.; Ricciulli, V. New York City’s Streets are ‘More Congested than Ever’: Report. 8 August 2019. Available online:

https://ny.curbed.com/2019/8/15/20807470/nyc-streets-dot-mobility-report-congestion (accessed on 15 August 2019).
51. Arena, F.; Pau, G.; Severino, A. A Review on IEEE 802.11p for Intelligent Transportation Systems. J. Sens. Actuator Netw. 2020, 9,

22. [CrossRef]
52. Available online: https://play.google.com/store/apps/details?id=com.peterhohsy.nmeatools&hl=en&gl=US&pli=1 (accessed on

18 September 2022).
53. Guo, Y.; Li, W.; Yang, G.; Jiao, Z.; Yan, J. Combining Dilution of Precision and Kalman Filtering for UWB Positioning in a Narrow

Space. Remote Sens. 2022, 14, 5409. [CrossRef]
54. Jiang, S.; Wang, W.; Peng, P. A Single-Site Vehicle Positioning Method in the Rectangular Tunnel Environment. Remote Sens. 2023,

15, 527. [CrossRef]
55. Cui, Y.; Ge, S.S. Autonomous vehicle positioning with gps in urban canyon environments. IEEE Trans. Robot. Autom. 2003, 19,

15–25. [CrossRef]

https://web.fe.up.pt/~ee95080/NMEA%20data.pdf
https://docs.novatel.com/OEM7/Content/Logs/Core_Logs.htm
https://doi.org/10.17706/IJCEE.2016.8.3.197-206
https://doi.org/10.3390/su13158264
https://doi.org/10.1016/j.oceaneng.2022.110608
https://doi.org/10.3390/app12126255
https://doi.org/10.1109/COMST.2008.4564481
https://www.gpsworld.com/what-exactly-is-gps-nmea-data/
https://www.gpsworld.com/what-exactly-is-gps-nmea-data/
https://doi.org/10.1016/j.jvcir.2005.05.010
https://doi.org/10.1007/s11265-010-0565-7
https://doi.org/10.1109/TCSVT.2003.815165
https://doi.org/10.1109/JPROC.2004.839617
https://ottverse.com/i-p-b-frames-idr-keyframes-differences-usecases/
https://ottverse.com/i-p-b-frames-idr-keyframes-differences-usecases/
https://blog.video.ibm.com/streaming-video-tips/keyframes-interframe-video-compression/
https://blog.video.ibm.com/streaming-video-tips/keyframes-interframe-video-compression/
https://ny.curbed.com/2019/8/15/20807470/nyc-streets-dot-mobility-report-congestion
https://doi.org/10.3390/jsan9020022
https://play.google.com/store/apps/details?id=com.peterhohsy.nmeatools&hl=en&gl=US&pli=1
https://doi.org/10.3390/rs14215409
https://doi.org/10.3390/rs15020527
https://doi.org/10.1109/tra.2002.807557

Remote Sens. 2023, 15, 2165 22 of 22

56. Aggarwal, A.K. GPS-based localization of autonomous vehicles. In Autonomous Driving and Advanced Driver-Assistance Systems
(ADAS); CRC Press: Boca Raton, FL, USA, 2021; pp. 437–448.

57. Park, B.; Savoldi, A.; Gubian, P.; Park, J.; Lee, S.H.; Lee, S. Recovery of Damaged Compressed Files for Digital Forensic Purposes.
IEEE Comput. Soc. 2008, 2008, 365–372.

58. Guha, T.; Ward, R.K. Image similarity using sparse representation and compression distance. IEEE Trans. Multimed. 2014, 16,
980–987. [CrossRef]

59. Fano, R.M. The Transmission of Information, Research Laboratory of Electronics; Technical Report 65; MIT: Cambridge, MA, USA, 1949;
Volume 9, Issue 22.

60. Vaidya, M.; Walia, E.S.; Gupta, A. Data compression using Shannon-fano algorithm implemented by VHDL. In Proceedings of
the 2014 International Conference on Advances in Engineering & Technology Research (ICAETR-2014), Unnao, India, 1–2 August
2014; IEEE: Piscataway, NJ, USA, 2014.

61. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TMM.2014.2306175
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

	Introduction
	Background
	Autonomous Vehicles
	Data Compression
	Global Navigation Satellite System
	NMEA Standard

	GNSS Data Compression Review and Related Work
	Employing H.264-Like Compression
	Methodology
	Experiments
	Results
	Conclusions
	Appendix A
	Appendix B
	References

