Statistical Analysis of Mesovortices during the First Rainy Season in Guangdong, South China
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Identification of MVs
3. Characteristics of MVs during the First Rainy Season in Guangdong, South China
3.1. Spatiotemporal Distribution
3.2. Comparison of MVs in Different Regions of Guangdong
3.3. Environmental Conditions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, L.M.; Yu, X.D. Characteristic analyses on environmental parameters in short-term severe convective weather in China. Plateau. Meteorol. 2013, 32, 156–165. [Google Scholar]
- Xue, X.Y.; Ren, G.Y.; Sun, X.B.; Ren, Y.Y.; Yu, Y. Climatological characteristics of meso-scale and micro-scale strong convective weather events in China. Clim. Environ. Res. 2019, 24, 199. (In Chinese) [Google Scholar]
- Wang, L.; Shen, X.; Wang, Y.; Zhang, C.; Wang, Y.; Li, X. Mechanism analysis of a squall line upscale growing process in South China. Plateau. Meteorol. 2021, 40, 145–158. [Google Scholar]
- Zhang, C.; Zhi, S.L.; Xu, A.H. Analysis of radar echo characteristics of rare force 10 gale with a strong squall line event in Jiangxi. Torrential Rain Disasters 2019, 38, 135–143. (In Chinese) [Google Scholar]
- Du, Y.; Chen, G.X.; Han, B.; Bai, L.Q.; Li, M.H. Convection initiation and growth at the coast of South China. Part II: Effects of the terrain, coastline, and cold pools. Mon. Weather Rev. 2020, 148, 3871–3892. [Google Scholar] [CrossRef]
- Liu, X.; Luo, Y.L.; Guan, Z.Y.; Zhang, D.L. An extreme rainfall event in coastal South China during SCMREX-2014: Formation and roles of rainband and echo trainings. J. Geophys. Res. Atmos. 2018, 123, 9256–9278. [Google Scholar] [CrossRef]
- Bai, L.Q.; Chen, G.X.; Huang, L. Image processing of radar mosaics for the climatology of convection initiation in South China. J. Appl. Meteorol. Climatol. 2020, 59, 65–81. [Google Scholar] [CrossRef]
- Yu, X.D.; Zhou, X.G.; Wang, X.M. The advances in the nowcasting techniques on thunderstorms and severe convection. Acta Meteorol. Sin. 2012, 70, 311–337. [Google Scholar]
- Trapp, R.J.; Tessendorf, S.A.; Godfrey, E.S.; Brooks, H.E. Tornadoes from squall lines and bow echoes. Part I: Climatological distribution. Weather. Forecast. 2005, 20, 23–34. [Google Scholar] [CrossRef]
- Wakimoto, R.M.; Murphey, H.V.; Davis, C.A.; Atkins, N.T. High winds generated by bow echoes. Part II: The relationship between the mesovortices and damaging straight-line winds. Mon. Weather Rev. 2006, 134, 2813–2829. [Google Scholar] [CrossRef]
- Atkins, N.T.; St. Laurent, M. Bow echo mesovortices. Part I: Processes that influence their damaging potential. Mon. Weather Rev. 2009, 137, 1497–1513. [Google Scholar] [CrossRef]
- Xu, X.; Xue, M.; Wang, Y. The genesis of mesovortices within a real-data simulation of a bow echo system. J. Atmos. Sci. 2015, 72, 1963–1986. [Google Scholar] [CrossRef]
- Burgess, D.W.; Donaldson, R.J., Jr.; Desrochers, P.R. The Tornado: Its Structure, Dynamics, Prediction, and Hazards; American Geophysical Union: Washington, DC, USA, 1993. [Google Scholar] [CrossRef]
- Funk, T.W.; Darmofal, K.E.; Kirkpatrick, J.D.; Dewald, V.L.; Przybylinski, R.W.; Schmocker, G.K.; Lin, Y.-J. Storm reflectivity and mesocyclone evolution associated with the 15 April 1994 squall line over Kentucky and Southern Indiana. Weather Forecast. 1999, 14, 976–993. [Google Scholar] [CrossRef]
- Yu, X.D.; Zheng, Y.Y.; Zhang, A.M.; Yao, Y.Q.; Fang, C. The detection of a severe tornado event in Anhui with China new generation weather radar. Plateau. Meteorol. 2006, 25, 914–924. [Google Scholar]
- Feng, J.Q.; Tang, D.Z.; Yu, X.D.; Zhang, H.M.; Chen, Q.P. The accuracy statistics of mesocyclone identification products from CINRAD/SA. Meteorol. Mon. 2010, 36, 47–52. [Google Scholar]
- Fang, C.; Zheng, Y. The analysis of mesocyclone product from the doppler weather radar. Meteorol. Mon. 2007, 33, 16–20. [Google Scholar]
- Fang, C.; Yu, X.D.; Zhu, W.J.; Yin, Z.H.; Zhou, K.H. Characteristics of the thunderstorm gale process in Hunan and Guangdong on 20 March 2013. Meteorol. Mon. 2015, 41, 1305–1314. [Google Scholar]
- Tang, Y.; Xu, X.; Xue, M.; Tang, J.; Wang, Y. Characteristics of low-level meso-γ-scale vortices in the warm season over East China. Atmos. Res. 2020, 235, 104768. [Google Scholar] [CrossRef]
- Xue, M.; Droegemeier, K.K.; Wong, V.; Shapiro, A.; Brewster, K.; Carr, F.; Weber, D.; Liu, Y.; Wang, D. The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteor. Atmos. Phys. 2000, 76, 143–165. [Google Scholar] [CrossRef]
- Brewster, K.; Hu, M.; Xue, M.; Gao, J. Efficient assimilation of radar data at high resolution for short-range numerical weather prediction. In Proceedings of the World Weather Research Program Symposium on Nowcasting and Very Short-range Forecasting, Toulouse, France, 6 September 2005. [Google Scholar]
- Hersbach, H.; Dee, D. ERA5 Reanalysis is in Production. ECMWF Newsl. 2016, 147, 7. [Google Scholar]
- Mitchell, E.D.; Vasiloff, S.V.; Stumpf, G.J.; Witt, A.; Eilts, M.D.; Johnson, J.T.; Thomas, K.W. The national severe storms laboratory tornado detection algorithm. Weather Forecast. 1998, 13, 352–366. [Google Scholar] [CrossRef]
- Smith, T.M.; Elmore, K.L. The use of radial velocity derivatives to diagnose rotation and divergence. In Proceedings of the 11th Conf. on Aviation, Range, and Aerospace, Hyannis, MA, USA, 5 October 2004. [Google Scholar]
- Johnson, J.T.; Mackeen, P.L.; Witt, A.; Mitchell, E.D.; Stumpf, G.J.; Eilts, M.D.; Thomas, K.W. The storm cell identification and tracking algorithm: An enhanced WSR-88D algorithm. Weather. Forecast. 1998, 13, 263–276. [Google Scholar] [CrossRef]
- Laing, A.G.; Fritsch, J.M. The global population of mesoscale convective complexes. Q. J. R. Meteorol. Soc. 1997, 123, 389–405. [Google Scholar] [CrossRef]
- Purpura, S.M.E.; Davenport, M.D.; McKeown, K.E.; Riggin, R.R. Environmental evolution of supercell thunderstorms interacting with the Appalachian Mountains. Weather. Forecast. 2023, 38, 179–198. [Google Scholar] [CrossRef]
- Wu, N.G.; Ding, X.; Wen, Z.P.; Chen, G.X.; Meng, Z.Y.; Lin, L.X.; Min, J.Z. Contrasting frontal and warm-sector heavy rainfalls over South China during the early-summer rainy season. Atmos. Res. 2020, 235, 104693. [Google Scholar] [CrossRef]
- Weisman, M.L.; Trapp, R.J. Low-level mesovortices within squall lines and bow echoes. Part I: Overview and dependence on environmental shear. Mon. Weather Rev. 2003, 131, 2779–2803. [Google Scholar]
- Wei, P.; Xu, X.; Xue, M.; Zhang, C.; Wang, Y.; Zhao, K.; Zhou, A.; Zhang, S.; Zhu, K. On the Key Dynamical Processes Supporting the 21.7 Zhengzhou Record-breaking Hourly Rainfall in China. Adv. Atmos. Sci. 2023, 40, 337–349. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, X.; Zhao, K.; Zhou, A. A merger-formation bow echo caused by low-level mesovortex. J. Geophy. Res. Atmos. 2023, 128, 8. [Google Scholar] [CrossRef]
Guangzhou (9200) | Shaoguan (9751) | Yangjiang (9662) | Shantou (9754) | Total | |
---|---|---|---|---|---|
Number of MVs | 3267 | 794 | 2182 | 1722 | 7965 |
18–30 min | 2153 (66%) | 551 (69%) | 1466 (67%) | 1172 (68%) | 5342 (67%) |
30–60 min | 992 (30%) | 223 (28%) | 626 (29%) | 479 (28%) | 2320 (29%) |
>60 min | 122 (4%) | 20 (3%) | 90 (4%) | 71 (4%) | 303 (4%) |
Diameter (km) | Azimuthal Shear (10−3·s−1) | Lifetime (Minutes) | |
---|---|---|---|
All MVs | 7.49 | 2.15 | 26 |
Short-lived MVs | 6.96 | 2.03 | 20 |
Medium-lived MVs | 8.35 | 2.33 | 36 |
Long-lived MVs | 10.30 | 2.88 | 75 |
Diameter (km) | Azimuthal Shear (10−3·s−1) | Lifetime (Minutes) | |
---|---|---|---|
Pearl River Delta | 7.64 | 2.16 | 27 |
Western Guangdong | 7.54 | 2.23 | 26 |
Northern Guangdong | 7.34 | 2.28 | 25 |
Eastern Guangdong | 7.22 | 1.98 | 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Xu, X.; Ju, Y.; Wu, Z.; Zhang, S.; Chen, X.; Xu, Q. Statistical Analysis of Mesovortices during the First Rainy Season in Guangdong, South China. Remote Sens. 2023, 15, 2176. https://doi.org/10.3390/rs15082176
Tang Y, Xu X, Ju Y, Wu Z, Zhang S, Chen X, Xu Q. Statistical Analysis of Mesovortices during the First Rainy Season in Guangdong, South China. Remote Sensing. 2023; 15(8):2176. https://doi.org/10.3390/rs15082176
Chicago/Turabian StyleTang, Ying, Xin Xu, Yuanyuan Ju, Zhenyu Wu, Shushi Zhang, Xunlai Chen, and Qi Xu. 2023. "Statistical Analysis of Mesovortices during the First Rainy Season in Guangdong, South China" Remote Sensing 15, no. 8: 2176. https://doi.org/10.3390/rs15082176
APA StyleTang, Y., Xu, X., Ju, Y., Wu, Z., Zhang, S., Chen, X., & Xu, Q. (2023). Statistical Analysis of Mesovortices during the First Rainy Season in Guangdong, South China. Remote Sensing, 15(8), 2176. https://doi.org/10.3390/rs15082176