Mapping Growing Stem Volume Using Dual-Polarization GaoFen-3 SAR Images in Evergreen Coniferous Forests
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Ground Data and Procession
2.3. GF-3 Dual-Polarimetric SAR Images and DEM
2.4. Image Pre-Processing
3. Methods
3.1. Research Framework
3.2. Feature Extraction from GF-3 SAR Images
3.3. The Approaches of Feature Selection
3.4. Stacking Ensemble Learning and Strategies
4. Results
4.1. The Sensitivity between Extracted Features and Forest GSV
4.2. The Results of Feature Selection
4.3. Estimated GSV Using Base Models
4.4. Estimated GSV from Stacking Resemble Models
5. Discussion
5.1. The Sensitivity of Features Extracted from Dual-Polarization GF-3 Images
5.2. The Potential of the Stacking Ensemble Learning Approach
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cartus, O.; Santoro, M.; Kellndorfer, J. Mapping forest aboveground biomass in the Northeastern United States with ALOS PALSAR dual-polarization L-band. Remote Sens. Environ. 2012, 124, 466–478. [Google Scholar] [CrossRef]
- Chowdhury, T.A.; Thiel, C.; Schmullius, C. Growing stock volume estimation from L-band ALOS PALSAR polarimetric coherence in Siberian forest. Remote Sens. Environ. 2014, 155, 129–144. [Google Scholar] [CrossRef]
- Kobayashi, A.S.; Sanga-Ngoie, K.; Widyorini, R.; Kawai, S.; Omura, Y.; Supriadi, B. Backscattering characteristics of L-band polarimetric and optical satellite imagery over planted acacia forests in Sumatra, Indonesia. J. Appl. Remote Sens. 2012, 6, 063525. [Google Scholar]
- Suzuki, R.; Kim, Y.; Ishii, R. Sensitivity of the backscatter intensity of ALOS/PALSAR to the above-ground biomass and other biophysical parameters of boreal forest in Alaska. Polar Sci. 2013, 7, 100–112. [Google Scholar] [CrossRef]
- Thiel, C.; Schmullius, C. Investigating ALOS PALSAR interferometric coherence in central Siberia at unfrozen and frozen conditions: Implications for forest growing stock volume estimation. Can. J. Remote Sens. 2013, 39, 232–250. [Google Scholar] [CrossRef]
- Li, X.; Lin, H.; Long, J.; Xu, X. Mapping the Growing Stem Volume of the Coniferous Plantations in North China Using Multispectral Data from Integrated GF-2 and Sentinel-2 Images and an Optimized Feature Variable Selection Method. Remote Sens. 2021, 13, 2740. Available online: https://www.mdpi.com/2072-4292/13/14/2740 (accessed on 18 March 2020). [CrossRef]
- Tang, C.; Ye, Z.; Long, J.; Liu, Z.; Zhang, T.; Xu, X.; Lin, H. Mapping forest and site quality of planted Chinese fir forest using sentinel images. Front. Plant Sci. 2022, 13, 949598. Available online: https://www.frontiersin.org/articles/10.3389/fpls.2022.949598 (accessed on 18 March 2020). [CrossRef] [PubMed]
- Xu, X.; Lin, H.; Liu, Z.; Ye, Z.; Li, X.; Long, J. A Combined Strategy of Improved Variable Selection and Ensemble Algorithm to Map the Growing Stem Volume of Planted Coniferous Forest. Remote Sens. 2021, 13, 4631. [Google Scholar] [CrossRef]
- Ningthoujam, R.; Balzter, H.; Tansey, K.; Feldpausch, T.; Mitchard, E.; Wani, A.; Joshi, P. Relationships of S-Band Radar Backscatter and Forest Aboveground Biomass in Different Forest Types. Remote Sens. 2017, 9, 1116. [Google Scholar] [CrossRef]
- Sasan, V.; Javad, S.; Kamran, A.; Hadi, F.; Hamed, N.; Tien, P.; Dieu, T.B. Improving Accuracy Estimation of Forest Aboveground Biomass Based on Incorporation of ALOS-2 PALSAR-2 and Sentinel-2A Imagery and Machine Learning: A Case Study of the Hyrcanian Forest Area (Iran). Remote Sens. 2018, 10, 172. [Google Scholar]
- Zhu, Y.; Liu, K.; Myint, S.W.; Du, Z.; Wu, Z. Integration of GF2 Optical, GF3 SAR, and UAV Data for Estimating Aboveground Biomass of China’s Largest Artificially Planted Mangroves. Remote Sens. 2020, 12, 2039. [Google Scholar] [CrossRef]
- Long, J.; Lin, H.; Wang, G.; Sun, H.; Yan, E. Mapping Growing Stem Volume of Chinese Fir Plantation Using a Saturation-based Multivariate Method and Quad-polarimetric SAR Images. Remote Sens. 2019, 11, 1872. [Google Scholar] [CrossRef]
- Li, X.; Ye, Z.; Long, J.; Zheng, H.; Lin, H. Inversion of Coniferous Forest Stock Volume Based on Backscatter and InSAR Coherence Factors of Sentinel-1 Hyper-Temporal Images and Spectral Variables of Landsat 8 OLI. Remote Sens. 2022, 14, 2754. Available online: https://mdpi-res.com/d_attachment/remotesensing/remotesensing-14-02754/article_deploy/remotesensing-14-02754-v3.pdf?version=1654843806 (accessed on 18 March 2020). [CrossRef]
- Wang, Z.M.; Zhang, W.Q.; Yue, C.R.; Liu, Q. Estimation of Forest Growing Stock Based on TerraSAR-X and ALOS PALSAR Data: A Case Study in Mengla County of Yunnan Province. J. Zhejiang For. Sci. Technol. 2018, 38, 38–43. [Google Scholar]
- Kobayashi, S.; Omura, Y.; Sanga-Ngoie, K.; Yamaguchi, Y.; Widyorini, R.; Fujita, M.S.; Supriadi, B.; Kawai, S. Yearly Variation of Acacia Plantation Forests Obtained by Polarimetric Analysis of ALOS PALSAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 8, 5294–5304. [Google Scholar] [CrossRef]
- Santoro, M.; Wegmuller, U.; Fransson, J.E.S.; Schmullius, C. Regional mapping of forest growing stock volume with multitemporal ALOS PALSAR backscatter. In Proceedings of the 2014 IEEE Geoscience & Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014. [Google Scholar]
- Stelmaszczuk-Górska, M.; Rodriguez-Veiga, P.; Ackermann, N.; Thiel, C.; Balzter, H.; Schmullius, C. Non-Parametric Retrieval of Aboveground Biomass in Siberian Boreal Forests with ALOS PALSAR Interferometric Coherence and Backscatter Intensity. J. Imaging 2015, 2, 1. [Google Scholar] [CrossRef]
- Thiel, C.; Schmullius, C. Impact of Tree Species on Magnitude of PALSAR Interferometric Coherence over Siberian Forest at Frozen and Unfrozen Conditions. Remote Sens. 2014, 6, 1124–1136. [Google Scholar] [CrossRef]
- Thiel, C.; Schmullius, C. The potential of ALOS PALSAR backscatter and InSAR coherence for forest growing stock volume estimation in Central Siberia. Remote Sens. Environ. 2016, 173, 258–273. [Google Scholar] [CrossRef]
- Antropov, O.; Rauste, Y.; Häme, T.; Praks, J. Polarimetric ALOS PALSAR Time Series in Mapping Biomass of Boreal Forests. Remote Sens. 2017, 9, 999. [Google Scholar] [CrossRef]
- Joshi, N.; Mitchard ET, A.; Brolly, M.; Schumacher, J.; Fernándezlanda, A.; Johannsen, V.K.; Marchamalo, M.; Fensholt, R. Understanding ‘saturation’ of radar signals over forests. Sci. Rep. 2017, 7, 3505. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhu, J.; Wang, C.; Lin, H.; Long, J.; Zhao, L.; Fu, H.; Liu, Z. Forest Growing Stock Volume Estimation in Subtropical Mountain Areas Using PALSAR-2 L-Band PolSAR Data. Forests 2019, 10, 276. Available online: https://www.mdpi.com/1999-4907/10/3/276 (accessed on 18 March 2020). [CrossRef]
- Ataee, M.S.; Maghsoudi, Y.; Latifi, H.; Fadaie, F. Improving Estimation Accuracy of Growing Stock by Multi-Frequency SAR and Multi-Spectral Data over Iran’s Heterogeneously-Structured Broadleaf Hyrcanian Forests. Forests 2019, 10, 641. [Google Scholar] [CrossRef]
- Wan, Y.; Guo, S.; Li, L.; Qu, X.; Dai, Y. Data Quality Evaluation of Sentinel-1 and GF-3 SAR for Wind Field Inversion. Remote Sens. 2021, 13, 3723. [Google Scholar]
- Wang, G.; Wang, N.; Guo, W. Modelling Forest Aboveground Biomass Based on GF-3 Dual-Polarized and WorldView-3 Data: A Case Study in Datong National Wetland Park, China. Mathematical Problems in Engineering: Theory, Methods and Applications. Math. Probl. Eng. 2021, 2021, 1–13. [Google Scholar]
- Yin, J.; Yang, J.; Zhang, Q. Assessment of GF-3 Polarimetric SAR Data for Physical Scattering Mechanism Analysis and Terrain Classification. Sensors 2017, 17, 2785. [Google Scholar] [CrossRef]
- Karila, K.; Vastaranta, M.; Karjalainen, M.; Kaasalainen, S. Tandem-X interferometry in the prediction of forest inventory attributes in managed boreal forests. Remote Sens. Environ. 2015, 159, 259–268. [Google Scholar] [CrossRef]
- Mermoz, S.; Réjou-Méchain, M.; Villard, L.; Toan, T.L.; Rossi, V.; Gourlet-Fleury, S. Decrease of L-band SAR backscatter with biomass of dense forests. Remote Sens. Environ. 2015, 159, 307–317. [Google Scholar] [CrossRef]
- Santoro, M.; Beaudoin, A.; Beer, C.; Cartus, O.; Fransson JE, S.; Hall, R.J.; Pathe, C.; Schmullius, C.; Schepaschenko, D.; Shvidenko, A. Forest growing stock volume of the northern hemisphere: Spatially explicit estimates for 2010 derived from Envisat ASAR. Remote Sens. Environ. 2015, 168, 316–334. [Google Scholar] [CrossRef]
- Yu, Y.; Saatchi, S. Sensitivity of L-Band SAR Backscatter to Aboveground Biomass of Global Forests. Remote Sens. 2016, 8, 522. [Google Scholar] [CrossRef]
- Santoro, M.; Cartus, O.; Fransson JE, S.; Wegmüller, U. Complementarity of X-, C-, and L-band SAR Backscatter Observations to Retrieve Forest Stem Volume in Boreal Forest. Remote Sens. 2019, 11, 1563. [Google Scholar] [CrossRef]
- Hongquan, W.; Ramata, M.; Kalifa, G.T. Potential of a two-component polarimetric decomposition at C-band for soil moisture retrieval over agricultural fields. Remote Sens. Environ. 2018, 217, 38–51. [Google Scholar]
- Kiyohara, B.H.; Sano, E.E. Mapping Secondary Vegetation of a Region of Deforestation Hotspot in the Brazilian Amazon: Performance Analysis of C- and L-Band SAR Data Acquired in the Rainy Season. Forests 2022, 13, 1457. Available online: https://www.mdpi.com/1999-4907/13/9/1457 (accessed on 18 March 2020). [CrossRef]
- Qin, Z.; Ni, L.; Tong, Z.; Qian, W. Deep Learning Based Feature Selection for Remote Sensing Scene Classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2321–2325. [Google Scholar]
- Di Cosmo, L.; Gasparini, P.; Tabacchi, G. A national-scale, stand-level model to predict total above-ground tree biomass from growing stock volume. For. Ecol. Manag. 2016, 361, 269–276. [Google Scholar] [CrossRef]
- Yu, T.; Pang, Y.; Liang, X.J.; Jia, W.; Bai, Y.; Fan, Y.L.; Chen, D.S.; Liu, X.Z.; Deng, G.; Li, C.G.; et al. China’s larch stock volume estimation using Sentinel-2 and LiDAR data. Geo-Spatial Inf. Sci. 2022, 1–14. [Google Scholar] [CrossRef]
- Song, S. Land Cover Classification with Multispectral LiDAR Based on Multi-Scale Spatial and Spectral Feature Selection. Remote Sens. 2021, 13, 4118. [Google Scholar]
- Singh, C.; Karan, S.K.; Sardar, P.; Samadder, S.R. Remote sensing-based biomass estimation of dry deciduous tropical forest using machine learning and ensemble analysis. J. Environ. Manag. 2022, 308, 114639. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, J.; Chen, Y.; Xu, K.; Wang, D. Coastal Wetland Classification with GF-3 Polarimetric SAR Imagery by Using Object-Oriented Random Forest Algorithm. Sensors 2021, 21, 3395. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Laohakangvalvit, T.; Matsubara, R.; Sugaya, M. Constructing an Emotion Estimation Model Based on EEG/HRV Indexes Using Feature Extraction and Feature Selection Algorithms. Sensors 2021, 21, 2910. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Long, J.; Zhang, M.; Liu, Z.; Lin, H. Coniferous Plantations Growing Stock Volume Estimation Using Advanced Remote Sensing Algorithms and Various Fused Data. Remote Sens. 2021, 13, 3468. [Google Scholar] [CrossRef]
- Guo, X.; Li, K.; Yun, S.; Wang, Z.; Li, H.; Zhi, Y.; Long, L.; Wang, S. Inversion of Rice Biophysical Parameters Using Simulated Compact Polarimetric SAR C-Band Data. Sensors 2018, 18, 2271. [Google Scholar] [CrossRef] [PubMed]
- Rosa RA, S.; Fernandes, D.; Barreto TL, M.; Wimmer, C.; Nogueira, J.B. Change detection under the forest in multitemporal full-polarimetric P-band SAR images using Pauli decomposition. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016. [Google Scholar]
- Jiang, F.; Kutia, M.; Ma, K.; Chen, S.; Long, J.; Sun, H. Estimating the aboveground biomass of coniferous forest in Northeast China using spectral variables, land surface temperature and soil moisture. Sci. Total Environ. 2021, 785, 147335. Available online: https://www.sciencedirect.com/science/article/pii/S0048969721024062 (accessed on 18 March 2020). [CrossRef] [PubMed]
- Li, X.; Zhang, M.; Long, J.; Lin, H. A Novel Method for Estimating Spatial Distribution of Forest Above-Ground Biomass Based on Multispectral Fusion Data and Ensemble Learning Algorithm. Remote. Sens. 2021, 13, 3910. [Google Scholar] [CrossRef]
Number | Feature | Note | Number | Feature | Note | Number | Feature | Note |
---|---|---|---|---|---|---|---|---|
1 | SHH | 11 | C7 | σHV/(σHH + σHV) | 21 | Mean | 5 × 5, 7 × 7, 9 × 9 | |
2 | SHV | 12 | C8 | σHH 2 | 22 | Variance | 5 × 5, 7 × 7, 9 × 9 | |
3 | σHH | dB | 13 | C9 | σHV 2 | 23 | Homogeneity | 5 × 5, 7 × 7, 9 × 9 |
4 | σHV | dB | 14 | C10 | (C1)2 | 24 | Contrast | 5 × 5, 7 × 7, 9 × 9 |
5 | C1 | σHH + σHV | 15 | C11 | (C2)2 | 25 | Dissimilarity | 5 × 5, 7 × 7, 9 × 9 |
6 | C2 | σHH − σHV | 16 | C12 | (C3)2 | 26 | Entropy | 5 × 5, 7 × 7, 9 × 9 |
7 | C3 | σHH/σHV | 17 | C13 | (C4)2 | 27 | Second Moment | 5 × 5, 7 × 7, 9 × 9 |
8 | C4 | σHH × σHH | 18 | C14 | (C5)2 | 28 | Correlation | 5 × 5, 7 × 7, 9 × 9 |
9 | C5 | (σHH − σHV)/(σHH + σHV) | 19 | C15 | (C6)2 | |||
10 | C6 | σHH/(σHH + σHV) | 20 | C16 | (C7)2 |
Serial Number | FS Methods (Feature Sorting-Models) | Base Model | Number of Predictions | Meta-Learning for Stacking Ensemble |
---|---|---|---|---|
1 | Pearson-MLR | MLR, KNN, SVM, and RF | 4 | MLR and SVM |
2 | Pearson-KNN | MLR, KNN, SVM, and RF | 4 | MLR and SVM |
3 | Pearson-SVM | MLR, KNN, SVM, and RF | 4 | MLR and SVM |
4 | Pearson-RF | MLR, KNN, SVM, and RF | 4 | MLR and SVM |
5 | Importance-MLR | MLR, KNN, SVM, and RF | 4 | MLR and SVM |
6 | Importance -KNN | MLR, KNN, SVM, and RF | 4 | MLR and SVM |
7 | Importance -SVM | MLR, KNN, SVM, and RF | 4 | MLR and SVM |
8 | Importance -RF | MLR, KNN, SVM, and RF | 4 | MLR and SVM |
9 | Pearson sorting | MLR, KNN, SVM, and RF | 16 | MLR and SVM |
10 | Importance sorting | MLR, KNN, SVM, and RF | 16 | MLR and SVM |
Feature Sorting | FS Methods | Number of Features | The Optimal Feature Set |
---|---|---|---|
Pearson correlation | MLR | 3 | σHV, CORHH5, CORHV5 |
KNN | 6 | σHV σHV (dB), C9, C10, MeanHV9, Aspect | |
SVM | 2 | σHV, σHV (dB) | |
RF | 12 | σHV σHV (dB), σHH (dB) C8, C9, C14, MeanHV5, MeanHV7, MeanHH7, CORHH7VARIHH9, DISMHV7 | |
Importance of RF | MLR | 3 | C9, σHV, CORHV5 |
KNN | 3 | C9, C5, C10 | |
SVM | 2 | C9, σHV | |
RF | 12 | C9, σHV, σHH, altitude, CORHV5, HOMOHH5, SMHH5, DISMHH5, DISMHV5, CORHH7, CONTHV5, VARIHH9 |
The Method of FS | Base Model | Sorting Method Pearson Correlation | Sorting Method Importance of RF | ||||
---|---|---|---|---|---|---|---|
RMSE (m3/ha) | rRMSE (%) | R2 | RMSE (m3/ha) | rRMSE (%) | R2 | ||
MLR | MLR | 79.09 | 31.08 | 0.58 | 78.53 | 30.86 | 0.57 |
KNN | 99.94 | 39.28 | 0.21 | 84.88 | 33.36 | 0.30 | |
SVM | 76.57 | 30.09 | 0.54 | 79.42 | 31.21 | 0.37 | |
RF | 59.62 | 23.43 | 0.51 | 57.50 | 22.60 | 0.53 | |
KNN | MLR | 90.46 | 35.55 | 0.54 | 87.35 | 34.33 | 0.48 |
KNN | 83.94 | 32.99 | 0.27 | 86.28 | 33.91 | 0.21 | |
SVM | 80.86 | 31.78 | 0.50 | 86.48 | 33.99 | 0.36 | |
RF | 68.70 | 27.00 | 0.45 | 79.66 | 31.30 | 0.27 | |
SVM | MLR | 81.19 | 31.91 | 0.51 | 81.11 | 31.87 | 0.51 |
KNN | 85.46 | 33.58 | 0.29 | 84.88 | 33.36 | 0.30 | |
SVM | 84.34 | 33.14 | 0.45 | 83.02 | 32.63 | 0.45 | |
RF | 69.07 | 27.14 | 0.51 | 66.40 | 26.09 | 0.47 | |
RF | MLR | 97.11 | 38.16 | 0.61 | 96.17 | 37.79 | 0.62 |
KNN | 87.33 | 34.32 | 0.14 | 85.31 | 33.53 | 0.27 | |
SVM | 80.49 | 31.63 | 0.40 | 83.91 | 32.98 | 0.24 | |
RF | 67.86 | 26.67 | 0.32 | 62.48 | 24.55 | 0.31 |
Feature Sorting | Meta-Learning | Stacking Ensemble Learning | RMSE (m3/ha) | rRMSE (%) | Predicted Number |
---|---|---|---|---|---|
Pearson correlation | MLR | Pearson-MLR | 52.08 | 20.46 | 4 |
Pearson-KNN | 63.69 | 25.03 | 4 | ||
Pearson-SVM | 71.61 | 28.14 | 4 | ||
Pearson-RF | 63.06 | 24.78 | 4 | ||
Pearson-All | 51.55 | 20.26 | 16 | ||
SVM | Pearson-MLR | 47.67 | 18.74 | 4 | |
Pearson-KNN | 63.87 | 25.10 | 4 | ||
Pearson-SVM | 71.85 | 28.24 | 4 | ||
Pearson-RF | 59.26 | 23.29 | 4 | ||
Pearson-All | 46.13 | 18.13 | 16 | ||
Importance of RF | MLR | RF-MLR | 52.16 | 20.50 | 4 |
RF-KNN | 81.48 | 32.02 | 4 | ||
RF-SVM | 65.34 | 25.68 | 4 | ||
RF-RF | 54.37 | 21.37 | 4 | ||
RF-All | 42.52 | 16.71 | 16 | ||
SVM | RF-MLR | 49.90 | 19.61 | 4 | |
RF-KNN | 82.74 | 32.51 | 4 | ||
RF-SVM | 66.02 | 25.95 | 4 | ||
RF-RF | 53.42 | 20.99 | 4 | ||
RF-All | 45.82 | 18.01 | 16 |
Stacking Strategies | Absolute Value of Errors (A–B) | |||||
---|---|---|---|---|---|---|
A | B | <50 m3/ha | (51–100) m3/ha | (101–150) m3/ha | >150 m3/ha | |
Feature selection | Pearson-MLR(MLR) | RF-MLR(MLR) | 1.72% | 38.77% | 26.66% | 34.56% |
Feature selection | Pearson-KNN(MLR) | RF-KNN(MLR) | 0.00% | 46.99% | 34.64% | 18.37% |
Feature selection | Pearson-RF(MLR) | RF-RF(MLR) | 0.00% | 46.35% | 30.45% | 23.20% |
Feature selection | Pearson-MLR(SVM) | RF-MLR(SVM) | 0.00% | 38.21% | 26.27% | 35.53% |
Feature selection | Pearson-KNN(SVM) | RF-KNN(SVM) | 0.00% | 51.79% | 32.84% | 15.36% |
Feature selection | Pearson-RF(SVM) | RF-RF(SVM) | 0.00% | 46.82% | 29.38% | 23.80% |
Feature selection | Pearson-MLR(SVM) | RF-RF(MLR) | 0.00% | 43.90% | 28.04% | 28.06% |
Feature selection | Pearson-MLR(SVM) | RF-RF(SVM) | 0.00% | 38.13% | 27.21% | 34.66% |
Feature selection | Pearson-MLR(SVM) | RF-SVM(MLR) | 0.00% | 42.19% | 25.21% | 32.60% |
Feature selection | Pearson-MLR(SVM) | RF-SVM(SVM) | 0.00% | 34.32% | 29.38% | 36.30% |
Feature soring | Pearson-All(MLR) | RF-All(MLR) | 0.04% | 55.54% | 26.89% | 17.57% |
Feature soring | Pearson-All(SVM) | RF-All(SVM) | 0.00% | 66.60% | 24.78% | 8.62% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, Z.; Long, J.; Zheng, H.; Liu, Z.; Zhang, T.; Wang, Q. Mapping Growing Stem Volume Using Dual-Polarization GaoFen-3 SAR Images in Evergreen Coniferous Forests. Remote Sens. 2023, 15, 2253. https://doi.org/10.3390/rs15092253
Ye Z, Long J, Zheng H, Liu Z, Zhang T, Wang Q. Mapping Growing Stem Volume Using Dual-Polarization GaoFen-3 SAR Images in Evergreen Coniferous Forests. Remote Sensing. 2023; 15(9):2253. https://doi.org/10.3390/rs15092253
Chicago/Turabian StyleYe, Zilin, Jiangping Long, Huanna Zheng, Zhaohua Liu, Tingchen Zhang, and Qingyang Wang. 2023. "Mapping Growing Stem Volume Using Dual-Polarization GaoFen-3 SAR Images in Evergreen Coniferous Forests" Remote Sensing 15, no. 9: 2253. https://doi.org/10.3390/rs15092253
APA StyleYe, Z., Long, J., Zheng, H., Liu, Z., Zhang, T., & Wang, Q. (2023). Mapping Growing Stem Volume Using Dual-Polarization GaoFen-3 SAR Images in Evergreen Coniferous Forests. Remote Sensing, 15(9), 2253. https://doi.org/10.3390/rs15092253