High Precision Measurements of Resonance Frequency of Ozone Rotational Transition J = 61,5–60,6 in the Real Atmosphere
Abstract
:1. Introduction
2. O3 Line at 110.8 GHz
3. The Apparatus and Experimental Procedures
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Penfield, H.; Litvak, M.M.; Gottlieb, C.A.; Lilley, A.E. Mesospheric ozone measured from ground-based millimeter wave observations. J. Geophys. Res. 1976, 81, 6115–6120. [Google Scholar] [CrossRef]
- Krasil’nikov, A.A.; Kulikov, M.Yu.; Kukin, L.M.; Ryskin, V.G.; Fedoseev, L.I.; Shvetsov, A.A.; Belikovich, M.V.; Bolshakov, O.S.; Schitov, A.M.; Mikhailovskiy, V.L.; et al. Mobile spectroradiometric complex for middle atmosphere ozone soundings. Radiophys. Quantum Electron. 2014, 56, 628–637. [Google Scholar] [CrossRef]
- Palm, M.; Hoffmann, C.G.; Golchert, S.H.W.; Notholt, J. The ground-based MW radiometer OZORAM on Spitsbergen—Description and status of stratospheric and mesospheric O3 measurements. Atmos. Meas. Tech. 2010, 3, 1533–1545. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, S.; Murk, A.; Kämpfer, N. GROMOS-C, a novel ground-based microwave radiometer for ozone measurement campaigns. Atmos. Meas. Tech. 2015, 8, 2649–2662. [Google Scholar] [CrossRef] [Green Version]
- Rodgers, C.D. Inverse Methods for Atmospheric Sounding: Theory and Practice; World Scientific: Singapore, 2000; p. 240. [Google Scholar]
- Steinbrecht, W.; Froidevaux, L.; Fuller, R.; Wang, R.; Anderson, J.; Roth, C.; Bourassa, A.; Degenstein, D.; Damadeo, R.; Zawodny, J.; et al. An update on ozone profile trends for the period 2000 to 2016. Atmos. Chem. Phys. 2017, 17, 10675–10690. [Google Scholar] [CrossRef] [Green Version]
- Hocke, K.; Kämpfer, N.; Feist, D.G.; Calisesi, Y.; Jiang, J.H.; Chabrillat, S. Temporal variance of lower mesospheric ozone over Switzerland during winter 2000/2001. Geophys. Res. Lett. 2006, 33, L09801. [Google Scholar] [CrossRef]
- Moreira, L.; Hocke, K.; Navas-Guzmán, F.; Eckert, E.; von Clarmann, T.; Kämpfer, N. The natural oscillations in stratospheric ozone observed by the GROMOS microwave radiometer at the NDACC station Bern. Atmos. Chem. Phys. 2016, 16, 10455–10467. [Google Scholar] [CrossRef] [Green Version]
- Kulikov, M.Yu.; Krasil’nikov, A.A.; Shvetsov, A.A.; Fedoseev, L.I.; Ryskin, V.G.; Kukin, L.M.; Mukhin, D.N.; Belikovich, M.V.; Karashtin, D.A.; Skalyga, N.K.; et al. Simultaneous ground-based microwave measurements of the middle-atmosphere ozone and temperature. Radiophys. Quantum Electron. 2015, 58, 409–417. [Google Scholar] [CrossRef]
- Belikovich, M.V.; Ryskin, V.G.; Kulikov, M.Y.; Krasilnikov, A.A.; Shvetsov, A.A.; Feigin, A.M. Microwave observations of atmospheric ozone over Nizhny Novgorod in winter of 2017–2018. Radiophys. Quantum Electron. 2021, 63, 191–206. [Google Scholar] [CrossRef]
- Rüfenacht, R.; Murk, A.; Kämpfer, N.; Eriksson, P.; Buehler, S.A. Middle-atmospheric zonal and meridional wind profiles from polar, tropical and midlatitudes with the ground-based microwave Doppler wind radiometer WIRA. Atmos. Meas. Tech. 2014, 7, 4491–4505. [Google Scholar] [CrossRef] [Green Version]
- Forkman, P.; Christensen, O.M.; Eriksson, P.; Billade, B.; Vassilev, V.; Shulga, V.M. A compact receiver system for simultaneous measurements of mesospheric CO and O3. Geosci. Instrum. Method. Data Syst. 2016, 5, 27–44. [Google Scholar] [CrossRef] [Green Version]
- Lichtenstein, M.; Gallagher, J.J.; Clough, S.A. Millimeter wave spectrum of ozone. J. Mol. Spectosc. 1971, 40, 10–26. [Google Scholar] [CrossRef]
- Gora, E.K. Rotational spectrum of ozone. J. Mol. Spectosc. 1959, 3, 78–99. [Google Scholar] [CrossRef]
- Depannemaecker, M.J.C.; Duterage, B.; Bellet, M.J. Systematic calculations of rotational spectra of normal and substituted (18O in place of 16O) ozone molecules. J. Quant. Spectosc. Radiat. Transfer. 1977, 17, 519–530. [Google Scholar] [CrossRef]
- Kolbe, W.F.; Buscher, H.; Leskovar, B. Microwave absorption coefficients of atmospheric pollutants and constituents. J. Quant. Spectosc. Radiat. Transfer. 1977, 18, 47–64. [Google Scholar] [CrossRef] [Green Version]
- The HITRAN Database. Available online: https://hitran.org (accessed on 10 January 2023).
- JPL Molecular Spectroscopy. Available online: https://spec.jpl.nasa.gov/ (accessed on 10 January 2023).
- GEISA Spectroscopic Database. Available online: https://cds-espri.ipsl.upmc.fr/etherTypo/index.php?id=950&L=1 (accessed on 10 January 2023).
- Spectroscopy and Molecular Properties of Ozone. Available online: https://smpo.iao.ru (accessed on 10 January 2023).
- Rosenkranz, P.W. Line-by-Line Microwave Radiative Transfer (Non-Scattering). Remote Sens. Code Library. 2017. Available online: http://cetemps.aquila.infn.it/mwrnet/lblmrt_ns.html (accessed on 10 January 2023).
- Krasil’nikov, A.A.; Kulikov, M.Y.; Kukin, L.M.; Ryskin, V.G.; Fedoseev, L.I.; Shvetsov, A.A.; Bolshakov, O.S.; Shchitov, A.M.; Feigin, A.M. Automated Microwave Radiometer for Measuring the Atmospheric Ozone Emission Line. Instrum. Exp. Tech. 2017, 60, 271–273. [Google Scholar] [CrossRef]
- Klasil’nikov, A.A.; Kulikov, M.Y.; Ryskin, V.G.; Fedoseev, L.I.; Shvetsov, A.A.; Bozhkov, V.G.; Bol’shakov, O.S. Calibration system for microwave radiometers based on modulator-calibrator. Instrum. Exp. Tech. 2017, 60, 701–704. [Google Scholar] [CrossRef]
- Aura MLS. Available online: https://mls.jpl.nasa.gov/eos-aura-mls (accessed on 10 January 2023).
- de Grandpre, J.; Beagley, S.R.; Fomichev, V.I.; Griffioen, E.; Mc-Connell, J.C.; Medvedev, A.S.; Shepherd, T.G. Ozone climatology using interactive chemistry: Results from the Canadian Middle Atmosphere Model. J. Geophys. Res.-Atmos. 2000, 105, 26475–26491. [Google Scholar] [CrossRef] [Green Version]
- Scinocca, J.F.; McFarlane, N.A.; Lazare, M.; Li, J.; Plummer, D. The CCCma third generation AGCM and its extension into the middle atmosphere. Atmos. Chem. Phys. 2008, 8, 7055–7074. [Google Scholar] [CrossRef] [Green Version]
Measured Values | Early Models | Modern Databases and Models |
---|---|---|
110,836.040 MHz [13] | 110,835 MHz [14] | 110,836.030 MHz [17] |
110,835.923 ± 0.05 MHz [12] | 110,835.87 MHz [13] | 110,836.040 MHz [18] |
110,835.92 MHz [15] | 110,836.270 MHz [19] | |
110,835.9 MHz [16] | 110,836.270 MHz [20] | |
110,836.040 MHz [21] |
Dataset | Mean | Standard Deviation |
---|---|---|
no filtering | 110,835.908475 MHz | 15.733 kHz |
TAC < 10 | 110,835.908545 MHz | 16.074 kHz |
TAC < 5 | 110,835.909450 MHz | 15.217 kHz |
TAC < 2.5 | 110,835.908585 MHz | 15.864 kHz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulikov, M.Y.; Krasil’nikov, A.A.; Belikovich, M.V.; Ryskin, V.G.; Shvetsov, A.A.; Skalyga, N.K.; Kukin, L.M.; Feigin, A.M. High Precision Measurements of Resonance Frequency of Ozone Rotational Transition J = 61,5–60,6 in the Real Atmosphere. Remote Sens. 2023, 15, 2259. https://doi.org/10.3390/rs15092259
Kulikov MY, Krasil’nikov AA, Belikovich MV, Ryskin VG, Shvetsov AA, Skalyga NK, Kukin LM, Feigin AM. High Precision Measurements of Resonance Frequency of Ozone Rotational Transition J = 61,5–60,6 in the Real Atmosphere. Remote Sensing. 2023; 15(9):2259. https://doi.org/10.3390/rs15092259
Chicago/Turabian StyleKulikov, Mikhail Yu., Alexander A. Krasil’nikov, Mikhail V. Belikovich, Vitaly G. Ryskin, Alexander A. Shvetsov, Natalya K. Skalyga, Lev M. Kukin, and Alexander M. Feigin. 2023. "High Precision Measurements of Resonance Frequency of Ozone Rotational Transition J = 61,5–60,6 in the Real Atmosphere" Remote Sensing 15, no. 9: 2259. https://doi.org/10.3390/rs15092259
APA StyleKulikov, M. Y., Krasil’nikov, A. A., Belikovich, M. V., Ryskin, V. G., Shvetsov, A. A., Skalyga, N. K., Kukin, L. M., & Feigin, A. M. (2023). High Precision Measurements of Resonance Frequency of Ozone Rotational Transition J = 61,5–60,6 in the Real Atmosphere. Remote Sensing, 15(9), 2259. https://doi.org/10.3390/rs15092259