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Abstract: The canopy chlorophyll content (CCC) and leaf area index (LAI) are both essential indi-
cators for crop growth monitoring and yield estimation. The PROSAIL model, which couples the
properties optique spectrales des feuilles (PROSPECT) and scattering by arbitrarily inclined leaves
(SAIL) radiative transfer models, is commonly used for the quantitative retrieval of crop parameters;
however, its homogeneous canopy assumption limits its accuracy, especially in the case of multiple
crop categories. The adjusted average leaf angle (ALAadj), which can be parameterized for a specific
crop type, increases the applicability of the PROSAIL model for specific crop types with a non-uniform
canopy and has the potential to enhance the performance of PROSAIL-coupled hybrid methods. In
this study, the PROSAIL-D model was used to generate the ALAadj values of wheat, soybean, and
maize crops based on ground-measured spectra, the LAI, and the leaf chlorophyll content (LCC). The
results revealed ALAadj values of 62 degrees for wheat, 45 degrees for soybean, and 60 degrees for
maize. Support vector regression (SVR), random forest regression (RFR), extremely randomized trees
regression (ETR), the gradient boosting regression tree (GBRT), and stacking learning (STL) were
applied to simulated data of the ALAadj in 50-band data to retrieve the CCC and LAI of the crops. The
results demonstrated that the estimation accuracy of singular crop parameters, particularly the crop
LAI, was greatly enhanced by the five machine learning methods on the basis of data simulated with
the ALAadj. Regarding the estimation results of mixed crops, the machine learning algorithms using
ALAadj datasets resulted in estimations of CCC (RMSE: RFR = 51.1 µg cm−2, ETR = 54.7 µg cm−2,
GBRT = 54.9 µg cm−2, STL = 48.3 µg cm−2) and LAI (RMSE: SVR = 0.91, RFR = 1.03, ETR = 1.05,
GBRT = 1.05, STL = 0.97), that outperformed the estimations without using the ALAadj (namely CCC
RMSE: RFR = 93.0 µg cm−2, ETR = 60.1 µg cm−2, GBRT = 60.0 µg cm−2, STL = 68.5 µg cm−2 and
LAI RMSE: SVR = 2.10, RFR = 2.28, ETR = 1.67, GBRT = 1.66, STL = 1.51). Similar findings were
obtained using the suggested method in conjunction with 19-band data, demonstrating the promising
potential of this method to estimate the CCC and LAI of crops at the satellite scale.

Keywords: crop chlorophyll; crop LAI; PROSAIL; average leaf angle; machine learning

1. Introduction

Crops are the world’s primary food source, and the maintenance of the global food
supply is largely dependent on crop management and agricultural production. Real-
time, effective, and accurate access to crop biophysical parameters is the main means of
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monitoring crop growth to carry out accurate agricultural management. At the canopy scale,
the leaf area index (LAI) determines the amount of canopy foliage, which is directly related
to the aboveground biomass of the canopy [1]. The canopy chlorophyll content (CCC)
characterizes the photosynthetic capacity of the crop community and is the product of leaf
chlorophyll content (LCC) and LAI. In addition, CCC is a key indicator affecting solar-
induced chlorophyll fluorescence (SIF) [2] and the maximum photosynthetic carboxylation
rate (Vcmax) [3]. The accurate and timely estimates of these parameters in large-scale areas
are crucial for crop productivity assessment, field irrigation and fertilizer administration,
pest and disease control, and other forms of agricultural management. However, traditional
measurements are destructive, inefficient, labor-intensive, and resource-intensive and are
therefore unsuitable for large areas. Remote sensing, on the other hand, provides a non-
destructive and efficient method for estimating the LAI and CCC.

Using remote sensing technology, retrieving CCC and LAI primarily involves analyz-
ing vegetation growth based on the distinguishing characteristics of crop canopy reflectance
curves in remote sensing images. The red-edge region is highly responsive to chlorophyll
and is frequently employed as distinctive spectra for estimating chlorophyll content. Mean-
while, the sensitivity of LAI to spectral reflectance runs throughout the entire spectral range
(400–2500 nm). The retrieval of the CCC and LAI from canopy reflectance spectra has been
carried out using two different types of approaches, namely empirically based [4,5] and
physically based [6,7]. Empirical statistical models rely on conducting correlation analyses
between spectra or spectral combinations that are sensitive to vegetation parameters and
then retrieving the vegetation parameters. Due to the convenience of vegetation indices,
there has been a proliferation of such indices developed for retrieving vegetation parame-
ters. For instance, the MERIS terrestrial chlorophyll index (MTCI) is frequently used for
estimating chlorophyll content [8], while the normalized difference vegetation index (NDVI)
is commonly used to estimate LAI [9]. Additionally, numerous studies have assessed the
utility of predictive equations calibrated on PROSAIL-generated or in situ data and full
spectrum methods [10,11]. Although the empirically based methodology using vegetation
indices (VIs) directly links biophysical parameters and VIs, this approach is typically im-
pacted by the canopy architecture and the soil background in large-scale regions [7,12].
The physically based strategies, on the other hand, have been found to be reliable and
suitable for a variety of circumstances because of their reliable physical mechanisms and
substantial data backing. Physically based approaches generally refer to radiative transfer
models (RTMs), which are based on physical laws describing the spectral/orientation
variation of canopy reflectance with canopy, leaf, and soil background features [11,13,14].
They have advanced quickly in recent years, with scattering by arbitrarily inclined leaves
(SAIL) [15] being the most extensively used canopy RTM and properties optique spectrales
des feuilles (PROSPECT) [16] being the most popular model for the optical characteristics
of leaves. The most well-known canopy RTM, the PROSAIL model, which combines the
PROSPECT and SAIL models, has been commonly employed to retrieve the biochemical
and structural variables of crops [17–20]. The main method for obtaining the parameters
from the sizable dataset produced by RTMs is the use of a lookup table (LUT). The LUT is
scanned to identify the elements with the highest correlation to measured reflectance and
associated parameters, by selecting entries that best match recorded spectra with empirical
data. However, due to the sluggish and inefficient per-pixel entry-based iterative calls,
LUT-based solutions are primarily constrained by their computing cost [17,21].

With the use of machine learning, complex nonlinear relationships can be fitted more
effectively to estimate crop traits by training RTM-based simulations [22–24]. Numerical
optimization techniques can aid in resolving inverse problems in remote sensing by iden-
tifying the optimal parameter values that minimize a cost function, which quantifies the
discrepancy between the model predictions and the observed data [13,25–27]. To simplify
RTM inversion, a commonly used approach is to employ predictive equations, which are
empirical relationships between the surface parameters and spectral indices or transfor-
mations. These equations are established based on synthetic spectra generated by an RTM
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and subsequently applied to actual remote sensing imagery for rapid estimation of surface
parameters [10,28]. The hybrid approach, which combines machine learning and RTMs,
introduces a powerful and promising new tool for quantitative vegetation index retrieval.
In recent years, hybrid techniques have received a great deal of attention and have been
used to retrieve vegetation information [29,30]. The support vector machine (SVM) per-
forms well in high-dimensional spaces, yielding results for vegetation parameter retrieval
that are comparatively robust [31]. Random forest regression (RFR) [32,33], extremely
randomized trees (extra trees) regression (ETR) [34], and the gradient boosting regression
tree (GBRT) [35,36] are typical ensemble learning models that have received extensive at-
tention in vegetation parameter retrieval due to their strong learning capabilities and stable
performance. By employing an existing algorithm and some type of strategy, ensemble
learning entails the creation of a group of “individual learners” from training data. GBRT is
a boosting algorithm that uses a serial approach to train individual learners, and it relies on
dependencies between them [37]. The RFR and ETR models are components of the bagging
algorithm, which can be taught concurrently with little to no significant interdependence
between individual learners during training [38]. Despite this, they seek to combine poor
learners to achieve noticeably improved generalization performance. In contrast, another
approach called stacking involves the construction of a new model by using a number
of powerful foundation models that have already been trained [39–41]. Although the
SVM, RFR, ETR, and GBRT methods have all demonstrated excellent machine learning
capabilities for the retrieval of vegetation parameters, the methods differ in their regression
capabilities. Moreover, the robustness of the models generated by each depends greatly
on the sample size and quality, the study area, and the data source [28]. The technique
of stacking multiple machine models is currently being highlighted, as it is considered to
increase the reliability of the classification or retrieval findings [42–45].

RTM-based crop canopy reflectance is complicated by a variety of vegetation vari-
ables, particularly the canopy structure, which compromises the effectiveness of both
empirical and sophisticated machine learning algorithms [17,46,47]. In addition to leaf
biochemical parameters, various structural elements such as the LAI, leaf inclination angle
distribution (LAD), soil background, and leaf clumping at various scales also affect canopy
reflectance [48–51]. Both empirical and physically based methods suffer from the ill po-
sitioning of the retrieval where contrasting canopy settings can lead to almost identical
spectral signatures [52–54]. For the retrieval of chlorophyll and the LAI at the canopy
scale, the LAD is an influential structural parameter that determines the canopy spectral
characteristics [55]. The crop leaf distribution in the PROSAIL model is essentially defined
by six average leaf angles (ALAs). In actuality, however, this assumption is at odds with
the random distribution of crop leaves. The ALA input in the PROSAIL model has been
modified to make the simulated spectrum match the measured spectrum of the crop [19,56].
Jiao et al. [19] used the random forest (RF) algorithm to obtain the adjusted ALA of wheat
and soybean crops to estimate their CCC values by coupling the PROSAIL model with
observed spectra and non-ALA measured traits. They then tested the feasibility of the
method using ground spectra and measured CCC data. Nevertheless, there has been no
investigation into whether this method can be applied to LAI estimation. Additionally,
the strategy of using the adjusted ALA (ALAadj) for canopy parameter estimation requires
further testing of crop types, sample sizes, and machine learning algorithms.

The purpose of this study is to improve the accuracy of retrieving CCC and LAI for
different crops using machine learning algorithms. To achieve this, we proposed the use of
adjusted ALA to generate simulations for wheat, soybean, and maize using the PROSAIL
model. Subsequently, five machine learning algorithms, namely SVR, RFR, ETR, GBRT,
and STL, were used to develop CCC and LAI retrieval models based on the PROSAIL
simulation data. Finally, ground measurements were employed to assess the accuracy of
the retrieval models.
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2. Materials and Methods
2.1. Study Sites

Datasets of ground measurements for wheat, maize, and soybean crops from experi-
ments conducted in Beijing, China, and Nebraska, United States, were used in this study to
validate the retrieval algorithms. The site of the wheat crop is located at the National Station
for Precision Agriculture, Xiaotangshan (XTS), Beijing, China (40◦10′48′′N, 116◦26′24′′E).
In the 2002 campaign, 48 plots of wheat were cultivated with four nitrogen fertilization
densities and four water treatment schemes, while, in the 2004 campaign, 42 plots of wheat
were planted with non-differentiated fertilization and irrigation management [57]. Three
AmeriFlux sites (US-Ne1, US-Ne2, and US-Ne3) at the University of Nebraska–Lincoln
Agricultural Research and Development Center near Mead, Nebraska, United States, com-
prised the maize and soybean study fields. US-Ne1 was irrigated with a center-pivot
system while being planted with continuous maize cropping, and field experiments were
conducted from 2001 to 2005. In US-Ne2 and US-Ne3, there was a rotation of maize and
soybeans, with maize being planted in odd-numbered years (2003 and 2005) and soybean
being planted in even-numbered years (2002 and 2004). While US-Ne3 relied only on
rainfall for moisture, the same strategy of irrigation as that for US-Ne1 was followed for
US-Ne2 [58]. Table 1 provides detailed information for the four sites.

Table 1. Details of the study sites.

Site Name Country Latitude/Longitude (◦) Crop Species Landcover (ha) Sampling Periods

XTS China 40.18/116.44 Wheat 167 4–5/2002; 4–5/2004
US-Ne1 America 41.17/−96.48 Maize 48.7 (6–9)/(2001–2005)
US-Ne2 America 41.165/−96.47 Soybean and maize 52.4 6–9/2002; 6–9/2004
US-NE3 America 41.18/−96.44 Soybean and maize 65.4 6–9/2002

2.2. Canopy Reflectance Measurements

An ASD FieldSpec Pro spectrometer (Analytical Spectral Devices, Boulder, CO, USA)
was implemented to measure the canopy reflectance at the XTS site. The spectrometer mea-
sures wavelengths from 350 to 2500 nm and has spectral resolutions of 3 nm between 350
and 1050 nm and 10 nm between 1050 and 2500 nm. Measurements of the canopy spectral
properties were taken between 10:00 and 14:00 local time under clear and cloudless condi-
tions. The canopy spectra of wheat were acquired at 1.3 m above the canopy with a field of
view of 25 degrees [59]. Two inter-calibrated Ocean Optics USB2000 radiometers (Dunedin
Ocean Optics, Dunedin, FL, USA) were used to measure the canopy reflectance spectra at
the US-Ne1, US-Ne2, and US-Ne3 sites [60]. The radiometers have a spectral resolution of
1.5 nm and range from 400 to 1100 nm. For one radiometer, upwelling radiation was mea-
sured using an optical fiber pointed upward, while downwelling radiation was measured
using an optical fiber and a cosine diffuser. The canopy reflectance was then computed
using the simultaneous measurements of upwelling radiance and downwelling irradiance.

2.3. Measurements of the CCC and LAI

At the XTS site, wheat leaves were collected from the top of the canopy on each plot and
were then placed quickly in an ice-filled plastic box for transportation to the laboratory for
the measurement of crop parameters. Spectrophotometer measurements were taken of the
sample leaves to determine the chlorophyll concentration [61]. Dried-weight measurements
were used to determine the green LAI [62]. At the US-Ne2 and US-Ne3 sites, the LCCs of
fresh soybean and maize leaves were determined using a spectrophotometer [61]. Using an
area meter (Model LI-3100, Li-Cor, Inc., Lincoln, NE, USA), the destructive determination of
the green LAI was carried out in the lab (see the research by Viña et al. [63] for more details).
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2.4. Spectra Simulation Datasets

The canopy spectral characteristics were simulated by the PROSAIL-D model, which
was characterized by the coupling of the PROSPECT-D leaf model [64] and the 4SAIL
canopy model [65]. Based on the input parameters reported in Table 2, crop canopy spectra
in the wavelength range of 400–2500 nm were obtained to train the crop parameter inversion
model. The PROSPECT-D model simulated the leaf spectral properties with the set leaf
parameters, which were used as an input for the SAIL model.

Table 2. Parameter configuration for the PROSAIL-D model.

Parameters Description Units Range

Leaf

N Leaf structure index - 1, 1.5, 2
LCC Leaf chlorophyll content µg cm−2 10~80; interval, 10
Cm Leaf dry matter content g cm−2 0.003, 0.004, 0.005, 0.006
Cb Leaf brown pigment content - 0
Cw Equivalent water thickness cm 0.02
Car Leaf carotenoid content µg cm−2 25% LCC
CAnt Leaf anthocyanin content µg cm−2 2

Canopy

LAI Leaf area index m2 m−2 0.5, 1, 2, 3, 4, 5, 6, 7, 8
αsoil Soil reflectance - Five soil reflectance types
ALA Average leaf angle Degrees 10–80 degrees
hotS Hot spot parameter m m−1 0.05

skyl Fraction of diffuse incoming
solar radiation - 0.5

Observed
Geometry

θs Solar zenith angle Degrees 0, 10, 20, 30, 40, 50, 60
θv View zenith angle Degrees 0
ϕ Sun-sensor azimuth angle Degrees 0

At the leaf level, the LCC values were set to between 10 and 80 µg cm−2, while
carotenoids accounted for 25% of the LCC and varied with the LCC. The leaf structure
parameters (N) were set to between 1.0 and 2.0 to represent different leaf thicknesses. The
leaf dry matter content (Cm) was set to between 0.003 and 0.006 g cm−2. The equivalent
water thickness, leaf anthocyanin content, and leaf brown pigment were set to fixed values,
as neither the retrieval CCC nor the LAI is affected by the representation of these parameters
on the canopy spectrum.

At the canopy level, there were nine levels of vegetation coverage represented by LAI
values ranging from 0.5 to 8. The fraction of diffuse incoming solar radiation (skyl) was
fixed at a value of 0.5. Additionally, there were six different ALAs and five different forms
of soil reflectance to depict various canopy structures and soil backgrounds.

The ALA was determined by an LAD function, which was represented by LIDFa and
LIDFb in the SAIL model. Six types of leaf inclination angle characteristics are commonly
used in the SAIL model, and the average value of each type is as follows: planophile,
26.76 degrees; erectophile, 63.24 degrees; extremophile, 45 degrees; plagiophile, 45 degrees;
uniform, 45 degrees; spherical, 57.3 degrees. Five soil reflectance types were determined
using the measured spectra and five gradients of soil factors (0.1, 0.25, 0.5, 0.75, and 1) as the
background parameters of the PROSAIL-D model [66]. Moreover, the observation zenith
angle was set as 0 degrees, and the variable solar zenith angle was set as 0–60 degrees with
10 intervals.

2.5. Leaf Inclination Angle Optimization Datasets

It is essential to recognize that the canopy structure has a big impact on how effectively
crop parameter retrieval works. Although the SAIL model takes six different ALAs into
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account to represent the spatial distribution of crop leaves, the actual non-uniform structure
of the crop does not correspond to the assumptions of the model. In the PROSAIL model,
the ALA is determined by two functions, namely LIDFa and LIDFb, which allows the input
of the ALA to be reasonably adjusted to achieve a simulated spectrum that is closer to the
actual crop spectrum. Because LIDFb has very little influence on canopy reflectance [30],
the ALA has primarily been determined by the LIDFa as ALA = 45 − 360 × LIDFa/π2 [67].
According to Jiao et al. [19], the ALA reported in Table 1 was adjusted (ALAadj) using the
RF algorithm based on the measured data. As a result, ALAadj can be expressed as follows:

ALAadj = RFR(SPEC, LAIm, LCCm), (1)

where SPEC is the canopy reflectance measured in the field, and LAIm and LCCm are the
ground-based LAI and LCC measurements, respectively. The PROSAIL model was updated
to input ALAadj, which generated simulated canopy spectra adjusted for each crop.

2.6. Modeling and Validating Method

Canopy spectral simulation datasets of wheat, soybean, and maize were developed
from the PROSAIL model by adjusting the leaf inclination angle. Four machine learning
algorithms were used to construct crop parameter retrieval models, and the learning result
was integrated using a stacking algorithm. Finally, a total of five retrieval models were
constructed. To investigate whether adjusting the ALA enhances the performance of these
models, the dataset generated using the parameters presented in Table 1 was used as an
alternate model for comparison. A flowchart of the research method can be seen in Figure 1.
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2.6.1. Machine Learning Retrieval Model

Support vector regression (SVR) is a regression version of the SVM based on statistical
learning theory [68]. This algorithm creates linear dependencies between n-dimensional
input variables and one-dimensional target variables by fitting an adjusted hyperplane
to those features. An SVR kernel can be linear, polynomial, Gaussian, or sigmoid [69,70].
By considering the characteristics of the data and comparing the performance of the four
kernels, the linear kernel was selected for use in this study. The RFR method is an integrated
learning method based on multiple decision trees that combines Breiman’s bagging theory
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with the random selection of features [38]. To construct the RFR model, it is necessary to
determine how many decision trees and variables are required in the bagging framework,
and these two values were set to 100 and 10 in this study. ETR is a variant of RFR. RFR
uses bootstrap random sampling to select the training set for each decision tree, while ETR
does not, which means that each tree is trained from the same dataset. A GBRT algorithm
consists of multiple decision trees that are iteratively processed. GBRT generates the entire
forest by generating decision subtrees one by one, and the process of generating new
subtrees is to use the residuals between the sample label values and the predicted values of
the current forest. Essentially, training a model involves the optimization of an objective
function that can be derived in any way.

Stacking is a multi-layer model in which several models that have been trained are
used as the base model. The prediction results of these several base models are then used
as a new training set to train a new model. Most of the time, the models in the first stacking
layer are those that have a good fit (such as the SVR, RFR, ETR, and GBRT models used in
this study) to pursue the sufficient learning of the training data. Because different models
differ in principle, the first-layer model can be considered as the process of automatically
extracting effective features from the original data. For the first-layer model, 50 consecutive
bands were used as feature variables, and these data were subdivided into 10 folds. For
the SVR, RFR, ETR, and GBRT models, 10 training runs were respectively conducted. One-
tenth of the samples of each training run were reserved for testing during training, and
the prediction of the testing data was performed after the training was completed. Four
models were averaged after 10 runs, and their predictive results were stitched together
and applied to the training data set in subsequent runs. In the first-layer model, stacking
is more prone to overfitting due to the use of complex nonlinear variations for feature
extraction. Typically, the second-layer model is a simple one, such as the linear regression
model used in this study, to reduce overfitting risks.

In this study, simulated datasets with adjusted ALA values were used to retrieve the
LAI and CCC values of wheat, soybean, and maize. The training features were 50 con-
tinuous spectral bands from 400 to 890 nm at 10 nm intervals. The SVR, RFR, ETR, and
GBRT algorithms and a stacking algorithm integrating the models were selected for the
implementation. For comparison, the same method was also carried out for a simulation
dataset without adjusted ALA.

2.6.2. Performance Assessment

CCC and LAI retrieval was performed for wheat, soybean, and maize using ground
reflectance data, and the accuracies were validated using ground-measured data. The
performance of the results was assessed using statistical metrics including the coefficient of
determination (R2; Equation (2)), root mean square error (RMSE; Equation (3)), bias (Bias;
Equation (4)), and normalized RMSE (NRMSE; Equation (5)).

R2 =
∑n

i (ŷi − y)
∑n

i (yi − y)
(2)

RMSE =

√
∑n

i=1(ŷi − yi)
2

n
(3)

Bias =
∑n

i (yi − ŷi)

n
(4)

NRMSE =
RMSE

ymax − ymin
(5)

In these equations, ŷi represents the predicted CCC value, yi represents the measured
CCC value, y represents the mean of the estimated CCC values, and n represents the
number of test samples.
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3. Results
3.1. The Sensitivity of Canopy Reflectance Spectra to Crop Parameters

Figure 2 illustrates the sensitivity of multiple crop parameters to visible and near-
infrared (NIR) reflectance. Similar patterns were found in the sensitivities of the CCC, LCC,
Cm, N, and LAI to the 50 bands for wheat, soybean, and maize with the ALAadj. Across
the three datasets, the CCC and LAI exhibited strong correlations in the NIR and red-edge
regions, whereas the LCC, Cm, and N exhibited weak correlations. The variations in the
CCC, LCC, and LAI were found to have large effects on the full-band reflectance, while the
variations in Cm and N have lesser effects on all visible and NIR bands. Regarding the CCC
and LAI of concern in this study, the sensitivities of the CCC and LAI of wheat and soybean
with the ALAadj to the full-band reflectance were better than those of maize. To achieve
the uniformity of the training data of the three crops, the 50 bands were finally selected. It
should be noted that the correlation between the LAI and NIR was significantly better than
that in the visible region; however, some bands in the visible region remained subject to
LAI variation and could thus be used as characteristic bands for the retrieval of the LAI.
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3.2. ALAadj Parameterization of Wheat, Soybean, and Maize from PROSAIL Models

Because the vegetation LAD assumed by the PROSAIL model is not consistent with
the actual situation, the simulated spectral data and the measured LAI and LCC were used
to build an ALA optimization model using the RFR algorithm (Section 2.5). To investigate
the role of the measured LAI and LCC in the ALA optimization model, two different types
of training data were used in this study. The first dataset contained simulated spectra
as well as measured LAI data, while the second incorporated measured LCC data. Both
types of data were used in PROSAIL optimization, resulting in very similar wheat ALAadj
values (Table 3). A priori knowledge of the leaf inclination angle of wheat led to 62 degrees
being used as the ALAadj in this study. As a result of the two datasets, the obtained
soybean ALAadj values were respectively 45.1 and 45.7 degrees. In this study, 45 degrees
was considered to be the a priori knowledge for the soybean ALAadj. The two datasets
produced maize ALAadj values of 60.32 and 59.83 degrees, respectively, and 60 degrees was
used as the a priori knowledge of the maize ALAadj in this study. For wheat, soybean, and
maize, the ALAadj results were stable regardless of whether the LCC was involved. It is
noteworthy that the ALAadj values of maize and wheat were relatively close to each other
and differed more from those of soybean.
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Table 3. ALAadj (degrees) based on the measured data of wheat, soybean, and maize, as determined
via PROSAIL parameterization.

Crop Type
Using SPEC_LAI Using SPEC_LAI_LCC

This Study
Mean StDv Mean StDv

Wheat 61.8 5.2 62.0 5.2 62
Soybean 45.7 9.3 45.1 9.3 45

Maize 59.8 8.1 60.3 8.1 60
SPEC LAI refers to measured data for ALA optimization, including canopy spectra and the measured LAI;
SPEC_LAI_LCC includes canopy spectra, the measured LAI, and the leaf chlorophyll content (LCC); StDv,
standard deviation.

3.3. Performance of Machine Learning Algorithms for CCC Retrieval

Table 4 reports the performance of five machine learning approaches for the estimation
of the CCC values of wheat, soybean, and maize using the ALAadj and non-ALAadj datasets.
According to the validation results for the wheat samples, the RFR, ETR, GBRT, and STL
algorithms using the ALAadj datasets achieved significantly superior performance as
compared to those using the non-ALAadj dataset. The STL algorithm achieved the highest
prediction accuracy with an RMSE of 34.8 µg cm−2. Similarly, for the soybean samples,
these algorithms using the proposed soybean ALAadj datasets produced significantly better
validation results than those using the non-ALAadj dataset, and the ETR algorithm had the
highest retrieval accuracy. For the maize samples, the SVR, RFR, and STL algorithms using
the maize ALAadj datasets outperformed those using the non-ALAadj dataset. Among
all the algorithms, the SVR algorithm delivered the best results in the estimation of the
maize CCC with the measured CCC values; it reached 433.3 µg cm−2 at the maximum and
215.7 µg cm−2 on average. For the wheat validation samples, it was found that the SVR
method performed just marginally better when using the non-ALAadj dataset than it did
when using the ALAadj dataset. Additionally, the ETR and GBRT methods using the non-
ALAadj dataset only slightly outperformed those using the ALAadj dataset in the case of the
maize samples. Conversely, RFR, which is comparable to the ERT and GBRT algorithms,
performed substantially better with the ALAadj datasets than without them. There was
a wide variation in the CCC prediction results of the five machine learning algorithms
for the three crops, but the retrieval results of the RFR algorithm for wheat and soybean
were similar to those found by Jiao [19]. The ETR, GBRT, and STL algorithms produced
better validation results than the RFR algorithm, which improved the retrieval accuracy for
soybean and wheat. Although some individual models achieved better performance with
non-adjusted data, across the three crops, all five machine learning algorithms performed
more consistently and stably with the ALAadj datasets.

The validation plots of the CCC retrieval based on continuous ground spectra for
mixed crops are presented in Figure 3. Minimal differences were found between adjust-
ing and not adjusting the ALA for SVR prediction, as shown in Figure 3A,F. Figure 3B,G
show that the CCC retrieval accuracy of the RFR algorithm was considerably increased
after ALA optimization, giving a decreased CCC RMSE value of 51.1 µg cm−2 against
93.0 µg cm−2. For the RFR algorithm, the non-ALAadj dataset resulted in greater overesti-
mation and dispersion for all three crops, whereas the ALAadj dataset resulted in a more
effective correction for overestimation. On the basis of the comparison of Figure 3C,H,
it is evident that the ETR predicted the CCC for mixed crops more accurately with the
ALAadj approach. As presented in Figure 3D,I, the GBRT and ERT methods exhibited
similar patterns and predictability. As a result of the integration of the SVR, RFR, ETR,
and GBRT, the STL model was subject to the performance of these machine learning al-
gorithms. The comparison of Figure 3E,F reveals that the adjusted ALA significantly
improved the retrieval accuracy of the mixed crops based on the STL algorithm (ALAadj:
R2 = 0.74, RMSE = 48.3 µg cm−2, Bias = 3.6 µg cm−2, NRMSE = 9%; non-ALAadj: R2 = 0.63,
RMSE = 68.5 µg cm−2, Bias = −30.8 µg cm−2, NRMSE = 16%).
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Table 4. Statistical results of CCC retrieval using ALAadj and comprehensive dataset for wheat,
soybean, and maize.

ML Algorithm Crop Type
ALAadj Dadaset Non-ALAadj Dataset

R2 RMSE Bias NRMSE R2 RMSE Bias NRMSE

SVR
Wheat 0.59 41.2 −25.5 16% 0.62 31.7 −6.6 13%

Soybean 0.84 46.1 −29.3 17% 0.85 49.5 −28.2 18%
Maize 0.86 49.3 23.4 12% 0.86 50.8 27.6 12%

RFR
Wheat 0.54 39.4 −17.4 16% 0.2 97.2 −57.7 38%

Soybean 0.84 50.8 −25.8 19% 0.75 72.4 −43.8 26%
Maize 0.78 64.3 19.5 15% 0.53 93.8 −10.4 22%

ETR
Wheat 0.48 37.4 7.1 15% 0.37 48.0 −4.7 19%

Soybean 0.83 34.0 −9.3 13% 0.85 72.2 −44.8 27%
Maize 0.73 77.6 43.1 18% 0.68 69.7 18.2 16%

GBRT
Wheat 0.48 37.4 7.0 14% 0.37 48.0 −4.7 19%

Soybean 0.83 34.0 −9.3 13% 0.86 72.2 −44.8 26%
Maize 0.74 77.6 43.1 19% 0.68 69.7 18.2 17%

STL
Wheat 0.58 34.8 −7.7 14% 0.38 63.8 −39.5 25%

Soybean 0.84 45.7 −21.7 17% 0.85 55.3 −35.9 20%
Maize 0.80 63.4 29.4 15% 0.63 79.0 −16.3 19%
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3.4. Performance of Machine Learning Algorithms for LAI Retrieval

In this study, the adjusted ALA method was applied to LAI estimation to investigate
its performance in LAI retrieval. According to Table 5, five machine learning algorithms
were assessed using ALAadj and non-ALAadj datasets for the retrieval of the LAIs of wheat,
soybean, and maize. In contrast to the CCC retrieval results, the SVR, RFR, ETR, GBRT, and
STL methods predicted more accurate LAI values with the adjusted ALA than without it.
Using the wheat ALAadj training data given in this study, the SVR, RFR, ETR, GBRT, and
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STL algorithms exhibited similar retrieval accuracies for wheat samples with RMSE values
ranging from 0.6 to 0.8, and the SVR algorithm achieved the highest validation accuracy
(ALAadj: R2 = 0.46, RMSE = 0.62, Bias = 0.19, NRMSE = 15%; non-ALAadj: R2 = 0.47,
RMSE = 0.99, Bias = 0.64, NRMSE = 24%). For the soybean LAI, the SVR, RFR, ETR,
GBRT, and STL algorithms using the adjusted ALA achieved closer validation results, with
RMSE distributions around 0.80 (RMSE: SVR = 0.87, RFR = 0.83, ETR = 0.86, GBRT = 0.87,
STL = 0.78). In the case of the non-adjusted ALA, the validation results for the soybean
LAI were poor, and the RMSE values of all five machine learning algorithms exceeded 1
(RMSE: SVR = 2.73, RFR = 1.80, ETR = 1.67, GBRT = 1.68, STL = 1.35). Similar prediction
accuracies were achieved by the SVR, RFR, ETR, GBRT, and STL algorithms using the
adjusted ALA for maize, with RMSE values ranging from 1.1 to 1.4. In contrast, none of the
five algorithms performed well when tested on the non-adjusted ALA. The validated RMSE
values for maize were greater than those for wheat and soybean, which was attributed to
the larger LAI of the maize sample. Using the adjusted ALA, the five machine learning
algorithms predicted the LAI of the three crops with less variation and better performance
than when using the non-adjusted ALA, indicating that the adjusted ALA is effective and
stable for the LAI estimation of crops.

Table 5. Statistical results of LAI retrieval using ALAadj and comprehensive dataset for wheat,
soybean, and maize.

ML Algorithm Crop Type
ALAadj Dadaset Non-ALAadj Dataset

R2 RMSE Bias NRMSE R2 RMSE Bias NRMSE

SVR
Wheat 0.46 0.62 0.19 15% 0.47 0.99 0.64 24%

Soybean 0.87 0.87 0.53 16% 0.85 2.73 1.00 48%
Maize 0.88 1.14 0.84 21% 0.55 2.84 1.77 46%

RFR
Wheat 0.43 0.69 0.34 17% 0.13 2.45 −1.49 60%

Soybean 0.75 0.83 0.43 16% 0.54 1.80 −0.84 34%
Maize 0.70 1.33 1.02 25% 0.29 2.18 −0.36 37%

ETR
Wheat 0.47 0.65 0.31 16% 0.27 1.66 −1.20 41%

Soybean 0.75 0.86 0.51 16% 0.77 1.67 −1.03 31%
Maize 0.71 1.40 1.12 26% 0.37 1.67 0.01 28%

GBRT
Wheat 0.48 0.66 0.30 15% 0.27 1.67 −1.21 41%

Soybean 0.75 0.87 0.50 16% 0.77 1.68 −1.02 32%
Maize 0.70 1.40 1.13 16% 0.38 1.67 0.01 28%

STL
Wheat 0.51 0.64 0.33 16% 0.27 1.31 −0.79 32%

Soybean 0.79 0.78 0.43 15% 0.68 1.45 −0.68 27%
Maize 0.74 1.26 0.97 23% 0.28 1.78 0.36 30%

Figure 4 displays the validation plots for the LAI retrieval using continuous ground
spectra for mixed crops. A comparison of the validation scatters obtained using the ALAadj
and non-ALAadj datasets shown in Figure 4 indicates that the use of the adjusted ALA
made the predicted LAI values more consistent with the measured LAI values. Figure 4A,F
reveal a significant improvement in the prediction accuracy of the SVR algorithm for the
LAI of mixed crops when using ALA optimization, with the RMSE values decreased from
2.10 to 0.91. The improvement of the adjusted ALA for the RFR, ETR, GBRT, and STL
algorithms was better than that of the non-adjusted ALA, especially for soybean and wheat.
Although the adjusted ALA improved the accuracy of maize LAI retrieval by the RFR, ETR,
GBRT, and STL algorithms, underestimation remained. Based on the combination of the
validation results of the five algorithms, SVR performed better than the other algorithms in
retrieving the mixed-crop LAIs (RMSE: SVR = 0.91, RFR = 1.03, ETR = 1.05, GBRT = 1.05,
STL = 0.97).
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4. Discussion
4.1. Application of the ALAadj Parameterization of the PROSAIL Model to Crop CCC and
LAI Retrieval

In this study, an ALAadj parameterization scheme was used to improve the perfor-
mance of the PROSAIL model in retrieving the CCC and LAI of crops. The PROSAIL model
assumes a uniform canopy, thus limiting its application in non-uniform canopy layers.
As a structural parameter of the PROSAIL model, the ALA describes the random spatial
distribution of leaves. The ALA setting determines how well the spectrum is transmitted
within the vegetation, thus affecting its range of reception [71]. In Sections 3.3 and 3.4, it
was demonstrated that the retrieval accuracy of the CCC and LAI can be improved by
optimizing the ALA for different vegetation types. In a previous study, Jiao et al. [19]
provided the CCC estimates for wheat based on an adjusted ALA using the RF algo-
rithm (RMSE = 37.9 µg cm−2), which is similar to the retrieval results of the RFM in the
present study (RMSE = 39.42 µg cm−2). It is important to note, however, that the ETR,
GBRT, and STL algorithms used in this study produced better estimates of the wheat
CCC than Jiao et al.’s [11] model (RMSE: ETR = 37.41 µg cm−2, GBRT = 37.42 µg cm−2,
STL = 34.81 µg cm−2). Although the soybean estimates obtained by Jiao et al. [19] using
the RF model (RMSE = 39.9 µg cm−2) were more accurate than those produced by the RFR
algorithm in this study (RMSE = 50.81 µg cm−2), the ETR and GBRT algorithms provided
superior estimates (RMSE: ETR = 33.98 µg cm−2; GBRT = 33.99 µg cm−2). It appears that
optimizing the ALA can improve the accuracy of crop CCC estimation, although different
machine learning algorithms will achieve different performances.

In this study, for the first time, LAI estimation using ALA parameterization was
successfully completed. The adjusted ALA method has never been used for LAI estimation,
but the findings of this study indicate that the accuracy of the five machine learning
algorithms increased significantly after ALA optimization. For example, for the RFR
method, which is commonly used for quantitative vegetation retrieval, the parameterization
of the ALA for the three crops produced significantly better LAI estimates than the results
without optimization (ALAadj: RMSEWheat = 0.69, RMSESoybean = 0.83, RMSEMaize = 1.33;
non-ALAadj: RMSEWheat = 2.45, RMSESoybean = 1.80, RMSEMaize = 2.08). In addition, the
rest of the algorithms also achieved effective and stable retrieval performance. Compared
to CCC estimation, ALA parameterization contributes more to LAI retrieval, resulting in
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the more stable prediction performance of multiple machine learning algorithms. Figure 5
presents the prediction accuracy of the five machine learning algorithms for wheat, soybean,
and maize LAI estimation using adjusted and non-adjusted ALA datasets, with the RMSE
as the evaluation criterion. It is evident from the figure that for all three crop types, the
accuracy of LAI estimation using the adjusted ALA method was significantly higher than
that using the non-adjusted ALA method. Moreover, the prediction accuracies of the five
machine learning algorithms for the same crops with the parametric ALA did not differ
significantly, whereas the non-adjusted ALA methods exhibited a large difference. The
boxplot shown in Figure 6 reveals the distribution of the differences between the measured
and predicted LAI values. It is evident from the figure that the differences between the
measured and predicted LAI values for wheat and soybean adjusted based on the adjusted
ALA were significantly more concentrated, with the maximum and minimum values of
the differences being smaller and the median values distributed around 0. In contrast, the
differences between the measured and predicted LAI values for wheat and soybean based
on the non-adjusted ALA were more discrete and exhibited large outliers. In other words,
the predicted LAI values for wheat and soybean without the adjusted ALA presented more
overestimations or underestimations. The difference between the measured and predicted
LAI values of maize based on the adjusted ALA had a median value greater than 0 across
multiple machine learning algorithms, revealing a general underestimation. The difference
between the measured and predicted LAI values for maize without the adjusted ALA
appeared to have a concentrated distribution. This was due to a larger number of outliers
canceling each other out, as explained in Figure 4.
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4.2. Performance of the Machine Learning Regression Algorithms for CCC and LAI Retrieval

In this paper, machine learning methods were used to implement the retrieval algo-
rithm for estimating crop CCC and LAI. However, as empirical regression is a convenient
method for estimating these parameters, we also compared the performance of commonly
used vegetation indices with machine learning algorithms. To estimate the CCC, we used
the MTCI, which was developed using red and red-edge position bands. To estimate
the LAI, we used the NDVI, which is calculated by analyzing the difference between the
reflectance of near-infrared and red-light wavelengths. Empirical models for MTCI-CCC
and NDVI-LAI were constructed using the adjusted simulation datasets, and the validation
results are presented in Figure 7. The validation results revealed that the empirical model
constructed using MTCI produced a significant overestimation of CCC for all three crops,
as shown in Figure 7A. A comparison with Figure 3 illustrates that the machine learning
algorithms estimated the crop CCC significantly more effectively than the empirical model.
Moreover, the regression model constructed using NDVI exhibited a large number of nega-
tive values when estimating LAI, and these values are not displayed in Figure 7B. Further
comparison with Figure 4 reveals that the performance of the regression model was also
weaker than that of the machine learning algorithms.
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Machine learning algorithms can efficiently handle complex nonlinear relationships in
crop parameter inversions due to their powerful computational capabilities. However, the
model outputs may have potential biases and distortions, such as negative LAI estimates,
when the created models are given access to real crop parameters; the term for this situation
is overfitting [24]. In this work, the SVR algorithm was found to achieve superior CCC
and LAI estimates; for the CCC estimation in particular, the adjustment of the ALA had
little bearing on the outcomes of the estimation (see Figure 3). However, Figure 3 does not
display a negative CCC estimation, which was only evident for the SVR model among the
five machine learning algorithms (Figure 8A,B). Figure 8A,B display the scatter plots of the
negative predicted values of the SVR algorithm under the adjusted and non-adjusted ALA
strategies, respectively. Additionally, on both the adjusted and non-adjusted ALA datasets,
the RFR, ETR, GBRT, and STL algorithms displayed differential inversion performance.
However, due to the modification of the ALA, particularly for the RFR method, the accuracy
of CCC retrieval was significantly improved (ALAadj: R2 = 0.60, RMSE = 1.03, Bias = 0.60,
NRMSE = 17%; non-ALAadj: R2 = 0.22, RMSE = 2.28, Bias = 1.00, NRMSE = 39%). The
performances of the SVR, RFR, ETR, GBRT, and STL in estimating crop LAI values differed;
the RFR, ETR, GBRT, and STL algorithms exhibited similar inversion results, all of which
were weaker than those of the SVR algorithm. However, the LAI calculated by the SVR
algorithm displayed negative values, perhaps due to overfitting (Figure 8C,D). Figure 8C,D
illustrate that negative values occurred mainly when the measured LAI was small, and
also that there were more and larger negative values under the non-adjusted ALA strat-
egy. For wheat and soybean, the RFR, ETR, GBRT, and STL algorithms vastly enhanced
the LAI estimations, whereas the maize LAI estimated by employing the modified ALA
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strategy remained significantly underestimated (Figure 4). Although the maize LAI was
underestimated by the modified ALA strategy, the results were still superior to the discrete
LAI estimates obtained under the non-adjusted ALA strategy. The results of this research
reveal that crop CCC and LAI estimation differ among the SVR, RFR, ETR, GBRT, and STL
regression algorithms and that the method of adjusting the ALA essentially enhances the
inversion performance of each algorithm.
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4.3. Effects of the Uncertainties of the Selected Spectra on the Retrieval Models

In this study, 50 continuous spectra were used to estimate the crop canopy parameters
by optimizing the ALA. The final results of the retrieval models will be impacted if the
training spectra differ. Furthermore, the performances of discrete spectra on the satellite
scale were evaluated with an eye toward the future application of retrieval models to
satellites. Figure 9 presents the comparison of the validation results of the CCC and LAI
retrieval models using continuous and discrete (19 bands) spectra with ALAadj and non-
ALAadj datasets. Under the same ALA parameterization conditions, the reflectance of
continuous and discrete bands had little effect on the inversion accuracy of the CCC and
LAI. Even individual machine learning algorithms exhibited better prediction performance
when using discrete reflectance spectra. For example, when using discrete reflectance
spectra, the CCC estimations of the RFR, ETR, and GBRT algorithms for wheat, soybean,
and maize were slightly better than those when using continuous reflectance spectra.
The LAI estimations of the SVR algorithm for wheat, soybean, and maize were slightly
better than those when using the continuous spectra. There was, however, no significant
difference between the accuracy of the CCC and LAI estimations for the two types of
spectra. Nevertheless, the retrieval accuracies of the continuous and discrete bands with
and without the adjusted ALA technique were noticeably lower than those of the adjusted
ALA technique, with the discrete bands exhibiting a striking difference between the retrieval
accuracies of the two strategies. This indicates that the adjusted ALA makes a significant
contribution to the discrete band in CCC and LAI estimation. The feasibility of the use of
discrete spectra provides selectivity for a variety of training variables. The sensitivity of
reflectance to crop parameters and a priori knowledge can lead to better band selection in
subsequent studies. Because the surface reflectance of satellite images is characterized by
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discrete spectra, the results of this study illustrate that this method may also achieve good
results using satellite data.
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4.4. Challenges and Limitations of the Proposed Retrieval Approach

If the proposed method is applied on the satellite scale, it will be necessary to consider
the effect of crop spatial distribution on ALAadj determination. Unlike the present study,
which used ground-based spectra to obtain the ALAadj, the adjusted ALA faces challenges
related to the resolution and spatial heterogeneity of satellite data. Additionally, actual
satellite data are subject to a number of uncertainties, including remote sensor hardware
metrics, atmospheric correction processing, and complex ground mixing [72,73].

The CCC and LAI retrieval algorithms depend on the parameter inputs of the RTM. Al-
though the retrieval algorithm was adjusted in this study by adjusting the ALA, additional
physicochemical parameters of the crops were not explored, resulting in some uncertainty
regarding the suggested retrieval algorithms under various crop types and growing circum-
stances. In areas with low plant cover, the estimation of the canopy parameters has been
shown to be a challenge in quantitative remote sensing [74], and the findings of this work
are no exception. For instance, when the SVR is used to estimate crop LAI, a significant
proportion of negative values will arise in low-LAI locations.

The process of assessing the actual field data could be another source of uncertainty.
In this study, three different crop types were used as validation samples, but each crop
sample was taken from the same region. The current validation dataset does not accurately
reflect the regional and seasonal variability of crops. Future research could concentrate
on extending the validation of the retrieval algorithm by utilizing a wider variety of
crop samples to assess the accuracy of the CCC and LAI estimation models for multiple
crop types.

5. Conclusions

This study presented an improved approach for estimating the CCC and LAI of wheat,
soybean, and maize by parameterizing the crop-type-related ALAadj. The ALAadj values of
these crops (62 degrees for wheat, 45 degrees for soybean, and 60 degrees for maize) were
obtained using ground-based prior data and a random forest algorithm. The results of five
machine learning algorithms, namely SVR, RFR, ETR, GBRT, and STL, were investigated
and compared using adjusted and original datasets. The findings indicate that the machine
learning algorithms using the ALAadj resulted in a significant accuracy improvement
for the estimation of the CCC and LAI of wheat, soybean, and maize, especially the
crop LAI. In terms of the estimation results of mixed crops using ALAadj datasets, the
SVR algorithm performed the best for both CCC and LAI estimation, with an RMSE
of 44.93 µg cm−2 for the CCC estimation and an RMSE of 0.91 for the LAI estimation.
Additionally, although RFR, ETR, GBRT, and STL slightly underperformed SVR, these
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algorithms also have good potential for CCC and LAI retrieval, especially STL, which
achieved an RMSE of 48.27 µg cm−2 for the CCC estimation and an RMSE of 0.97 for the
LAI estimation. Furthermore, the proposed method was applied to 19-band spectra from
the reference Sentinel-3 satellite, and similar results were obtained. This indicates the
promising potential of the proposed method to estimate the CCC and LAI of crops at the
satellite scale. Future studies could explore the feasibility of the proposed method for other
crops and regions.
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