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Abstract: The problem that the randomly generated random projection matrix will lead to unstable
classification results is addressed in this paper. To this end, a Tighter Random Projection-oriented
entropy-weighted ensemble algorithm is proposed for classifying hyperspectral remote sensing
images. In particular, this paper presents a random projection matrix selection strategy based on the
separable information of a single class able to project the features of a certain class of objects. The
projection result is measured by the degree of separability, thereby obtaining the low-dimensional im-
age with optimal separability of the class. After projecting samples with the same random projection
matrix, to calculate the distance matrix, the Minimum Distance classifier is devised, repeating for all
classes. Finally, the weight of the distance matrix is considered in ensemble classification by using the
information entropy. The proposed algorithm is tested on real hyperspectral remote sensing images.
The experiments show an increase in both stability and performance.

Keywords: random projection; random projection matrix; minimum distance classifier; hyperspectral
remote sensing image classification; ensemble classification

1. Introduction

With the continuous improvement of sensor technology, the spectral resolution of
remote sensing images is getting higher and higher, usually including dozens to hundreds
of bands [1,2]. Hyperspectral remote sensing image classification is essentially the process
of dividing the image domains into non-overlapping sub-regions according to the feature
information of the images and assigning a specific class to each sub-region [3,4]. While
providing rich spectral information, it also greatly increases the computational cost required
for hyperspectral remote sensing image classification. Therefore, dimensionality reduction
is usually required before classification [5–7].

Traditional dimensionality reduction methods can be roughly divided into two types:
band selection [8–10] and feature extraction based on data transformation [11–13]. The first
type of method is generally based on a certain evaluation criterion function to perform a
band combination search to achieve the purpose of dimensionality reduction. The second
type of method is to map hyperspectral remote sensing images to a low-dimensional
space through linear or nonlinear transformation, thereby obtaining a low-dimensional
representation of the original data set. For low-configuration hardware, these methods
cannot reduce the dimensionality in an acceptable timeframe, which greatly limits the
application of hyperspectral remote sensing images [14,15]. Random Projection (RP) has
the characteristics of being independent of high-dimensional data and simple to calculate,
which is a dimensionality reduction algorithm with little information loss [16,17]. This
algorithm provides a feasible mapping way for the Johnson-Lindenstrauss lemma [18,19],
which has been widely used in biology, environmental monitoring, and disaster monitoring
fields [20–22].
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The classification task has attracted many researchers to conduct research in this
field, and many algorithms of dimensionality reduction and classification have been pro-
posed [23–25]. According to the conditions of prior information, it can be divided into
supervised classification algorithms and unsupervised classification algorithms. Repre-
sentative supervised classification algorithms include Minimum Distance (MD), Support
Vector Machines (SVM), and Convolutional Neural Networks [26–28]. Zhou et al. [29]
proposed a radical algorithm through a self-organizing pixel entanglement neural network.
This network used pixel entanglement coefficient to mine the quantum entanglement re-
lationship on the array space. Zheng et al. [30] proposed a spectrum interference-based
two-level data augmentation method in deep learning for automatic modulation clas-
sification. This algorithm is the first time radio signals were used to help modulation
classification by considering the frequency domain information. Zhao et al. [31] proposed a
Tighter RP based on Minimum Intra-class Variance (TRP-MIV) algorithm for hyperspectral
remote sensing image classification. This algorithm selects the random projection matrix
to generate low-dimensional images and uses the MD classifier [32] for subsequent clas-
sification. Zhao and Mao [33] proposed a semi-random projection method, which uses
Linear Discriminant Analysis (LDA) to calculate each column vector in the projection
matrix and calculates the projection matrix by repeating it multiple times. Fuzzy C-Means
(FCM) clustering algorithm is one of the representative unsupervised classification algo-
rithms [34]. Fowler et al. [35] proposed a Compressive-Projection Principal Component
Analysis (CPPCA) algorithm for hyperspectral images. The CPPCA algorithm first uses
the RP algorithm to project the hyperspectral images into the low-dimensional space to
reduce the computational complexity of image processing. Next, Principal Component
Analysis (PCA) is used to further process the dimensionality reduction results of the RP
algorithm in the projection direction with the smallest mean square error. Finally, the
final low-dimensional image is obtained. Pasunuri et al. [36] combined the PCA, RP, and
K-means algorithms to classify the high-dimensional data. Alshamiri et al. [37] proposed a
classification algorithm combining Extreme Learning Machine (ELM) and RP, which uses
ELM to transform high-dimensional data and keeps the linear class separability of high-
dimensional data in the ELM feature space. The RP is used to project the transformation
result of ELM into a low-dimensional space. Rathore et al. [38] proposed a new Cumulative
Agreement Fuzzy C-Means (CAFCM) algorithm, which uses the clustering effectiveness
index to sort all the membership matrices and accumulates all the membership matrices
to get the final similarity measure matrix. Anderlucci et al. [39] proposed a model-based
clustering algorithm for high-dimensional data, which obtains the final segmentation result
through consensus aggregation. Although the RP algorithm can achieve simple and fast di-
mensionality reduction results, since the random projection matrix is randomly generated,
it may generate low-dimensional images that are not conducive to subsequent classification
tasks and have the disadvantage of high randomness.

To solve the above problems, this paper exploits TRP-oriented hyperspectral remote
sensing image classification using an entropy-weighted ensemble algorithm. The proposed
algorithm can effectively improve the classification accuracy of hyperspectral remote
sensing images. First, based on the TRP algorithm, a distance matrix suitable for a certain
class is generated by combining the random projection matrix selection strategy based
on the separable information of a single class and the MD classifier. The above steps are
repeated for all classes and the information entropy of the distance matrix of all classes
is calculated as weights to generate the final similarity measure matrix, thereby realizing
the classification of hyperspectral remote sensing images. The structure of this paper
is organized as below. Sections 2 and 3 give the materials and the proposed algorithm,
respectively. The results and discussion are provided in Section 4. Finally, this paper is
concluded in Section 5.
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2. Materials

This paper uses four publicly available datasets with validation data, namely, the real
LongKou [40,41], Salinas, Pavia University, and Pavia Centre images. Among them, the
LongKou images are obtained by the UAV-borne hyperspectral system, and the images
of Salinas, Pavia University, and Pavia Centre are obtained by the airborne hyperspectral
platform. Compared with the airborne hyperspectral platform, the hyperspectral images
obtained by the UAV-borne hyperspectral system have higher spatial resolutions. In
addition, the standard classification data are included in the experimental data, which can
effectively measure the effectiveness of the proposed algorithm. Figure 1 is an experimental
image, where Figure 1(a1–d1) are false-color images, Figure 1(a2–d2) are standard classified
images, Figure 1(a3–d3) are mean spectral curves for each class, and Figure 1(a4–d4) are
legends for all classes of four real images. The experimental image parameters are shown
in Table 1.

Table 1. Parameters of experimental images.

LongKou Salinas Pavia University Pavia Centre

Size 250 × 400 265 × 107 260 × 340 1096 × 515
Class 6 7 6 9

False-color bands 130, 65, 18 34, 18, 11 68, 21, 2 68, 21, 2
Number of bands 270 204 103 102
Spatial resolution 0.463 m 3.7 m 1.3 m 1.3 m

Sensor Nano-Hyperspec AVIRIS ROSIS ROSIS

As some data points in the four experimental images do not contain any information,
these data points are regarded as background and discarded before application. The
numbers of spectral vectors of these hyperspectral remote sensing images are 93083, 14879,
11915, and 107352, respectively.
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Figure 1. Real images. (a1–d1) represent the false-color images of the LongKou, Salinas, Pavia Centre,
and Pavia University images, respectively. (a2–d2) represent the standard classified images (i.e.,
validation data) of four real images, respectively. (a3–d3) represent the mean spectral curves for each
class. (a4–d4) represent the legends for all classes of four real images, respectively.

3. The Proposed Algorithm

First, the TRP algorithm is used to reduce the dimensions of hyperspectral remote
sensing images containing all bands. Then, the MD classifier is used to classify the low-
dimensional images to obtain the distance matrix. Finally, they are included in the ensemble
classification framework to obtain the final classification results.

3.1. TRP Algorithm

Given a hyperspectral remote sensing image A = {aj, j = 1, . . . , J}, where j is the pixel
index, J is the number of pixels, and aj = (ajd, d = 1, . . . , D) is the spectral measure vector of
pixel j, d is the band index, D is the number of bands, and ajd is the spectral measure of the
band d of pixel j. Taking the spectral vector aj (j = 1, . . . , J) as the row vector, a hyperspectral
remote sensing image can be expressed as a J×D matrix. For the convenience of description,
A is still used to refer to a hyperspectral remote sensing image matrix without confusion,
that is, A = [a1, . . . aj, . . . , aJ]T, where T is the transpose operation.

The TRP algorithm can project hyperspectral remote sensing images into a low-
dimensional subspace and make any vector pair in the low-dimensional subspace satisfy
the distance relative invariance with a high probability. It is possible for the TRP algorithm
to reduce the dimensionality of hyperspectral remote sensing images. The TRP algorithm
is as follows [31].
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Theorem 1. The D dimensional feature space can be randomly projected into the KTRP dimensional
space, where KTRP is a positive integer and satisfies,

KTRP ≥ K0
TRP =

⌈
320 + 160β

ε + 20ε2 ln J
⌉

(1)

where K0
TRP is the intrinsic dimensionality, d e is the round up character, ε ∈ [0.7, 1.5], and β > 0

are the projection parameters that control the range of distance preservation and the success rate of
projection, respectively. Let RTRP = [rdk]D × KTRP be a tighter random projection matrix, and rdk
are independent random variables subject to standard normal distribution, that is, rdk ~ N(0, 1).
For a given hyperspectral remote sensing image A, the low-dimensional image B projected to KTRP
dimensionality by RTRP is,

B =
1√

KTRP
ARTRP (2)

where B = [b1, . . . , bj, . . . , bJ]T = [bjk]J × KTRP, and bj is the low-dimensional vector of pixel j. For
the spectral vectors aj and aj′ in the hyperspectral remote sensing image A, let the corresponding
two low-dimensional vectors in the low-dimensional image B be bj and bj′ , respectively. bj and bj′

satisfy the distance relative invariance, if

(1− ε)‖αj −αj′‖2
2
≤ ‖bj − bj′‖2

2
≤ (1 + ε)‖αj −αj′‖2

2
(3)

where ‖ · ‖2 represents 2-norm. So, ‖αj −αj′‖2
2
=

D
∑

d=1

(
ajd − aj′d

)2
Any two low-dimensional

vectors in the KTRP dimensional space obtained by the TRP algorithm satisfy the distance relative
invariance at least with the probability PTRP, where PTRP = 1 − J–β.

It is worth noting that the distance relative invariance is not that the square of the
distance between the vectors before and after projection is equal, but ‖bj − bj′‖2

2
remains

at interval
[
(1− ε)‖αj −αj′‖2

2
, (1 + ε)‖αj −αj′‖2

2

]
. The bj and bj ′ with ‖bj − bj′‖2

2
out of

the interval
[
(1− ε)‖αj −αj′‖2

2
, (1 + ε)‖αj −αj′‖2

2

]
are considered to have little similarity

of the vector pair before and after projection. Under the constraint of the same proba-
bility PTRP, the intrinsic dimensionality of the TRP algorithm is lower than that of the
RP algorithm. Therefore, the TRP algorithm can reduce the number of bands in hyper-
spectral remote sensing images to a greater extent, while ensuring that the vector pairs
satisfy the distance relative invariance with probability PTRP. As distance reflects the
structure of the dataset, the TRP algorithm indicates that low-dimensional images in a
low-dimensional space can maintain the structure of hyperspectral remote sensing images
with a high probability.

The detailed process of the TRP Algorithm 1 can be summarized as follows.

Algorithm 1. The detailed process of the TRP algorithm.

Input: test hyperspectral remote sensing image A.
Output: low-dimensional image B.
Step 1. Calculate K0

TRP ← Equation (1), and set the dimensionality KTRP.
Step 2. Generate rdk according to the standard normal distribution, that is rdk ~ N(0, 1).
Step 3. Form R.
Step 4. Calculate the low-dimensional image B← Equation (2).

3.2. Random Projection Matrix Selection Strategy

The random projection matrix is randomly generated without considering the class
information of hyperspectral remote sensing images. Different random projection matrices
will produce different low-dimensional images. Therefore, the selection of the random
projection matrix directly affects the subsequent classification accuracy of hyperspectral
remote sensing images. To make low-dimensional images have stronger class separability
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and achieve accurate classification of hyperspectral remote sensing images, this subsection
uses a random projection matrix selection strategy based on the separable information of a
single class to obtain low-dimensional images with the best separability of a single class.
It is worth noting that the benefit of subsequent classification refers to greater differences
between classes and smaller differences within classes. This means that there may be
overtraining effects and generalization may degenerate, but it is more meaningful for
classification tasks.

First, the sample matrix of all classes is defined as F = [F1; . . . ; Fl; . . . ; FL], where l
is the class index, Fl is the sample matrix of the lth class, and L is the number of classes,
which is a priori. It can be specifically expressed as

Fl =


f l
11 f l

12 · · · f l
1D

f l
21 f l

22 · · · f l
2D

...
...

. . .
...

f l
H1 f l

H2 · · · f l
HD

 =
[
Fl

1 Fl
2 · · · Fl

D
]

(4)

where Fl
d is the sample vector of the lth class and the dth (d = 1, 2, . . . , D) band, and H is

the number of samples of the lth class. It is worth noting that this paper sets the number
of samples to be the same for all classes. Then, the TRP algorithm is used to reduce the
dimensionality of the samples. Through the random projection matrix R, the sample matrix
F of all classes can be projected into the KTRP dimensional space, thereby obtaining the
low-dimensional sample matrix S = [S1; . . . ; Sl; . . . ; SL] of all classes. It is calculated
as follows,

S =
1√

KTRP
FRTRP (5)

SL in the S matrix is the low-dimensional sample matrix of the lth class obtained by
using the TRP algorithm for dimensionality reduction. The specific expansion is as follows:

Sl =


sl

11 sl
12 · · · sl

1KTRP
sl

21 sl
22 · · · sl

2KTRP
...

...
. . .

...
sl

H1 sl
H2 · · · sl

HKTRP

 =
[
sl

1 sl
2 · · · sl

KTRP

]
(6)

where sl
H1 is the low-dimensional measure of the first dimensionality of Hth sample of lth

class, and sl
k is the low-dimensional sample vector of the kth dimensionality in the KTRP

dimensional space,

sl
k =


sl

1k
sl

2k
...

sl
Hk

 = r1k


f l
11

f l
21
...

f l
H1

+ r2k


f l
12

f l
22
...

f l
H2

+ · · ·+ rDk


f l
1D

f l
2D
...

f l
HD


= r1kFl

1 + r2kFl
2 + · · ·+ rDkFl

D =
D
∑

d=1
rdkFl

d

(7)

According to Equation (7), sl
k is related to the vector rk of the kth column in the random

projection matrix. Thus, each element rdk in the kth column of the random projection matrix
can be limited by constraining each cumulative sum of sl

k. The random projection matrix
with the best class separability of the dimensionality reduction result can be selected by
means of multiple sampling.

The measurement of the random projection matrix selection strategy based on the
separable information of a single class is the large intra-class variance of a single class and
the small distance from other classes. Each dimensionality in the random projection matrix
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is separately selected, to select the random projection matrix that is extremely conducive to
the classification of this class.

As each element rdk of the random projection matrix R obeys the standard normal
distribution, multiple random numbers can be generated according to this distribution as
the sampling set of the elements rdk. It is defined as Qdk = [Q1

dk, . . . , Qψ
dk, . . . , QΨ

dk]. Each
random number Qψ

dk is used to calculate the class separability, and the random number
that maximizes the degree of separability of a certain class is selected as the element rdk of
the random projection matrix R.

Specifically, the lth class is taken as an example to introduce the random projection
matrix selection strategy based on the separable information of a single class. For the
random number Qψ

dk, the variance of the lth class samples and the distance from other class
samples are calculated, respectively. Then, the minimum distance between this class and
other classes is divided by the variance of this class to get the lth class final difference value
Wψ

dkl . It can be calculated by

WΨ
dkl =

min
l′=1,...,L

(
r1k‖Fl

1 − Fl′
1 ‖2 + · · ·+ rd−1k‖Fl

d−1 − Fl′
d−1‖2 + QΨ

dk‖F
l
d − Fl′

d ‖2

)
var(r1kFl

1 + · · ·+ rd−1kFl
d−1 + QΨ

dkFl
d)

(8)

According to Equation (8), the difference matrix of this class can be obtained by using
all random numbers and is expressed as Wψ

dkl = [W1
dkl , . . . , Wψ

dkl , . . . , WΨ
dkl]. Then, the ψ*th

sampling is obtained by maximizing the final difference value of the lth class, that is,

ψ∗ = arg max
ψ=1, ..., Ψ

{
Gψ

dk

}
(9)

Finally, the element rdk takes the ψ*th sampling random number that maximizes the
final class difference value, that is,

rdk = Qψ∗

dk (10)

3.3. Entropy-Weighted Ensemble Algorithm

The random projection matrix selection strategy based on the separable information
of a single class considers the separability of a single object class but does not measure the
class separability of low-dimensional images from a global perspective. To this end, based
on the idea of the random projection matrix selection strategy of the separable information
of a single class and ensemble classification, the classification results of multiple low-
dimensional images are combined to construct a classification model, thereby obtaining
more stable and accurate classification results.

The main idea of the entropy-weighted ensemble classification algorithm is to use the
random projection matrix selection strategy based on the separable information of a single
class to select L random projection matrices suitable for L classes, respectively. In addition,
the TRP algorithm is used to reduce the dimensionality of the hyperspectral remote sensing
images A based on these projection matrices, thereby obtaining L low-dimensional images.
The number of ensembles is set as the number of classes in this paper to ensure that each
class is considered. For ease of reference, iter is used to represent the index of ensembles,
that is, iter = 1, . . . , L. The low-dimensional image obtained by the iterth ensemble using
the TRP algorithm is defined as Biter.

The MD classifier is used to classify L low-dimensional images to obtain L distance matrices,
respectively. Each distance matrix Ziter is regarded as a similarity measurement matrix between
the low-dimensional spectral vector and the mean vector of each class. Finally, the entropy
information is used to weigh each matrix to obtain the final similarity measure matrix C.

With the help of the class information of the samples, the TRP algorithm is used to
calculate the lower limit of the projection dimension KTRP, and the random projection
matrix Riter is obtained by the random projection matrix selection strategy. Then, the
sample matrix F of all classes can be projected into the KTRP dimensional space. The result
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of the dimensionality reduction of the sample matrix F by the random projection matrix
Riter is Siter = [Siter1; . . . ; Siterl; . . . ; SiterL], which is calculated as follows

Siter =
1√

KTRP
FRiter (11)

Then the feature mean vector Siterl
mean of the low-dimensional samples of the lth class is

calculated to obtain distance matrix, which is expressed as

Siterl
mean =

1
H

Siterl =
1
H

[
siter

11 + · · ·+ siter
H1 , siter

12 + · · ·+ siter
H2 , · · · , siter

1KTRP
+ · · ·+ siter

HKTRP

]
(12)

Then, according to Equation (11), the same random projection matrix Riter is used
to reduce the dimensionality of the hyperspectral remote sensing image A to obtain the
low-dimensional image Biter. So far, the feature mean vector and low-dimensional images
of all classes of low-dimensional samples can be obtained. The MD classifier builds a
classification model on low-dimensional images, and the similarity of the low-dimensional
vector is defined by calculating the distance between each low-dimensional vector and the
mean vector of each class sample. The distance matrix is defined as Ziter = [ziter

1 , . . . , ziter
j ,

. . . , ziter
J ], where ziter

j is the distance between the jth low-dimensional vector and the mean

vector of all class samples of the iterth ensemble. Specifically, ziter
j = [ziter

j1 , . . . , ziter
jl , . . . ,

ziter
jL ], where ziter

jl is between the mean vector Siterl
mean of the lth class low-dimensional samples

and the low-dimensional vector biter
J . The distance is calculated as follows

ziter
jl = ‖Siterl

mean − biter
j ‖ (13)

In the process of entropy-weighted ensemble classification, to avoid the problem
that the distance value in each distance matrix is too large or too small, it is necessary
to normalize each distance matrix Ziter to obtain the matrix Y iter before processing all the
distance matrices, that is, Y iter = [yiter

1 , . . . , yiter
j , . . . , yiter

J ]. Specifically, yiter
j = [yiter

j1 , . . . ,

yiter
jl , . . . , yiter

jL ], where yiter
jl is calculated as follows

yiter
jl =

ziter
jl − min

l=1, ..., L

{
min

j=1, ..., J

{
ziter

jl

}}
max

l=1, ..., L

{
max

j=1, ..., J

{
ziter

jl

}}
− min

l=1, ..., L

{
min

j=1, ..., J

{
ziter

jl

}} (14)

The information entropy is used to perform weighted ensemble processing on multiple
distance matrices to generate a similarity measure matrix, and the entropy value of the
defined matrix Y iter is calculated as follows

Eiter = −
G

∑
g=0

piter
g ln piter

g (15)

where G represents the total number of unique distance values, piter
g represents the probability

that the distance value in iterth matrix Yiter is g, and the frequency is not 0. It can be calculated by

piter
g =

1
J × L

#
{
(j, l), yiter

jl = g
}

(16)

where # represents the quantity, and the (j, l) is the position where the distance value is g.
The final similarity measure matrix C = {cjl, j = 1, . . . , J, l = 1, . . . , L} is calculated as follows

C =
1
L

L

∑
iter=1

EiterYiter (17)
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Finally, to model the class, the deterministic classification result o = [o1, . . . , oj, . . . , oJ]
can be obtained in the decision-making process of hyperspectral remote sensing images
classification, where oj ∈ {1, . . . , L}. Simply, the low-dimensional vector bj belongs to the
lth class with the smallest Euclidean distance,

oj = arg min
l=1, ..., L

{
cjl

}
(18)

3.4. The Complexity of the Proposed Algorithm

The space and time complexities of the proposed algorithm are analyzed here. This
section studies the complexity in three parts: the optimization strategy of the projection
matrix, the MD classifier, and the ensemble algorithm.

The main contribution of the complexity of the optimization strategy of the projection ma-
trix is to calculate the projection matrix. To update the projection matrix, it takes O(HLD) space
and O(HLDKTRP) time for the calculation of the low-dimensional sample matrix. Furthermore,
O(HKTRP) space and O(THL2KTRP) time are required to calculate the class dissimilarity. The
main contribution of the complexity of the classification algorithm is to calculate the distance ma-
trix. To update the distance matrix, it takes O(SD) space and O(SDKTRP) time for the calculation
of the low-dimensional images. Furthermore, O(SKTRP) space and O(SLKTRP) time are required
to calculate the distance. The main contribution of the complexity of the ensemble algorithm is
to repeat the above two steps. To obtain the final distance matrix, the overall space complexity
of the proposed algorithm is O(LSD), and the overall time complexity of the proposed algorithm
is O(L(HLDKTRP + THL2KTRP + SDKTRP + SLKTRP)).

Figure 2 presents the flow chart for the proposed algorithm. For easier understanding,
the blue arrows represent the dimensionality reduction process of samples, and the red arrows
represent the dimensionality reduction process of hyperspectral remote sensing images.
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Furthermore, the detailed process of the proposed Algorithm 2 can be summarized
as follows.

Algorithm 2. The detailed process of the proposed classification algorithm.

Input: samples F, test hyperspectral remote sensing image A.
Output: the classification results o.
Step 1. Calculate K0

TRP ← Equation (1), and set the dimensionality KTRP.
For iter = 1: L

Step 2. Randomly generate Ψ random numbers according to the standard normal distribution.
Step 3. Calculate the final difference value Wψ

dkl ← Equation (8).
Step 4. Calculate the ψ*th sampling← Equation (9).
Step 5. Form Riter ← Equation (10).
Step 6. Reduce the dimensionality of the hyperspectral image A and samples F← Equation (11).
Step 7. Calculate the mean vector of each low-dimensional class sample← Equation (12).
Step 8. Calculate distance matrix Ziter ← Equation (14).

End
Step 9. Obtain the entropy value Eiter ← Equation (15).
Step 10. Obtain the final similarity measure matrix C← Equation (17).
Step 11. Make a classification decision o← Equation (18).

4. Results and Discussion

To verify the superiority of the proposed classification algorithm, MATLAB R2018a
software is used to classify real hyperspectral remote sensing images on a computer with
Intel (R) Core (TM) i5-4460, 3.20 GHz, 8 GB memory. The results are qualitatively and
quantitatively evaluated. In this paper, four sets of real hyperspectral remote sensing
images with different spectral and spatial resolutions are shown in Figure 1. In addition,
this paper mainly considers the amount of calculation and sets the projection parameters
as ε = 1.5 and β = 0.5 for the four experimental images. For the sake of fairness, the
projection parameters of all experimental images are set uniformly, and their parameters
are shown in Table 2. The projection dimensionalities of the TRP algorithm in Table 2
are set as the intrinsic dimensionality, which is based on Equation (1) in the projection
parameters ε = 1.5 and β = 0.5. It is worth noting that the projection dimensionality of the
TRP algorithm in Table 2 is at least one-third that of the RP algorithm, greatly reducing the
computational complexity.

Table 2. Projection parameter settings in the experiment of the proposed algorithm.

LongKou Salinas Pavia University Pavia Centre

Ψ 10 10 10 10
H 10 10 10 10

KTRP 99 83 81 100
KRP 344 289 282 348

To validate the effectiveness of the random projection matrix selection strategy, the
nonlinear projection method [42] was used to visualize class separability. As this method
displays the separability of two classes in a two-dimensional space, the class separability of
spectral vectors before and after dimensionality reduction in the Pavia University image
was analyzed. The first and second lines in Figure 3 show the visualization results of the first
and third ensembles, respectively. Among those, the horizontal and vertical coordinates in
the visualization results represent the distance from the spectral vector to the mean vector
of the two classes of samples, respectively. The blue and red circles represent the distance
distribution of the two classes of spectral vectors, respectively. The black dashed line is the
dividing line for measuring the class separability, that is a straight line at a 45-degree angle
passing through the origin. The more spectral vectors scattered on both sides, the better
the class separability of the dimensionality reduction results. From Figure 3, the spectral
vectors are almost completely scattered on both sides of the dividing line, and most of
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them are close to the coordinate axis. This indicates that there are many correctly classified
spectral vectors.
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To prove the superiority of the proposed algorithm, TRP-MIV, the SVM classification
algorithm based on LDA (hereinafter referred to as LDA-SVM) and the CAFCM classi-
fication algorithm are used to classify these hyperspectral remote sensing images. The
classification results are qualitatively and quantitatively evaluated. The parameters of
comparison algorithms are shown in Table 3. In addition, all experimental images are
tested 100 times to effectively evaluate the classification accuracy.

Table 3. Parameter settings in the experiment of comparison algorithms.

LongKou Salinas Pavia
University Pavia Centre

TRP-MIV
number of random

numbers 10 10 10 10

number of samples of
each class 10 10 10 10

LDA-SVM number of samples of
each class 99 83 81 100

CAFCM number of ensembles 169 41 148 628

The experimental results are shown in Figure 4. Figure 4 shows the best classification
results in 100 trials of the LongKou, Salinas, Pavia University, and Pavia Centre images, re-
spectively. In addition, to qualitatively evaluate the above classification results, the contour
lines between the regions in the classification results are extracted and superimposed on
the corresponding false color images, and the superposition results are shown in Figure 5.



Remote Sens. 2023, 15, 2315 12 of 17Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 17 
 

 

    

 
(a1) (a2) (a3) (a4) (a5) 

    
(b1) (b2) (b3) (b4) (b5) 

(c1) (c2) (c3) (c4) (c5) 

    

(d1) (d2) (d3) (d4) (d5) 

Figure 4. Comparison of the classification results of four images. (a1–d1) The proposed algorithm. 
(a2–d2) The TRP-MIV algorithm. (a3–d3) The LDA-SVM algorithm. (a4–d4) The CAFCM algorithm. 
(a5–d5) The legends for all classes. 

    
(a1) (a2) (a3) (a4) 

Figure 4. Comparison of the classification results of four images. (a1–d1) The proposed algorithm.
(a2–d2) The TRP-MIV algorithm. (a3–d3) The LDA-SVM algorithm. (a4–d4) The CAFCM algorithm.
(a5–d5) The legends for all classes.

Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 17 
 

 

    

 
(a1) (a2) (a3) (a4) (a5) 

    
(b1) (b2) (b3) (b4) (b5) 

 
(c1) (c2) (c3) (c4) (c5) 

    
 

(d1) (d2) (d3) (d4) (d5) 

Figure 4. Comparison of the classification results of four images. (a1–d1) The proposed algorithm. 
(a2–d2) The TRP-MIV algorithm. (a3–d3) The LDA-SVM algorithm. (a4–d4) The CAFCM algorithm. 
(a5–d5) The legends for all classes. 

    
(a1) (a2) (a3) (a4) 

Figure 5. Cont.



Remote Sens. 2023, 15, 2315 13 of 17Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 17 
 

 

    
(b1) (b2) (b3) (b4) 

    
(c1) (c2) (c3) (c4) 

    
(d1) (d2) (d3) (d4) 

Figure 5. Comparison of outlines of the superposition results of four images. (a1–d1) The proposed 
algorithm. (a2–d2) The TRP-MIV algorithm. (a3–d3) The LDA-SVM algorithm. (a4–d4) The CAFCM 
algorithm. (The red lines are the outlines of the classification results.) 

Through visual evaluation, it can be concluded that the contours of each region in 
the contour stacking result of the proposed algorithm can coincide well with the bounda-
ries of each class region in the false color images. For images with large intra-class vari-
ances (for example, the Salinas and Pavia University images), the proposed algorithm can 
still obtain better classification results despite misclassification. Since the proposed algo-
rithm can maintain the separability of each class, the algorithm can perform a fine classi-
fication of each class. Since the TRP-MIV algorithm selects the random projection matrix 
based on the separable information of all classes, the features of some classes are always 
ignored. There are several speckle noises in the classification results of the LDA-SVM al-
gorithm, especially in the Pavia Centre image where there is still misclassification. It can 
be seen from Figures 4 and 5 that the missed classification of the CAFCM classification 
algorithm is profoundly serious, and the spectral vectors in the same class are incorrectly 
classified into other classes. For complex texture images, the CAFCM algorithm is easily 
disturbed by noise, so it cannot obtain ideal classification results. All information shows 
that the proposed algorithm can classify hyperspectral remote sensing images well. 

In order to quantitatively evaluate the classification results of the proposed algo-
rithm, the confusion matrix of the classification results is obtained by taking Figure 2(a2–
d2) as the standard classification data, and the Overall Accuracy (OA), Average Accuracy 
(AA), Average Precision Rate (APR), and the Kappa coefficient of the whole classification 
result are calculated according to the confusion matrix. Meanwhile, the runtime of all 

Figure 5. Comparison of outlines of the superposition results of four images. (a1–d1) The proposed
algorithm. (a2–d2) The TRP-MIV algorithm. (a3–d3) The LDA-SVM algorithm. (a4–d4) The CAFCM
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Through visual evaluation, it can be concluded that the contours of each region in the
contour stacking result of the proposed algorithm can coincide well with the boundaries
of each class region in the false color images. For images with large intra-class variances
(for example, the Salinas and Pavia University images), the proposed algorithm can still
obtain better classification results despite misclassification. Since the proposed algorithm
can maintain the separability of each class, the algorithm can perform a fine classification
of each class. Since the TRP-MIV algorithm selects the random projection matrix based on
the separable information of all classes, the features of some classes are always ignored.
There are several speckle noises in the classification results of the LDA-SVM algorithm,
especially in the Pavia Centre image where there is still misclassification. It can be seen
from Figures 4 and 5 that the missed classification of the CAFCM classification algorithm
is profoundly serious, and the spectral vectors in the same class are incorrectly classified
into other classes. For complex texture images, the CAFCM algorithm is easily disturbed
by noise, so it cannot obtain ideal classification results. All information shows that the
proposed algorithm can classify hyperspectral remote sensing images well.

In order to quantitatively evaluate the classification results of the proposed algorithm,
the confusion matrix of the classification results is obtained by taking Figure 2(a2–d2) as
the standard classification data, and the Overall Accuracy (OA), Average Accuracy (AA),
Average Precision Rate (APR), and the Kappa coefficient of the whole classification result
are calculated according to the confusion matrix. Meanwhile, the runtime of all images was
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quantitatively analyzed. Tables 4–7 are the accuracy evaluations of the classification results
of the four images, respectively. Additionally, the values in Tables 4–7 are the mean values
of 100 trials, where the unit of running time is seconds.

The mean values of OA, AA, APR, and the Kappa coefficient of the proposed algorithm
for the four experimental images are greater than 87%, 80%, 78%, and 0.84, respectively.
The OA, AA, APR, and the Kappa values of the comparison algorithms are all lower than
those of the proposed algorithm, which means that the proposed algorithm can obtain
higher accuracy classification results than the comparison algorithms. Since the TRP-MIV
algorithm does not need to perform multiple projections, the running time of the TRP-MIV
algorithm is shorter than that of the proposed algorithm. Nonetheless, as can be seen
from the running time in Tables 4–7, the proposed algorithm can obtain high classification
accuracy in an acceptable time. In addition, the classification accuracy variance value of
the proposed algorithm for 100 trials, which is the value in brackets, is smaller than those
of the comparison algorithms, which fully shows that the proposed algorithm is robust.
All the classification accuracies show that the proposed algorithm can obtain very good
classification results.

Based on the above discussion, by comparing the visual and quantitative evaluations
of the proposed classification algorithm and the comparison algorithms, the proposed algo-
rithm outperforms the comparison algorithms in classification performance and stability
but is slightly inferior to the comparison algorithms in algorithm running time.

Table 4. Accuracy evaluation of classification results for the LongKou image. (The values in brackets
are the variance of 100 trials, and those not in are the mean).

The Proposed
Algorithm TRP-MIV LDA-SVM CAFCM

Kappa coefficient 0.84 0.76 0.71 0.51
(0.01) (0.03) (0.01) (0.10)

OA/%
87.39 81.50 78.43 62.83
(0.65) (2.06) (0.01) (8.19)

AA/%
82.38 74.29 59.65 50.79
(1.30) (2.95) (1.71) (5.31)

APR/%
81.15 74.71 74.60 54.15
(0.47) (1.55) (0.89) (8.60)

Running time/s 5.26 1.59 8.14 1509.77
(0.13) (0.06) (0.41) (198.36)

Table 5. Accuracy evaluation of classification results for the Salinas image. (The values in brackets
are the variance of 100 trials, and those not in are the mean).

The Proposed
Algorithm TRP-MIV LDA-SVM CAFCM

Kappa coefficient 0.96 0.94 0.85 0.71
(0.00) (0.01) (0.06) (0.09)

OA/%
97.04 95.04 87.86 76.66
(0.08) (0.76) (5.06) (7.08)

AA/%
96.54 94.19 82.63 70.99
(0.10) (1.03) (5.53) (7.56)

APR/%
96.29 93.74

/ /(0.09) (0.55)

Running time/s 2.01 1.01 1.43 180.51
(0.07) (0.10) (0.05) (16.17)
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Table 6. Accuracy evaluation of classification results for the Pavia University image. (The values in
brackets are the variance of 100 trials, and those not in are the mean).

The Proposed
Algorithm TRP-MIV LDA-SVM CAFCM

Kappa coefficient 0.89 0.81 0.66 0.41
(0.00) (0.04) (0.06) (0.03)

OA/%
92.11 86.11 75.00 51.84
(0.27) (2.85) (3.58) (2.90)

AA/%
95.01 89.28 75.60 50.02
(0.34) (2.28) (7.28) (7.40)

APR/%
92.71 88.96

/
44.88

(0.15) (1.61) (3.53)

Running time/s 0.84 1.21 1.29 126.76
(0.03) (0.77) (0.15) (13.17)

Table 7. Accuracy evaluation of classification results for the Pavia Centre image. (The values in
brackets are the variance of 100 trials, and those not in are the mean).

The Proposed
Algorithm TRP-MIV LDA-SVM CAFCM

Kappa coefficient 0.84 0.80 0.57 0.36
(0.01) (0.02) (0.10) (0.09)

OA/%
90.27 87.86 73.29 52.03
(0.58) (1.10) (8.59) (9.87)

AA/%
80.93 74.06 54.94 38.82
(2.15) (3.26) (5.98) (4.71)

APR/%
78.24 73.02 60.47 34.45
(1.88) (3.09) (7.88) (5.98)

Running time/s 6.55 1.72 17.04 2291.91
(0.25) (0.11) (0.50) (409.44)

5. Conclusions

Aiming to resolve the problem that the randomness of the RP algorithm may lead
to unstable classification results, TRP-oriented hyperspectral remote sensing image clas-
sification using an entropy-weighted ensemble algorithm is proposed. Additionally, the
classification experiments are conducted on real hyperspectral remote sensing images. The
proposed algorithm can effectively improve the classification accuracy and robustness of
hyperspectral remote sensing images. The classes with poor separability can also be better
distinguished, which basically meets the task of classifying hyperspectral remote sensing
images completely and finely. The following points should be completed in the following
work. The choice of projection dimensionality in this paper is based on the principle of
computational cost. The influence of projection dimensionality on classification accuracy is
the research direction.
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