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Abstract: A significant number of object detection models have been researched for use in plant
detection. However, deployment and evaluation of the models for real-time detection as well as
for crop counting under varying real field conditions is lacking. In this work, two versions of a
state-of-the-art object detection model—YOLOv5n and YOLOv5s—were deployed and evaluated for
cassava detection. We compared the performance of the models when trained with different input
image resolutions, images of different growth stages, weed interference, and illumination conditions.
The models were deployed on an NVIDIA Jetson AGX Orin embedded GPU in order to observe the
real-time performance of the models. Results of a use case in a farm field showed that YOLOv5s
yielded the best accuracy whereas YOLOv5n had the best inference speed in detecting cassava plants.
YOLOv5s allowed for more precise crop counting, compared to the YOLOv5n which mis-detected
cassava plants. YOLOv5s performed better under weed interference at the cost of a low speed. The
findings of this work may serve to as a reference for making a choice of which model fits an intended
real-life plant detection application, taking into consideration the need for a trade-off between of
detection speed, detection accuracy, and memory usage.

Keywords: object detection; plant detection; YOLOv5; deep learning; computer vision; crop counting;
precision agriculture

1. Introduction

There is currently a global threat to food security, which is attributed mainly to world
population growth, conflicts, and climate change [1,2]. Consequently, there is an increasing
call for research directed at developing sustainable solutions to the food challenge; such
that agrochemical inputs are minimized while increasing yield. These challenges present
opportunities for innovations in farming technologies; thus encouraging the adaptation of
existing cutting-edge technologies and the development of new methods [3].

Plant detection is an important step in farm management. Such farm activities that
require plant detection include weed control [4], crop yield estimation [5], pest and disease
detection, and spot spraying [6]. Not only is plant detection of interest in precision agricul-
ture, but recently, ecologists have begun to highlight the importance of plant detection for
biodiversity monitoring. For instance, in [7,8] plant detection is highlighted as an essential
step in determining the ecological distribution of weeds, understanding their impact on the
environment, as well as establishing an information system for their management. Another
farm activity where object detection finds use is crop counting. To better estimate crop
yield, it is vital to keep a count of the planted crops. Crop count at early growth stage
can help determine the germination rate [9,10], which may provide better information on
the plant vigor and could serve as a basis for better yield estimation [11,12]. Furthermore,
plant counting helps to assess germination rate and make replanting decisions for low

Remote Sens. 2023, 15, 2322. https://doi.org/10.3390/rs15092322 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15092322
https://doi.org/10.3390/rs15092322
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-0965-0937
https://orcid.org/0000-0002-0686-6783
https://doi.org/10.3390/rs15092322
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15092322?type=check_update&version=1


Remote Sens. 2023, 15, 2322 2 of 18

crop density areas of the farm [13–15]. Insights from plant count, such as inconsistent
spacing, small gaps, and wide empty areas, can help to determine potential problems in
the farm such as disease and pest infestation, waterlogging, or excess agrochemical applica-
tion, which in turn form the basis for necessary control interventions such as site-specific
managements [15,16].

Manual counting of the plants can be a huge burden as well as time consuming. Com-
puter vision techniques provide an accurate and time-saving approach to crop counting [11].
Therefore, the development and deployment of plant detection models on autonomous
and semi-autonomous farm vehicles including terrain vehicles and, more recently, un-
manned aerial vehicles (UAVs) offer great potentials and alternative approaches for site-
and plant-specific management. Such vehicles are fitted with sensors that feed data to
the detection model which identifies the plants using computer vision techniques [17].
Traditional image processing techniques such as color thresholding, filtering, and differ-
encing are methods first studied by researchers for plant detection [18]. More recently,
learning-based methods such as support vector machines, artificial neural networks, ran-
dom forests, among others [19–21] have been shown to have superior performance over
traditional image processing methods for plant identification. While traditional machine
learning methods showed promising results in controlled environments, their accuracy
is undermined in real-life field conditions. Their lack of robustness to field conditions
such as natural lighting, varying plant density, leaf occlusions, and different plant growth
stages necessitated the development of deep learning methods for plant detection [22]. In
addition to the robustness of deep learning methods to field variations, they are capable of
end-to-end learning of hierarchical features of plant images, thus eliminating the need for
the laborious task of feature engineering required in machine learning.

Convolutional neural networks including AlexNet, VGG16, Inception-ResNet, etc.,
are among the deep learning methods employed for plant detection [23–25]. Gao et al. [26]
developed a CNN model called CMPNet based on ResNet and SeNet for identification of
30 wheat varieties in multiple growth stages including the tillering stage. Their method
recorded over 90% accuracy for all growth stages. Region proposal-based models such as
Faster-RCNN and Mask-RCNN were used by [22,27,28] for plant detection. While such
models deliver promising results in terms of accuracy, because they use a two-stage detec-
tion pipeline, they have slower inference speeds than their regression-based counterparts
such as the Single Shot Multibox Detector (SSD) and YOLO networks [28,29].

The YOLO object detection model was introduced by Redmon et al. [30]. Unlike
previous object detection models such as Faster R-CNN [31] which employ a two-stage
process of region proposals followed by bounding box classification, YOLO is a single-stage
detector performing all the object detection processes in a single network. The regression-
based YOLO model is favored for real-time applications as it overcomes the bottlenecks
posed by the complex architecture of the region-based detectors, greatly reducing the
inference time, while enhancing generalizability of the model. YOLO networks have
been deployed in weed detection for high inference speed which makes them attractive
for real-time applications. YOLOv3 was deployed on a ground robot for real-time weed
detection in a carrot farm; and the setup achieved up to 89% precision [32]. Gao et al.
developed a detection model based on Tiny YOLO for detecting Convolvulus sepium in
sugar beet fields and achieved an average precision (AP) up to 0.897 [33]. Xu et al. [34] in
their paper demonstrated the use of YOLOv5 for maize leaf counting. Their results showed
a good accuracy for different growth stages of the maize plant. Mota-Delfin et al. [35]
compared different versions of the YOLO detection model for whole maize plant counting
at different growth stages. Their results showed that YOLOv5 performed better than
YOLOv4, YOLOv4-tiny, YOLOv4-tiny-3l. Nevertheless, it is unclear whether deploying
a lightweight YOLO model onto UAV allows for continuous monitoring across growth
stages and under varying illumination and field interference scenarios effectively.

In spite of the plethora of works on plant detection using deep learning methods,
research on the deployment of plant detection models on embedded devices and evaluation
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of such systems for real-time performance is lacking. Such research becomes necessary
given that various farm management tasks such as weed detection with selective herbicide
spraying requires real-time plant identification. Furthermore, where there exists the desire
to incorporate real-time plant detection in a given farm activity, the farmer or agricultural
stakeholder should have the details of the real-time performance of the model in terms of
detection speed, accuracy, and memory requirements. These details are key to making a
choice of which detection model to select. Model selection will often be influenced by the
application requirements (such as minimum acceptable accuracy and/or detection speed)
and available resources (such as computing power of the embedded system on which the
model would run). Thus, given the real-time performance data of the model, the user is
able to make an informed tradeoff between accuracy, speed, and memory requirement in
determining the suitability of the model for the intended application. Importantly, a dataset
reflecting a wide range of real field conditions such as variations in natural illumination,
presence of shadows, and leaf occlusion is necessary for real-time applications of plant
detection. Moreover, little research in plant detection has focused on crops peculiar to
sub-Saharan Africa such as cassava (Manihot esculenta) which is a major food crop in
sub-Saharan Africa [36].

The objectives of this study were to: (i) build a representative dataset for cassava plant
detection; (ii) train and evaluate the performance of state-of-the-art object detectors on the
cassava dataset; and (iii) deploy the selected model on an actual embedded device and
evaluate its real-time performance on use cases including UAV-based selective spraying
and counting plants under varying field conditions.

2. Materials and Methods
2.1. Dataset
2.1.1. Experimental Setup

For this research, an experimental cassava farm was set up. The farm setup process
included land selection, clearing, ploughing, ridging, planting, and manuring. The cassava
cuttings were planted at distances of 1 m apart according to the standard recommendations
by IITA for cassava cultivation in the derived savanna region of Nigeria [37].

2.1.2. Image Acquisition

A 550 mm quadcopter was constructed for the purpose of capturing aerial images
of the farm. A GoPro Hero 7 camera (GoPro Inc., California, CA, USA), with a CMOS of
1/2.3-inch producing a pixel resolution of 12 megapixels, was mounted on the quadcopter
to capture RGB images of the farm. The farm images were captured at altitudes ranging
between 2 m to 3 m between the months of September and October, 2021, specifically, 25, 29,
and 60 days after planting date. The data collection dates fall into two major growth stages
of cassava plant: the first two dates fall into the early growth stage, while the last date falls
in the vegetative growth stage. The images were collected under different natural lighting
conditions, cassava growth stages, as well as varying weed densities and leaf occlusions.
Each of the captured images were of pixel size 4000 × 3000 pixels. Image capture times
ranged from 11 a.m. to 4 p.m.

2.1.3. Image Annotation

The annotation of the images involved drawing bounding boxes around the objects of
interest and assigning object classes to the bounding boxes. The YOLOv5 requires that the
bounding box dimensions be normalized to the range [0, 1] and represented in the “c x y
w h” format; where c is the object class index (starting from 0), x and y represent the x-y
coordinates of the center of the bounding box, and w and h represent the width and height
of the bounding boxes, respectively. For each image, the annotations must be saved in a
.txt file, where each bounding box information is entered on a new line. The python-based
LabelImg [38] graphical annotation tool was chosen for image annotation in this work
because of its ease of use and ability to save the annotations in the YOLOv5 format.
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2.1.4. Data Augmentation

To avoid overfitting to the data, this work defaulted to the use of the inbuilt train-time
data augmentation of YOLOv5. This includes image-space and color-space transformations
and the novel mosaic data augmentation proposed by the author of YOLOv5. The mosaic
augmentation performs random image augmentations of the original image and assembles
it into a mosaic image consisting of the original image and a number of randomly aug-
mented images. The data augmentation can be modified in the hyperparameters which
includes options for specifying or even disabling augmentation types and values. By
adjusting the augmentation hyperparameters, our model was exposed to broader semantic
representations of the training data.

2.2. Object Detection Model
2.2.1. Model Training and Validation

The YOLOv5 release comprised of YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and
YOLOv5x variants with accordingly increasing weight file size, training time, number of
parameters, and model accuracy. Thus, YOLOv5n has the smallest weight file, least training
time and number of parameters, making it suitable for deployment on memory constrained
devices. Conversely, YOLOv5x the largest and most accurate of the variants is best suited
for applications where very high accuracy is a priority and memory is not a problem. Since
our target was for real-time applications, in this work, we chose the two smallest models,
YOLOv5n and YOLOv5s for their lightness, high inference speeds, and acceptable accuracy.
For simplicity, YOLOv5n and YOLOv5s will be referred to as Y5n and Y5s, respectively.

The YOLOv5 model training and inference was performed on NVIDIA GeForce 3060
on our local workstation using Jupyter Notebooks.

The model was trained and validated on one hundred and twenty-five images con-
taining over 1700 cassava objects. The dataset was split into a train:validation ratio of 80:20.
Additionally, a different set of images were used to evaluate the real-time detection speed
of the models with the Jetson Orin embedded GPU.

The model was trained for different combinations of input image and batch sizes.
These combinations were also trained on multiple models of the YOLOv5 as mentioned
previously. The range of image input sizes include 960 × 720, 640 × 480, 512 × 384,
and 256 × 192; while the batch size ranged from 8 to 64. The maximum batch sizes for
training on 960 × 720 and 640 × 480 image sizes were limited to not more than 20 and
32, respectively, because the GPU memory did not permit loading more than these limits
for the respective image sizes. The results were evaluated to identify which model and
parameter combinations gave the best performance for real-time applications. For all the
training instances, a fixed epoch of 400 was used.

Given that for computer vision tasks, using pretrained weights can lead to better
accuracy than using random weights [39], we used the pretrained weights corresponding
to the respective models which were trained on the COCO dataset [40] by the YOLOv5
author. We set the initial learning rate at 0.01, the momentum at 0.937, and the weight
decay at 0.0005.

2.2.2. Performance Metrics

The precision and recall, and mean average precision of the model were used for
evaluation of the model performance. The precision is the degree to which the model
correctly predicts the objects. The precision, P is represented by the relation

P =
TP

TP + FP
(1)

where TP is true positives, FP is false positives. As observed from Equation (1), the higher
the false predictions, the lower the precision.
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Recall on the other hand is the degree to which the model captures all ground truth.
Recall, R is given by Equation (2)

R =
TP

TP + FN
(2)

where FN is false negative.
The mean average precision, mAP, has become the acceptable metric in the research

community for evaluating object detection models. The mAP indicates the weighted mean
of precisions obtained for different intersection over union (IOU) thresholds. In this work,
the precision, recall, mAP@0.5, and mAP@0.5:0.95 of all models were extrapolated.

2.3. Model Deployment on NVIDIA Jetson AGX Orin

To obtain the real-time performance data of the models, it was necessary to deploy the
models on actual devices that are used in the field, not on the workstation GPUs used in the
lab. The NVIDIA® Jetson AGX Orin™ (NVIDIA Corporation, Santa Clara, CA, USA), or
Jetson Orin for short, was our choice of embedded GPU for real-time model performance
evaluation. The Jetson Orin is the latest entry in the NVIDIA Jetson embedded GPUs,
featuring up to 1792 NVIDIA CUDA cores and 56 tensor cores, and capable of hosting
large and complex deep learning-based object detection models. The Jetson Orin can be
mounted on both aerial and ground farm vehicles for real-time field applications.

2.3.1. Jetson Orin Setup

The NVIDIA® Jetson AGX Orin™ development kit consisted of the Jetson Orin mod-
ule and the reference carrier board with attendant accessories. The Ubuntu 20.04 is the
operating system installed on the Jetson Orin. The Jetpack 5.0 provided the software that
powers the Jetson Orin module, and includes L4T with Linux kernel 5.10 and reference file
system based on the Ubuntu 20.04.

To be able to run YOLOv5 models on the Jetson Orin, Pytorch, Torchvision, and all
dependent packages were installed on the Jetson Orin. The YOLOv5 model was cloned
from the GitHub repository of the authors and all dependent packages were installed.

2.3.2. Inference on Jetson Orin

Selected weights, representative of the trained models, were used to detect cassava
plants on the inference images. For both Y5s and Y5n, and for each image size, the weights
of the models trained on the highest batch size were selected for the inference. The detection
process consists of the preprocessing, inference, and non-maximum suppression (NMS)
stages. The detection algorithm outputs the latency (in milliseconds) of the three stages
above. Then the detection speed (in frames per second, fps) is obtained as the inverse of
the sum of the three outputted latencies as shown in Equation (3).

Speed ( f ps) =
1000

preprocess(ms) + in f erence(ms) + Non − Maximum Suppression(ms)
(3)

The detection speed of the of the models were compared to highlight real-time model
performance for the two YOLO versions given different image sizes.

A real-life use case scenario was explored to highlight the practical implication of the
findings of the work. Equation (4) was used to calculate the UAV flight mission duration
for the use case (see Section 3.3.3).

f astest mission duration (s) = Farm size (m2)
/

(detection speed ( f ps) x GSD (m2)) (4)
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2.4. Validation for Cassava Counting

Eighteen inference images were selected to evaluate the model performance in cassava
counting. A regression plot showed the models’ cassava count versus the actual cassava
count. The performance of the models under varying field conditions including weed
density, leaf occlusion, illumination, and growth stages were examined.

3. Results
3.1. Captured UAV Images

Example images captured in this study showed that the imaging conditions varied
in their illuminations (Figure 1a,b,d), soil coverage (Figure 1c,d), and weed infestation
conditions (Figure 1a,d).
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Figure 1. UAV field images showing varying field conditions; (a) low lighting, low weed density,
vegetative cassava growth stage, (b) high illumination with shadow, (c) high weed density with high
leaf occlusion, (d) high illumination with early cassava growth stage.

To improve the robustness of the models, images were also captured in different row
orientations. Images showing different row orientations are shown in Figure 2.

Sample annotated images are shown in Figure 3. Rectangular bounding boxes are
drawn over each cassava object. The object class labels are also shown.

3.2. Model Training Performance

Table 1 shows the summary of the training results. The training duration, precision,
recall, mAP@0.5, and mAP@0.5:0.95 are shown for different input image sizes, batch sizes,
as well as for the two YOLOv5 models. While we present in the table all the aforementioned
performance metrics for the sake of readers who may be interested in the details, our
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discussion will consistently reference the mAP@0.5:0.95 which is the more widely accepted
performance metric in the object detection research community.
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3.2.1. Performance of the Models for Varying Image Sizes

The plot in Figure 4 shows the curves of the best mAP@0.5:0.95 for each image size for
each YOLOv5 model. The curves have been smoothened for more visibility.
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Table 1. Summary of model training results.

Y5n Y5s

Image Size Batch Size Train
Time (h) Precision Recall mAP@0.5 mAP@0.5:0.95 Train

Time (h) Precision Recall mAP@0.5 mAP@0.5:0.95

960 × 720
20 0.344 0.951 0.897 0.939 0.724 0.402 0.967 0.918 0.960 0.791
16 0.354 0.959 0.886 0.947 0.736 0.422 0.954 0.922 0.965 0.793
8 0.433 0.954 0.907 0.946 0.740 0.482 0.960 0.918 0.955 0.798

640 × 480
32 0.234 0.950 0.838 0.903 0.628 0.276 0.978 0.834 0.918 0.674
16 0.294 0.911 0.864 0.911 0.637 0.316 0.938 0.867 0.917 0.679
8 0.403 0.927 0.853 0.904 0.635 0.431 0.962 0.859 0.924 0.695

512 × 384
64 0.185 0.881 0.781 0.836 0.512 0.224 0.897 0.810 0.867 0.566
32 0.227 0.947 0.760 0.854 0.551 0.253 0.930 0.808 0.880 0.600
16 0.279 0.932 0.783 0.868 0.560 0.318 0.906 0.829 0.886 0.605
8 0.389 0.916 0.785 0.861 0.559 0.422 0.914 0.848 0.888 0.610

256 × 192
64 0.169 0.786 0.602 0.658 0.326 0.191 0.877 0.648 0.721 0.386
32 0.214 0.841 0.659 0.722 0.369 0.232 0.837 0.695 0.738 0.412
16 0.274 0.864 0.659 0.726 0.385 0.289 0.886 0.709 0.759 0.414
8 0.352 0.855 0.644 0.723 0.384 0.371 0.892 0.682 0.749 0.433
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The chart in Figure 5 shows a plot of the training time and mAP@0.5:0.95 for all image
sizes and across all batch sizes.

3.2.2. Effect of Varying Batch Sizes on the Model Performance

Figure 6 is a plot of mAP@0.5:0.95 for different batch sizes.

3.3. Model Inference Performance
3.3.1. Detection Speed

We present in Table 2 a summary of the inference results with additional columns
showing accuracy and weights file size.
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Table 2. Inference on Jetson Orin showing detection speed.

Model Image Size Speed (FPS) mAP@0.5:0.95 Weights File Size (mb)

Y5n

960 × 720 38.26 0.724 4.0
640 × 480 52.67 0.628 3.8
512 × 384 54.14 0.512 3.7
256 × 192 58.32 0.326 3.6

Y5s

960 × 720 34.79 0.791 14.3
640 × 480 47.60 0.674 14.1
512 × 384 50.18 0.566 14.0
256 × 192 57.08 0.386 13.9

Figure 7 visualizes the detection speeds of the models.
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3.3.2. Speed vs. Accuracy

In Figure 8, a plot of speed vs. accuracy is presented to highlight the relationship
between speed and accuracy across the two models over different image pixel resolutions.
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3.3.3. Use Case on a Farm Field

The chosen application scenario is the use of a UAV for real-time selective spraying
in a cassava farm of size 60,000 m2. The drone captures images of the farm at an average
altitude of 2.5 m. The images are fed into an onboard Jetson Orin embedded GPU for
cassava detection, which triggers the sprayer. The spray amount is varied based on the
area of the image frame covered by the detected cassava.

The images are captured by a GoPro Hero 7 camera at 4000 × 3000 pixels and resized
on the GPU to one of the four input resolutions used in this work. At an altitude of 2.5 m,
the ground sampling distance (GSD) was calculated to be 5.14 m by 3.86 m (19.84 m2). The
ground measurement of a singular pixel in an image is referred to as the ground sampling
distance. Based on the model’s detection speed, we can obtain the fastest possible time
an agricultural drone loaded with each of the models can complete a single mission. This
projection is based on the idea that the UAV can fly only as fast as the model can detect
cassava. As an example, for the Y5n at 960 × 720 image pixel resolution, with detection
speed of 38.26 fps, the UAV cannot fly faster than 38.26 times the GSD per second. The
fastest possible mission durations were calculated using Equation (4). The results are
shown in Table 3.

Table 3. Fastest possible UAV mission completion time of each model.

Model Image Size Speed (fps) Best Possible
Mission Duration (s)

Y5n

960 × 720 38.26 78.31
640 × 480 52.67 57.42
512 × 384 54.14 55.85
256 × 192 58.32 51.86

Y5s

960 × 720 34.79 86.93
640 × 480 47.60 63.53
512 × 384 50.18 60.27
256 × 192 57.08 52.98

3.4. Model Performance for Cassava Counting

The Root Mean Square Error (RMSE) and R2 for cassava counting using Y5s and Y5n
are presented in Table 4.

Table 4. RMSE for cassava counting with Y5s and Y5n.

Y5s Y5n

RMSE 0.82 1.31
R2 0.9982 0.9949

Figure 9 shows a plot of the predicted count versus the actual count.

3.4.1. Light Conditions

Figure 10 shows Y5s and Y5n models inferenced on the same image with shadow. The
detected plants are bounded by green boxes. The circled objects in white were missed by
the models.

3.4.2. Growth Stages

Figure 11 shows the model inference at vegetative stage. The detected plants are
bounded by green boxes. The circled portion in white shows a missed detection due to
high leaf occlusion.
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3.4.3. Weed Density

Figure 12 shows prediction under high weed density. The detected plants are bounded
by green boxes. Incorrect predictions are circled in white.
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4. Discussion
4.1. Captured UAV Images

As shown in Figures 1 and 2, the dataset reflects real field conditions including
variations in natural illumination, different cassava growth stages, varying weed densities,
leaf occlusions, and shadow presence. Furthermore, in Figure 3, the bounding boxes are
shown to be drawn as tightly as possible about the cassava plants to enhance learning of
the cassava features by the models [41,42]. Consequently, as would be discussed later, the
models showed robustness and suitability for real field applications.

4.2. Model Training Performance
4.2.1. Performance of the Models for Varying Image Sizes

The mAP@0.5:0.95 decreases as the image pixel resolution decreases as shown in
Figure 4. This reduction in performance is because it is more difficult for the models to
resolve small objects as the image size decreases [43]. However, the increase in performance
with increase in image size comes at the cost of increased training time for the models, as
shown in Figure 5. This is due to the fact that the larger the image size, the more memory
and computational resources are required to process it; as well as more features to learn.
Therefore, for applications where training time is critical or memory constraint is high,
lower image sizes may be used, but at the expense of model accuracy. It is important to note
that the YOLOv5 cannot guarantee detection accuracy for objects with bounding boxes less
than 3 pixels, and will throw a warning at training time [44]. In this work, such warnings
were noted for images sizes of 256 × 192.

We also note that for each image size, the Y5s model performs better than the Y5n
model. The better performance of Y5s is because it is able to learn better than Y5n, having more
feature extraction modules, convolution kernels, leading to more learnable parameters [45].
However, this is at the expense of having a heavier weights file than the Y5n. For instance,
the Y5s learns with over seven million parameters and has a weight file of 14.6 Mb, whereas
the Y5n has less than two million parameters with a weight file size about three times less
at 4.1 Mb. The effect of weights size is especially critical in real-time applications where
memory constrained non-GPU devices are employed [46]. The detection speed at inference
time increases as the number of processed parameters reduces.
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Interestingly, as observed in Figure 5, an interplay of batch size, image size, and
model selection could lead to better performance of the Y5n model. For instance, we
extrapolate from our results as shown in Figure 5 that training Y5n on 960 × 720 images
yields higher mAP@0.5:0.95 than training Y5s on any of the lower image sizes. The only
cost is a slightly higher training time. This may be desirable for applications such as
real-time weed detection from UAV images where the resolution needs to be as high as
possible and the detection model as small as possible to fit the memory constraints for
UAV-mounted processors.

4.2.2. Effect of Varying Batch Sizes on the Model Performance

For all image sizes, the training time increases with decrease in batch size as shown
in Figure 5. This implies that taking more images per batch is more memory efficient.
However, from the mAP@0.5:0.95 curve for different batch sizes of 960 × 720 input image
size shown in Figure 6, which is fairly representative of other image sizes, the difference
in mAP@0.5:0.95 is not very significant. Thus, we conclude that the major advantage of
higher batch sizes is the decrease in training time.

4.3. Model Inference Performance
4.3.1. Detection Speed

Over 50% of the models have detection speeds above 50 fps (Table 2). The lowest
recorded speed of 34.79 fps surpasses the commonly acceptable speed for most real-time
applications [47]. This implies that these models can be deployed in applications requiring
very fast detection [17]. A use case scenario to demonstrate this is discussed in Section 4.3.3.

4.3.2. Speed vs. Accuracy

In Figure 8, it is observed that, generally, detection speed decreases with an increase in
image sizes across both model versions. For each image size, the Y5n was faster than the
corresponding Y5s. This is expected given that the Y5s models require more computing
time because of their deeper architecture and higher number of parameters as evidenced in
the weights size [29]. Therefore, to obtain higher detection speeds, one might have to settle
for lower image sizes that lead to reduced accuracy [29].

4.3.3. Use Case on a Farm Field

The best possible mission speeds for the use case of plant detection and selective
spraying, as presented in Table 3 are theoretical. For instance, Y5n on 960 × 720 resolution,
to attain the best mission duration of 78.31 s, the UAV will have to travel at a speed of
38.26 times the GSD (m/s) which is 147.68 m/s. Most UAVs will not travel at this speed
for agricultural applications. Even if they have to, there has to be a zero latency in other
components of the system such as the spraying trigger response time, if the UAV must
execute the spraying mission with the required accuracy. Overall, our work highlights the
fact that faster detection offers the possibility of increasing flight speed, thus reducing the
flight time; hence, more missions can be completed. This is an important consideration for
users that offer agricultural drone services. The faster the model, the less time they spend
on a mission, and the more customers they can cater to.

4.4. Model Performance for Cassava Counting

Since the inference speed of all the models were acceptable for real-time application,
for comparison, for cassava counting demo, we selected the best performing model instance
in terms of mAP@0.5:0.95 each for Y5n and Y5s. The first is the Y5n with 960 × 720 input
image resolution and training batch size of eight; the second is the Y5s with 960 × 720 input
image resolution and training batch size of eight. This selection of just two model instances
was also performed with the understanding that the results of the comparison across the
models will be similar as pixel resolution decreases, but with the afore established attendant
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performance degradation that follows reduction in input image size. Y5s had better RMSE
and R2 values than Y5n as shown in Figure 9. However, both models showed good results.

4.4.1. Light Conditions

Examination of the test images with high lighting as well as with low lighting revealed
that both model instances showed similar performance in terms of detecting the cassava
objects. However, in high illumination images with large shadows from nearby trees,
the Y5n model missed more cassava plants under the shadow (Figure 10). This could be
because the percentage of training images with large shadows was very little compared
to images without shadows, therefore the model had insufficient images with shadows to
learn from. This could be solved by collecting and re-training the model with more images
with shadows. Moreover, this is not a major performance setback for real-life scenario given
that large shadows (usually from big tress) are a rare occurrence in farms where UAVs are
deployed for cassava counting.

4.4.2. Growth Stages

For images with early growth stage of the cassava, both model instances had no
difficulty detecting almost all cassava objects. This high performance could be partly due
to the fact that the early growth stage of the cassava corresponds to the stage of little or
no weed on the farm. Therefore, the challenge of detecting cassava plants in the presence
of leaf occlusions was absent. Both models also performed well on images of the later
vegetative growth stage of the cassava. However, some cassava plants were missed by
the Y5n model. These were mainly the cassava plants that had delayed growth and still
appeared little or were extremely occluded by the weeds. Y5n model failed to detect a
highly occluded cassava plant (circled in Figure 11), which was successfully detected by
the Y5s model.

4.4.3. Weed Density

As the weed density increased, the degree of plant leaf occlusion increased. Though
the models performed very well in detecting cassava plants on images of the early growth
stage of cassava which corresponded to the period of almost zero weed density; however,
for images with high weed density, we observed that though the detection was good for
both models, the Y5n model predicted with less confidence than the Y5s model for objects
with high leaf occlusion. We also observed some incorrect predictions with the Y5n model.
Figure 12 shows both models inferenced on the same test image with Y5s yielding higher
prediction confidence levels. The incorrect prediction is circled in Figure 12.

4.5. Limitations

Whereas the dataset richly reflected varying field conditions, some equally important
field conditions such as cassava plants with stress symptoms such as wilting or diseases
such as cassava mosaic which could alter the leaf morphology were not present. Fur-
thermore, weeds with very high visual resemblance to cassava such as hemp were not
present in the dataset. The absence of images having the stress symptoms earlier mentioned
was due to the authors’ aim of truly representing the prevalent real field conditions. The
cassava growers in the study region commonly observe preventive measures such as the
use of disease resistant cassava species among other measures. Producing the listed stress
conditions would mean artificially inducing the stress conditions. The aforementioned aim
of representing real field conditions was also responsible for the absence of weeds such as
hemp which are not natural weeds found in the study region.

4.6. Future Work

For future work, we intend to develop techniques for optimizing and reducing
the size and complexity of the models so as to successfully deploy them on cheaper
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non-GPU mobile devices with very little computing power, while still maintaining high
model accuracy.

5. Conclusions

In this work, we evaluated two YOLOv5 object detection models for cassava plant
detection for real-time applications. We varied the image sizes for the training of the models
as well as using different batch sizes during training. For both Y5n and Y5s, training time
increases as the image size increases, but at the expense of decreasing accuracy. Generally,
Y5s showed higher accuracy than Y5n for the same image size, but with greater training
time and higher weight size. However, it was determined that training higher resolution
images on Y5n (which has smaller weights file) could yield better mAP@0.5:0.95 than
training lower image sizes on Y5s, which is desirable for real-time applications where
memory constraints are high. The models were deployed to an NVIDIA® Jetson AGX
Orin™ embedded GPU to obtain the real-time inference performance of the models. The
models also showed good results for cassava counting, and Y5s showed better detection
accuracy in different real-life scenarios than Y5n.
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