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Abstract: Satellite remote sensing provides a potential technology for detecting fog at dawn and dusk
on a large scale. However, the spectral characteristics of fog at dawn and dusk are similar to those of
the ground surface, which makes satellite-based fog detection difficult. With the aid of time-series
datasets from the Himawari-8 (H8)/AHI, this study proposed a novel algorithm of the self-adaptive
threshold of visual background extractor (ST-ViBe) model for satellite fog detection at dawn and
dusk. Methodologically, the background model was first built using the difference between MIR and
TIR (BTD) and the local binary similarity patterns (LBSP) operator. Second, BTD and scale invariant
local ternary pattern (SILTP) texture features were coupled to form scene factors, and the detection
threshold of each pixel was determined adaptively to eliminate the influence of the solar zenith
angles. The background model was updated rapidly by accelerating the updating rate and increasing
the updating quantity. Finally, the residual clouds were removed with the traditional cloud removal
method to achieve accurate detection of fog at dawn and dusk over a large area. The validation
results demonstrated that the ST-ViBe algorithm could detect fog at dawn and dusk precisely, and on
a large scale. The probability of detection, false alarm ratio, and critical success index were 72.5%,
18.5%, 62.4% at dawn (8:00) and 70.6%, 33.6%, 52.3% at dusk (17:00), respectively. Meanwhile, the
algorithm mitigated the limitations of the traditional algorithms, such as illumination mutation,
missing detection, and residual shadow. The results of this study could guide satellite fog detection
at dawn and dusk and improve the detection of similar targets.

Keywords: fog detection; dawn and dusk; ViBe; adaptive threshold; H8/AHI

1. Introduction

As a common weather phenomenon, fog tends to occur during traffic peaks at dawn
and dusk, which has a significant adverse impact on both respiratory health and traffic
safety, and it has become an important priority for monitoring by meteorological and
environmental departments [1–3]. Traditional fog detection relies on ground observations,
which have difficulty reflecting the formation and evolution of fog in a large area [4]. With
the rapid development of meteorological satellites, remote sensing technology has been
widely used in fog detection due to its large observation range, high temporal resolution
and low cost [1,5–7].

Generally, remote sensing-based fog detection relies on the difference in radiation and
texture characteristics in visible and infrared bands between background information, such
as ground surface and fog [8,9]. For example, the reflectivity of day fog is smaller than that
of medium-high clouds but higher than that of water and land surfaces. Meanwhile, fog’s
top texture is smooth and uniform, while the medium-high cloud is rough [10]. Night fog
detection is mainly based on its emission characteristics. Hunt [11] theoretically proved
that the emissivity of MIR in the range of 3.5–3.8 µm is less than the emissivity of TIR in
the range of 8.5–13 µm. Based on this feature, the brightness temperature difference (BTD)
between MIR and TIR is effective for night fog detection [12]. However, relevant studies
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still face great challenges in fog detection at dawn and dusk, mainly because of the high
solar zenith angles, and the small differences in temperature and spectral characteristics
between fog and background [13,14]. The above problems make it difficult for visible, near-
infrared, or thermal infrared remote sensing to carry out accurate detection of dawn/dusk
fog effectively. In contrast, the radiation energy of the MIR band not only comes from the
target’s own thermal radiation but also includes the reflection of solar radiation energy. The
radiation characteristics vary greatly with the solar zenith angles, resulting in significant
changes in the fog BTD with the solar zenith angles [15], while the surface BTD remains
relatively constant. The BTD time-series dynamic characteristics of fog and land surface
lay a physical foundation for remote sensing-based fog detection at dawn and dusk. The
third-generation geostationary meteorological satellite Himawari-8 (H8) with high time
resolution (10 min) is one of the few current satellite platforms that can capture the dynamic
changes in fog radiation over a large range [16]. The time-series datasets generated by
Himawari-8/Advanced Himawari Imager (H8/AHI) can provide the data basis for the
dawn/dusk fog detection algorithm based on the time-series image. It is hypothesized to
be capable of achieving fog detection at high solar zenith angles. However, there are few
relevant studies at high solar zenith angles [17,18].

With the development of computer image processing technology, video moving target
detection algorithms are becoming increasingly mature. The visual background extractor
(ViBe) algorithm performs information extraction based on object motion and spectral
change characteristics, which can accurately capture changing targets in complex scenes
and can provide technical support for the specific implementation of fog detection algo-
rithms [19]. However, the traditional ViBe algorithm still faces many limitations in detecting
fog at dawn and dusk: (1) the traditional ViBe algorithm mostly builds the background
model based on the gray value of the image and fails to make full use of the difference
in textural features between the fog and other backgrounds, resulting in the difficulty of
separating clouds and fog; (2) being affected by factors such as solar zenith angles, even the
same image, BTD has spatial heterogeneity, and the single threshold used in the traditional
ViBe algorithm leads to both missed detection and false detection; and (3) the traditional
ViBe algorithm mostly uses high-frequency data for foreground target detection, while the
monitoring frequency of existing satellites is limited, and the target separation accuracy
will be greatly affected due to slow background updates.

To solve the above problems, this study proposes a novel algorithm of the self-adaptive
threshold of visual background extractor (ST-ViBe) model for satellite fog detection at dawn
and dusk through the time series H8/AHI datasets. By adding the neighborhood mean
and variance in local binary similarity patterns (LBSP) in the BTD image, the background
model was established, and the texture information was incorporated into the algorithm to
improve the accuracy of cloud separation. By combining the BTD and scale invariant local
ternary patterns (SILTP), the scene factor was constructed to determine the foreground
detection threshold of each pixel, and the local adaptive threshold of the large-range
ViBe was established. At the same time, the background model was rapidly updated by
accelerating the updating rate and increasing the updating quantity to solve the problem
of the limited monitoring frequency of remote sensing images. This study is expected to
provide a simple and feasible algorithm for fog detection at dawn and dusk, aiding both
regional fog monitoring and forecasting.

2. Materials and Methods
2.1. Study Region and Datasets
2.1.1. Study Area

The land area of central and eastern China, which spans 104.5◦E to 135◦E longitude
and 33◦N to 47.5◦N latitude, was selected as the study area. The study area is close to the
Bohai Sea and the Yellow Sea, having abundant water vapor. Therein are found the first
and second divisions of China’s topography, the Northeast Plain and the North China Plain,
which are prone to water vapor accumulation. Affected by the temperate monsoon climate,
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the area experiences continuous foggy weather in winter and spring [20,21]. Additionally,
the area has a relatively developed economy and a large population, and the frequent
occurrence of fog has a significant adverse effect on local economic development and
human health.

2.1.2. Datasets and Preprocessing

Several datasets were required for carrying out this study, which are described as
follows:

Satellite Datasets

Himawari-8 satellite observation data were selected for fog detection because it is one
of the few current satellite data platforms that can capture the dynamic changes in fog over
a large range [16]. The dataset had a spatial resolution of 2 km and a temporal resolution of
10 min. Five band datasets of visible (R, 0.64 µm), mid-infrared (MIR, 3.9 µm), and thermal
infrared (TIR, 8.6; 10.4 and 11.2 µm) were adopted at 06:30–09:00 (dawn) and 15:30–18:00
(dusk), Beijing Time (8 h after the Universal Time Coordinated (UTC)).

Validation Datasets

Ground observation datasets from the National Meteorological Information Center of
China were used to execute and validate the algorithm proposed in this study. Because of
the different monitoring frequencies and space distribution of the observation sites in study
area, different sites were adopted at 8:00 and 17:00 after strict quality control (Figure 1).
The dataset was described in detail in the study of Chen and Wang [20].
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Figure 1. Study area distribution of ground observation stations and Bright temperature difference
image (Band7 (3.9 µm)−Band14 (11.2 µm). The image was taken at 8:00 on 30 November 2015).

We evaluated the performance of our algorithm on several randomly selected days
and across different conditions. Specifically, data sets from 26 November to 30 November
in 2015 were adopted to evaluate the performance of fog detection over a long duration.
Furthermore, we randomly selected a daily data set in each month of 2017 to validate the
algorithm over different seasons. Fog is usually defined as a weather condition with a
visibility of less than 1 km, which can be further divided into sub-categories of strong (visi-
bility is between 0 m and 200 m), dense (200 m to 500 m), and haze (500 m to 1000 m) [22].
However, the definition of haze varies in different regions. According to the Grade of Fog
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Forecast promulgated by China Meteorological Administration (CMA) (GB/T 27964-2011
GB/T), haze is defined as the horizontal visibility ranges from 1.0 to 10.0 km [23]. By consid-
ering the criteria above, this study identified haze as matching the ground station codes
40–49 (fog occurs during observation) or 10 (haze occurs during observation), wherein the
visibility is between 500 m and 10 km.

2.2. Physical Basis

To accurately detect fog at dawn and dusk, this study was carried out mainly based
on the radiation variation characteristics of fog and the land surface under different solar
zenith angles. Specifically, night fog only emits in MIR and TIR, the former being usually
smaller than the latter, and its BTD is less than 0 K (the blue rectangle in Figure 2a,b) In
addition to emissions, fog also reflects MIR radiation in the daytime. In addition, both
the brightness temperature (BTMIR) and BTD increase with decreasing solar zenith angles.
The solar zenith angles are big near the terminator line, and the BTD of fog is close to (or
slightly larger than) that of the surface. The closer to the daytime area, the smaller the solar
zenith angles, and the fog BTD becomes gradually larger than the surface BTD (the red and
green rectangles in Figure 2a,b). The above variations in fog radiation characteristics have
laid a physical foundation for fog detection at dawn and dusk.

Remote Sens. 2023, 15, x FOR PEER REVIEW 4 of 19 
 

 

[22]. However, the definition of haze varies in different regions. According to the Grade 
of Fog Forecast promulgated by China Meteorological Administration (CMA) (GB/T 
27964-2011 GB/T), haze is defined as the horizontal visibility ranges from 1.0 to 10.0 km 
[23]. By considering the criteria above, this study identified haze as matching the ground 
station codes 40–49 (fog occurs during observation) or 10 (haze occurs during observa-
tion), wherein the visibility is between 500 m and 10 km. 

2.2. Physical Basis 
To accurately detect fog at dawn and dusk, this study was carried out mainly based 

on the radiation variation characteristics of fog and the land surface under different solar 
zenith angles. Specifically, night fog only emits in MIR and TIR, the former being usually 
smaller than the latter, and its BTD is less than 0 K (the blue rectangle in Figure 2a, and b) 
In addition to emissions, fog also reflects MIR radiation in the daytime. In addition, both 
the brightness temperature (𝐵𝑇ெூோ) and BTD increase with decreasing solar zenith angles. 
The solar zenith angles are big near the terminator line, and the BTD of fog is close to (or 
slightly larger than) that of the surface. The closer to the daytime area, the smaller the 
solar zenith angles, and the fog BTD becomes gradually larger than the surface BTD (the 
red and green rectangles in Figure 2a,b). The above variations in fog radiation character-
istics have laid a physical foundation for fog detection at dawn and dusk. 

 
(a) (b) 

Figure 2. Bright temperature difference images at (a) 7:30, and (b) 16:40, on 30 November 2015. 

Figure 3a,b further show the variation characteristics of fog and land surface BTD at 
dawn and dusk. The emissivity of fog in MIR was less than that of TIR before 7:10, and its 
corresponding BTD was lower than 0, while the emissivity of the surface in MIR was close 
to that of TIR, and its BTD was close to 0. At dawn (after 7:10), the reflection of the solar 
radiation in MIR by the fog increased gradually, and the BTD gradually increased until 
7:40, approaching that of the surface. With the gradual decrease in the solar zenith angles 
(7:50−9:00), the reflectance of fog in MIR was greater than that of the surface, and its BTD 
growth rate was likewise greater than that of the surface (Figure 3c). The BTD trend of 
dusk line transit was opposite to that of dawn line transit (Figure 3b). The difference be-
tween fog and surface radiation changes at dawn and dusk provided the physical basis 
for fog detection based on time-series images at dawn and dusk; that is, BTD that varied 
greatly was the foreground target (fog), and the other becomes the background. Figure 
3c,d further quantify the change rate of fog and surface BTD at dawn and dusk near the 
terminator. The change rate of surface BTD at dawn (0.3–1.5) was usually greater than that 
of dusk (0–0.6). 

Figure 2. Bright temperature difference images at (a) 7:30, and (b) 16:40, on 30 November 2015.

Figure 3a,b further show the variation characteristics of fog and land surface BTD at
dawn and dusk. The emissivity of fog in MIR was less than that of TIR before 7:10, and its
corresponding BTD was lower than 0, while the emissivity of the surface in MIR was close
to that of TIR, and its BTD was close to 0. At dawn (after 7:10), the reflection of the solar
radiation in MIR by the fog increased gradually, and the BTD gradually increased until
7:40, approaching that of the surface. With the gradual decrease in the solar zenith angles
(7:50−9:00), the reflectance of fog in MIR was greater than that of the surface, and its BTD
growth rate was likewise greater than that of the surface (Figure 3c). The BTD trend of dusk
line transit was opposite to that of dawn line transit (Figure 3b). The difference between
fog and surface radiation changes at dawn and dusk provided the physical basis for fog
detection based on time-series images at dawn and dusk; that is, BTD that varied greatly
was the foreground target (fog), and the other becomes the background. Figure 3c,d further
quantify the change rate of fog and surface BTD at dawn and dusk near the terminator. The
change rate of surface BTD at dawn (0.3–1.5) was usually greater than that of dusk (0–0.6).
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recorded in Zhengzhou city, Henan Province, from 6:30 to 18:00 on 29 November 2015. All the
recorded times are in Beijing Time (8 h after the UTC).

2.3. ST-ViBe Algorithm Principle

Based on the BTD variation characteristics of fog and surface at dawn and dusk, this
study carried out remote-sensing-based fog detection based on the ViBe algorithm. This
algorithm is a background modeling method proposed by Olivier Barnich and Marc Van
Droogenbroeck [24], the main strategy of which was to randomly collect samples from
the area surrounding the current pixel to serve as background model elements based on
the random idea. During target detection, the current pixel was then compared with its
background model, and if it matched its conditions, it was judged as a background point;
otherwise, it was deemed a foreground point. Finally, the background model of the current
pixel was then updated randomly, according to the classification results. The process of the
algorithm is as follows:

Background model initialization
Select the initial image as the sample to establish the background and build the

background model sample set BM(I) for each pixel I:

BM(I) = {I1, I2, . . . In} (1)

2.3.1. Target Detection

Calculate the difference between the background pixel brightness temperature difference
It and the current pixel brightness temperature difference Ic in background model BM(I).
Count the number of the absolute values of differences less than threshold R(Nintersect). When
Nintersect exceeds the minimum intersection number Min (Formulas (2) and (3)), the pixel is
considered a background pixel (BG), and the background model sampling set BM(I) is
updated. Otherwise, the pixel is considered foreground (FD), and the background model is
not updated.

Nintersect =
n

∑
i=1

(i f (|It − Ic| < R)) (2)

I =
{

BG Nintersect ≥ Min
FD Nintersect < Min

(3)

2.3.2. Update of the Background Model

After pixel It is judged as the background, the background model BM(I) needs to
be updated to ensure the real-time performance of the background detection. The ViBe
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algorithm adopts a memory-free update strategy, and the update frequency is ϕ; that is,
It has a probability of 1/ϕ to update its corresponding background model. During the
update, It is used to replace a certain Ii in n samples of the background model, any pixel
in the eight neighborhoods of It is selected to participate in the update of the background
model, and the pixel value of It is also used to complete the update.

2.4. ST-ViBe Model Construction for Dawn and Dusk Fog Detection

The ViBe algorithm can reduce both the process of background model building and
the influence of background light on achieving fog extraction, but it can easily form a
shadow area [25]. In addition, ViBe uses a single threshold to extract the foreground in
the whole image, which may cause missed detection and false detection, and the back-
ground update efficiency is low. Aiming at addressing the above problems, this study
innovatively constructed a self-adaptive threshold ViBe (ST-ViBe) fog detection algorithm
by coupling LBSP and the SILTP operator. The main innovations of the algorithm were as
follows (Figure 4): (1) the LBSP operator was used to increase the neighborhood mean and
variance in BTD image to establish the background model and enhance the discrimination
between cloud and fog; (2) scene factors were generated by coupling pixel BTD and SILTP
texture features. The threshold of the foreground detection distance measure was adjusted
adaptively according to the scene factors to remove the problem of large foreground BTD
changes caused by the solar zenith angles. (3) By accelerating the background update rate
and increasing the number of background updates, background updates were carried out
quickly to improve the accuracy of target location detection. (4) Ice clouds, thin clouds,
and low clouds in the image were removed with the traditional cloud removal algorithm,
residual shadows with multiple images were removed, and the integrity of the detection
result was improved by removing small patches and smoothing.
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2.4.1. ST-ViBe Background Model Initialization

The LBSP operator was used to separate clouds and fogs when the texture features
of clouds and fogs differed greatly. This operator is a texture feature descriptor designed
by Bilodeau G A et al. in 2013 [26]. LBSP has high feature description accuracy by
introducing a local similarity threshold, comparing the similarity of each pixel with its
16 neighbor pixels, and then carrying out binary coding [27]. In this study, a 5 × 5 window
(Figure 5) was selected to establish two background models—BM(I)1 and BM(I)2—of
the mean variance in BTD between the central pixel and its LBSP neighborhoods, where
BM(I)1 = {I1, I2, . . . In}, with It representing the BTD of the neighboring field pixel, and
BM(I)2 = {(m1, s1), (m2, s2), . . . (mn, sn)}, where (mt, st) is the BTD mean and variance in
the LBSP operator (Figure 5) in the neighboring field pixel. The sample mean (mM) and
variance (sM) in the background model BM(I)2 were initialized to determine the initial
values of parameters Min and R [28], reduce the probability that clouds with complex
textures were detected as fog, and improve foreground and background detection accuracy.
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2.4.2. Establishing the Foreground Detection Parameter Set

Traditional ViBe uses a single threshold to detect the foreground; however, the fog
occurrence range is usually large with strong spectral spatial heterogeneity, leading to
large errors in fog detection. In this study, coupled with the pixel brightness temperature
difference, SILTP texture feature coding was introduced to construct scene factor L. The
Foreground detection parameter (FDPS(x,y)) was constructed together with background
models BM(I)1 and BM(I)2 to adaptively determine the distance measurement threshold
R for foreground detection. SILTP texture feature coding was proposed by Liao S. et al. [28].
By improving the coding method of the operator, the adaptability of texture features to
image scale changes was enhanced, thereby effectively reducing the influence of illumi-
nation. Additionally, the SILTP operator has strong stability under proportional increases
in illumination and sudden changes in local illumination and noise, and can maintain
good grayscale invariance, both of which are suitable for judging pixel texture in scenes
with large illumination changes [29,30]. The SILTP texture feature coding of pixel I(x,y) was
calculated as follows:

sτ(Ic, Ik) =


01,
10,
00,

Ik > (1 + τ)Ic
Ik < (1− τ)Ic

other
(4)

SILTP(x, y) = ⊕8
k=1sτ(Ic, Ik) (5)
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where Ic is the BTD value of pixel I(x,y). Ik is the BTD value in the eight neighborhoods
of pixel I(x,y). τ is the allowable fluctuation parameter; τ = 0.3, according to the spectral
variation characteristics of the target in this study. sτ(Ic, Ik) is the coding factor of the
grayscale difference between the neighboring pixel and the central pixel I(x,y). ⊕ represents
the hexadecimal binary code SILTP(x, y) formed by the order sτ(Ic, Ik).

Defining the parameter NUM_SILTP(x,y) as the number of 1 occurrence in the SILTP(x, y)
code (between 0 and 8), the fog edge and the ground NUM_SILTP(x,y) is between 5
and 8 when the solar zenith angles is larger than 90◦. The ground and interior of fog
NUM_SILTP(x,y) is between 0 and 2 when the solar zenith angles are small. The scene
factor L was constructed by coupling the pixel brightness temperature difference and the
SILTP texture feature, and the calculation method is shown in Formula (6).

Lc = Ic/NUM_SILTP(x,y) (6)

The pixel foreground detection parameters set FDPS(x, y) =
{

Ic, mc, sc, NUM_SILTP(x,y), Lc

}
were composed of pixel BTD (Ic), LBSP neighborhood brightness temperature difference
mean and variance (mc, sc), SILTP texture feature (NUM_SILTP(x,y)), and scene factor (Lc).

2.4.3. Determination of the Initial Value of the Model Parameters and Adaptive
Adjustment of the Distance Measurement Threshold

The initial values of the ST-ViBe model parameters have a great influence on the results.
Fog detection accuracy can be improved by reasonably determining the initial values of
the model parameters according to the changes in the brightness temperature differences
in fog between dawn and dusk. According to the variation in fog brightness temperature
difference between dawn and dusk, an iterative algorithm was used to determine its key
parameter values, among which the background sample parameter n = 20, the initial value
of the minimum intersection number Min = 4, and the initial threshold value of distance
measurement R = 3 K.

Determine the distance measurement threshold R according to the foreground detec-
tion parameter set FDPS(x, y). The specific steps are as follows:

(1) Use the initialized background model to initially adjust the parameters Min and
R [28]. Calculate the sample mean (mM) and variance (sM) in the background model BM(I)2.
If the current frame pixel Ic is within [mM − 2sM, mM + 2sM] (indicating that the pixel has
a high probability of being the background), reduce the minimum intersection number
Min, increase the distance measure threshold R, and increase the possibility of its detection
as the background:{

Min = Min− 1; R = R× 4; Ic ∈ (mM − 2sM, mM + 2sM)
Min = Min; R = R; Ic /∈ (mM − 2sM, mM + 2sM)

(7)

(2) According to the scene factor L, the distance measurement threshold R is further
adjusted for the two scenes, dawn and dusk.

The method for determining R at dawn is:

Rdawn =

{
R− 1.5

R + 1 + NUM_SILTP(x,y)

L < 5
L ≥ 5

(8)

where Rdawn is the adjusted distance measurement threshold R at dawn. When the scene
factor is less than 5, the distance measurement threshold is reduced in anticipation that the
dawn line will cross this border, in order to ensure that the fog edge can still be completely
detected. When either the scene factor is greater than 5, the pixel is inside fog with uniform
texture, or after the dawn line has passed, then the distance measure threshold can be
increased to reduce both cloud and surface false detection rates.
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The method for determining R at dusk is:

Rdusk =


1 K
1.5 K
2 K

L < 0
0 ≤ L < 10

L ≥ 10
(9)

where Rdusk is the adjusted distance measurement threshold R at dusk. When the scene
factor is less than 0, the pixel brightness temperature difference is less than 0 (which is the
area after the dusk line passes), and Rdusk is set to 1 K. When the scene factor is greater than
10, the area lies before the dusk line crossing, and Rdusk is set to 2 K. When the scene factor
is between 0 and 10, the area is near the dusk line, and Rdusk is set to 1.5 K.

2.4.4. Foreground Detection and Background Update

The adaptive distance measure threshold R was used to detect the foreground and
update the background according to the foreground and background determination rules
of the traditional VIBE algorithm. The ST-ViBe algorithm rapidly updated the background
by increasing the number of background updates and increasing the update rate. All pixels
detected as background points were updated quickly. Half of the samples (n/2) of its back-
ground model BM(I)1 and BM(I)2 were randomly selected and replaced with the current
values of pixels so that the background model contained more recent background values.

2.4.5. Traditional Cloud Removal Methods

The mid-high clouds were subsequently removed through use of the differences in the
spectral and textural characteristics between mid-high clouds and fog, which we described
in detail in our previous study [18]. Specifically, the ice clouds were removed first by using
a threshold of TIR (10.4 µm) brightness that was lower than 230 K [31]. Then, the pixels
with BTDs greater than 0 K were taken to be thin cirrus clouds and were removed in order
to identify fog. Finally, the mid-high clouds were identified through their complex texture
and were removed using the infrared and visible bands texture filtering method [32].

2.4.6. Postprocessing

Affected by atmospheric movement, clouds move fast and easily form residual shad-
ows, which can be mistakenly detected as fog. This algorithm took the cloud detection
results of remote sensing images within a certain time range and superimposed them over
the fog detection results of the current moment, and the intersecting pixels could then
be determined as cloud false detections and removed. In addition, for some noise points
caused by the same spectrum of foreign objects, a 3 × 3 median window was used to
denoise the detection results, and the final fog detection results were obtained.

2.5. Evaluation of the Method

The probability of detection (POD), false alarm ratio (FAR), and critical success index
(CSI) were adopted for the validation of fog detection, as they are the most commonly used
indexes for fog detection [33–35]. The higher the POD value, the better the algorithm is at
capturing real fog events. The lower the value of FAR, the lower the probability that the
algorithm incorrectly estimates the fog event. CSI represents the stability of the algorithm;
the higher CSI value is, the more stable the algorithm is. The three indexes are described as
follows:

POD =
NH

NH + NM
(10)

FAR =
NF

NH + NF
(11)

CSI =
NH

NH + NM + NF
(12)
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where NH, NM and NF are the pixel numbers of hitting, missing, and false detections,
respectively. All indicators are scaled from 0 to 1, with high POD and CSI and low FAR
indicating the great performance of the algorithm.

3. Results and Discussion
3.1. Qualitative Analysis of the Time-Series Fog Detection Results of the ST-ViBe Algorithm

The ST-ViBe algorithm was used to carry out fog detection at dawn and dusk in the
study area, and the results are shown in Figures 6 and 7. The results show that the algorithm
can effectively extract the fog near the dawn and dusk line (yellow line in Figures 6 and 7)
when brightness temperature differences of fog and surface are close. At dawn, with the
passage of the dawn line, the fog area detected by the algorithm gradually increased (the
area between the yellow line and black line in Figure 6b,d,f,g). Fog on the right side of the
dawn line was detected in the area with a high solar zenith angle. At dusk, the detection
range moved with the dusk line, and fog within a certain range on the left and right sides of
the dusk line was effectively detected (the area between two black lines in Figure 7b,d,f,g),
indicating that the algorithm was suitable for fog detection in areas with high solar zenith
angles at dusk and when just entering the night. Some of the fog detection results at dusk
had slight afterimages, which were traces of clouds moving fast.
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The ST-ViBe algorithm has a certain difference in nighttime adaptability at dawn and
dusk. The main reason is that the area before the dawn line crossing (the left sides of
the dawn line in Figure 6b,d,f,g) are always in the dark, and the fog BTD changes are
slight, making it difficult to carry out background detection. Although the area after the
dusk line crossing is in the dark, the previous part of the area is in the daytime and has a
significant change rate compared with the current pixel, which can effectively distinguish
the foreground; therefore, the dusk time algorithm is suitable for the high solar zenith
angles at dusk and the beginning of night.

3.2. Qualitative Analysis of Algorithm Fog Detection Results

To test the effectiveness of the ST-ViBe algorithm, a qualitative comparative analysis
was carried out on the fog detection results of the ST-ViBe algorithm, the traditional ViBe
algorithm (R = 3 K), and the improved ViBe algorithm (R = 3 K) [36]. The algorithm
detection results are shown in Figures 8 and 9. The comparison results show that the
ST-ViBe algorithm provides relatively complete detection of fog over a wide range at dawn
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and dusk, and the interior of the fog is intact. At dawn, it is difficult for the ViBe algorithm
to detect such fog near the dawn line that is consistent with the spectral information of the
ground surface (Figure 8b). The detection result of the improved ViBe algorithm was similar
to that of the VIBE algorithm (Figure 8c). In contrast, the ST-ViBe algorithm can achieve
relatively complete detection of such fog near the dawn line with spectral characteristics
similar to those of the ground surface, as well as fog in the dawn line transit area (Figure 8d).
The ST-ViBe algorithm also had high fog detection accuracy at dusk, while the fog area
detected by the ViBe algorithm was larger than the actual fog area, and there was also a
false detection of the cloud area (Figure 9b). The improved ViBe algorithm had a better
detection result; however, there was some noise and false detection (Figure 9c). The ST-ViBe
algorithm can achieve relatively complete detection of fog on both sides of the dusk line,
but there were a few clouds falsely detected as fog.

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 19 
 

 

achieve relatively complete detection of such fog near the dawn line with spectral charac-
teristics similar to those of the ground surface, as well as fog in the dawn line transit area 
(Figure 8d). The ST-ViBe algorithm also had high fog detection accuracy at dusk, while 
the fog area detected by the ViBe algorithm was larger than the actual fog area, and there 
was also a false detection of the cloud area (Figure 9b). The improved ViBe algorithm had 
a better detection result; however, there was some noise and false detection (Figure 9c). 
The ST-ViBe algorithm can achieve relatively complete detection of fog on both sides of 
the dusk line, but there were a few clouds falsely detected as fog. 

 
Figure 8. (a) False color image, (b) ViBe algorithm, (c) Improved ViBe algorithm, and (d) ST-ViBe 
algorithm fog detection results at 7:30 on 30 November 2015. 

 
Figure 9. (a) False color image, (b) ViBe algorithm, (c) Improved ViBe algorithm, and (d) ST-ViBe 
algorithm fog detection results at 16:50 on 30 November 2015. 

3.3. Quantitative Verification of the ST-ViBe Algorithm 
The ground observation data at 8:00 and 17:00 from 27–30 November 2015, were fur-

ther selected to quantitatively evaluate the accuracy of the fog detection results (Figure 

Figure 8. (a) False color image, (b) ViBe algorithm, (c) Improved ViBe algorithm, and (d) ST-ViBe
algorithm fog detection results at 7:30 on 30 November 2015.

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 19 
 

 

achieve relatively complete detection of such fog near the dawn line with spectral charac-

teristics similar to those of the ground surface, as well as fog in the dawn line transit area 

(Figure 8d). The ST-ViBe algorithm also had high fog detection accuracy at dusk, while 

the fog area detected by the ViBe algorithm was larger than the actual fog area, and there 

was also a false detection of the cloud area (Figure 9b). The improved ViBe algorithm had 

a better detection result; however, there was some noise and false detection (Figure 9c). 

The ST-ViBe algorithm can achieve relatively complete detection of fog on both sides of 

the dusk line, but there were a few clouds falsely detected as fog. 

 

Figure 8. (a) False color image, (b) ViBe algorithm, (c) Improved ViBe algorithm, and (d) ST-ViBe 

algorithm fog detection results at 7:30 on 30 November 2015. 

 

Figure 9. (a) False color image, (b) ViBe algorithm, (c) Improved ViBe algorithm, and (d) ST-ViBe 

algorithm fog detection results at 16:50 on 30 November 2015. 

3.3. Quantitative Verification of the ST-ViBe Algorithm 

The ground observation data at 8:00 and 17:00 from 27–30 November 2015, were fur-

ther selected to quantitatively evaluate the accuracy of the fog detection results (Figure 

Figure 9. (a) False color image, (b) ViBe algorithm, (c) Improved ViBe algorithm, and (d) ST-ViBe
algorithm fog detection results at 16:50 on 30 November 2015.



Remote Sens. 2023, 15, 2331 13 of 18

3.3. Quantitative Verification of the ST-ViBe Algorithm

The ground observation data at 8:00 and 17:00 from 27–30 November 2015, were fur-
ther selected to quantitatively evaluate the accuracy of the fog detection results (Figure 10).
The results showed that the ST-ViBe algorithm could effectively detect strong fog and dense
fog, while haze and no fog also have good spatial consistency with the ground stations.
Moreover, that dense fog has higher frequency in mountain areas (Figure 10b,c,e–h) when
compared in the plain regions, the main reason being that topographic relief has an impor-
tant impact on the ground wind field, temperature field, and humidity field [37]. However,
there were false detections at some moments. For example, on the dawns of November
27 and November 29, the detection results in the northern part of the study area were fog
(Figure 10a,c), while the ground observation results were not, because low clouds were
being falsely detected as fog. In addition, the fog detection results at dusk from November
28 to 29 detected clouds as fog in the north (Figure 10f,g), mainly due to the complex cloud
types and structures in Inner Mongolia and Gansu Province, which had a certain impact on
the algorithm.
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Tables 1 and 2 show the statistical results of ground verification of the ST-ViBe algo-
rithm at dawn and dusk. The average probability of fog detection by ST-ViBe in the dawn
(8:00 Beijing time) was 72.9%, the average false alarm ratio was 12.7%, and the average
critical success index was 66%. At dusk (17:00), the accuracy dropped slightly, with an
average probability of detection of 68.9%, an average false alarm ratio of 14.5%, and an
average critical success index of 61.7%. As shown in Figure 10, the missed detection points
in Tables 1 and 2 were mostly haze, mainly because the haze was thin, which makes it
difficult for the sensor to effectively capture its radiation information. False detection points
were mostly located in the fog detection results. Because the algorithm extracted informa-
tion based on spectral features, the sensor received information on the top of the target,
and most of the radiation fog was surface-shaped water vapor condensation. The actual
weather conditions on the ground were not only affected by water vapor but also affected
by the land use type, wind speed, and terrain. There might also have been fog dissipating
or ungrounded as low clouds, resulting in false detection. In the future, how to combine
the above factors to further screen the satellite detection results to obtain more accurate
detection results must be investigated. In addition to misdetection in the satellite-based
detection results, ground observation data can also cause errors due to the recording rules.
For example, when weather phenomena such as haze, clouds, rain, and snow occur at the
same time as fog, the ground observation station will preferentially record rain and snow,
while haze and fog are blurred, both of which affects the accuracy of the detection results.

Table 1. Detection accuracy at 8:00 in the study area.

Date Satellite
Detection

Ground
Observation

(Fog)

Ground
Observation

(Nonfog)
POD FAR CSI

27 November 2015
Fog 21 4

0.724 0.160 0.636Nonfog 8 138

28 November 2015
Fog 42 7

0.689 0.143 0.618Nonfog 19 103

29 November 2015
Fog 40 5

0.727 0.111 0.667Nonfog 15 111

30 November 2015
Fog 86 9

0.775 0.095 0.717Nonfog 25 51
Mean 0.729 0.127 0.660

Table 2. Detection accuracy at 17:00 in the study area.

Date Satellite
Detection

Ground
Observation

(Fog)

Ground
Observation

(Nonfog)
POD FAR CSI

27 November 2015
Fog 20 5

0.741 0.2 0.625Nonfog 7 133

28 November 2015
Fog 16 4

0.615 0.2 0.533Nonfog 10 135

29 November 2015
Fog 29 2

0.69 0.065 0.659Nonfog 13 121

30 November 2015
Fog 54 7

0.711 0.115 0.651Nonfog 22 82
Mean 0.689 0.145 0.617
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This study further evaluated the performances of the algorithm over different months
(Tables 3 and 4), which present universally acceptable accuracies. Validation of fog detection
at dawn showed that the values of POD, FAR, and CSI were 0.725, 0.185, and 0.624 for
the overall accuracies in the whole study area. The performances at dusk were relatively
weak when compared with those at dawn. The indicators of POD, FAR, and CSI were
0.706, 0.336, and 0.523, respectively, over the whole study area. The main reason for this
might be attributed to the calculation of validation indicators, which we have explained
in our previous study in detail [18]. According to the Equations (10)–(12), the evaluation
indicators were strongly determined by fog frequencies. As a result, the low frequencies
of fog occurrence may generate significant uncertainties for the validation. Even with the
uncertainty, however, the accuracies were acceptable when compared with most of the
previous studies. Likewise, the high values of nonfog detection in Tables 3 and 4 confirm
the reliability of our algorithm.

Table 3. Fog detection accuracy at 8:00 (Beijing Time) over different months.

Cases Satellite
Detection

Ground
Observation

(Fog)

Ground
Observation

(Nonfog)
POD FAR CSI

5 January 2017 Fog
Nonfog

58
20

5
88 0.744 0.079 0.699

5 February 2017 Fog
Nonfog

70
18

10
73 0.795 0.125 0.714

17 March 2017 Fog
Nonfog

25
17

6
123 0.595 0.194 0.521

6 April 2017 Fog
Nonfog

56
24

11
80 0.700 0.164 0.615

10 May 2017 Fog
Nonfog

20
6

3
142 0.769 0.130 0.690

7 June 2017 Fog
Nonfog

48
20

20
83 0.706 0.294 0.545

26 July 2017 Fog
Nonfog

30
17

6
118 0.638 0.167 0.566

31 August 2017 Fog
Nonfog

45
22

6
97 0.672 0.118 0.616

17 September 2017 Fog
Nonfog

40
5

3
123 0.889 0.070 0.833

12 October 20170 Fog
Nonfog

30
8

10
123 0.789 0.250 0.625

5 November 2017 Fog
Nonfog

34
14

12
111 0.708 0.261 0.567

20 December 2017 Fog
Nonfog

7
3

4
157 0.700 0.364 0.500

Mean 0.725 0.185 0.624

Table 4. Fog detection accuracy at 17:00 (Beijing Time) over different months.

Cases Satellite
Detection

Ground
Observation

(Fog)

Ground
Observation

(Nonfog)
POD FAR CSI

5 January 2017 Fog
Nonfog

30
5

11
119 0.857 0.268 0.652

21 February 2017 Fog
Nonfog

8
3

7
147 0.727 0.467 0.444

13 March 2017 Fog
Nonfog

6
5

3
151 0.545 0.333 0.429

5 April 2017 Fog
Nonfog

32
3

8
122 0.914 0.200 0.744
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Table 4. Cont.

Cases Satellite
Detection

Ground
Observation

(Fog)

Ground
Observation

(Nonfog)
POD FAR CSI

11 May 2017 Fog
Nonfog

7
2

2
154 0.778 0.222 0.636

7 June 2017 Fog
Nonfog

1
2

1
161 0.333 0.500 0.250

17 July 2017 Fog
Nonfog

11
3

4
147 0.786 0.267 0.611

9 August 2017 Fog
Nonfog

3
1

4
157 0.750 0.571 0.375

15 September 2017 Fog
Nonfog

5
4

1
155 0.556 0.167 0.500

5 October 2017 Fog
Nonfog

25
7

9
124 0.781 0.265 0.610

6 November 2017 Fog
Nonfog

11
2

4
148 0.846 0.267 0.647

22 December 2017 Fog
Nonfog

3
2

3
157 0.600 0.500 0.375

Mean 0.706 0.336 0.523

4. Conclusions

In this study, third-generation geostationary meteorological satellite H8 data with high
temporal resolution were selected, and an ST-ViBe algorithm was proposed to detect fog
at dawn and dusk, with the ViBe algorithm as the framework. The results show that the
algorithm had high accuracy. Compared with the ViBe algorithm and the improved ViBe
algorithm, ST-ViBe can achieve relatively complete detection of fog over a wide range and
in cases of light mutation and increased cloud interference. At dawn and dusk, the correct
detection rates were 72.5% and 70.6%, and the false detection rates were 18.5% and 33.6%,
respectively. In addition, the integrity of fog detection was good. At dawn, the algorithm
can achieve relatively complete detection of the fog around the dawn line and after the
dawn line transitions. At dusk, the algorithm can achieve relatively complete detection of
the fog on both sides of the dusk line. Compared with the deep learning method, ST-ViBe
was free from sample interference, with faster detection speeds and a more stable detection
effect [17].

The disadvantage of the ST-ViBe algorithm was that it performs fog detection based on
motion characteristics, which makes it easy to detect cloud and fog afterimages, especially
when the cloud moves rapidly, which causes the fog detection range to be too large. The
reflection characteristics of low clouds and fog are similar at dawn and dusk, and it was
difficult for the algorithm to effectively separate them. In the meantime, the algorithm
likely caused missed detection of haze. Future research will continue to screen fog detection
results based on ground features to reduce false detection and provide an accurate remote
sensing-based detection method for automatic fog detection at dawn and dusk over a large
area. This study focused on the occurrence of fog, which it described in qualitative way by
dividing the fog into sub-categories of strong, dense, and haze. The quantitative visibility
data can be collected for improving validation in the future research.
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