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Abstract: The Qinghai-Tibet Plateau is rich in renewable solar energy resources. Under the back-
ground of China’s “dual-carbon” strategy, it is of great significance to develop a global horizontal
irradiation (GHI) prediction model suitable for Tibet. In the radiation balance budget process of
the Earth-atmosphere system, clouds, aerosols, air molecules, water vapor, ozone, CO2 and other
components have a direct influence on the solar radiation flux received at the surface. For the de-
scending solar shortwave radiation flux in Tibet, the attenuation effect of clouds is the key variable of
the first order. Previous studies have shown that using Artificial intelligence (AI) models to build
GHI prediction models is an advanced and effective research method. However, regional localization
optimization of model parameters is required according to radiation characteristics in different re-
gions. This study established a set of AI prediction models suitable for Tibet based on ground-based
solar shortwave radiation flux observation and cloud cover observation data of whole sky imaging in
the Yangbajing area, with the key parameters sensitively tested and optimized. The results show that
using the cloud cover as a model input variable can significantly improve the prediction accuracy,
and the RMSE of the prediction accuracy is reduced by more than 20% when the forecast horizon is
1 h compared with a model without the cloud cover input. This conclusion is applicable to a scenario
with a forecast horizon of less than 4 h. In addition, when the forecast horizon is 1 h, the RMSE of
the random forest and long short-term memory models with a 10-min step decreases by 46.1% and
55.8%, respectively, compared with a 1-h step. These conclusions provide a reference for studying
GHI prediction models based on ground-based cloud images and machine learning.

Keywords: Visible All-Sky image; cloud cover; global horizontal irradiation; short-term forecast;
machine learning

1. Introduction

Solar energy, as a green, renewable and clean type of energy [1], is undergoing signifi-
cant development [2]. However, there is great volatility in the power generation process,
which presents challenges to the safe and efficient operation of the power grid [3,4]. Thus, it
is critical to accurately predict solar power generation [5]. The output power is proportional
to the global horizontal irradiation (GHI) received by its components [6], and the GHI is
the key factor affecting the output power [7]; thus, GHI prediction has become the focus of
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attention in the field of solar power generation. The Qinghai-Tibet Plateau is rich in solar
energy resources; the received solar energy in some areas is close to the Sahara Desert [8],
so the development of solar power generation has broad prospects. At present, there is
almost no research on GHI prediction in this region; thus, it is of great importance to study
GHI prediction in the area. Atmospheric factors affecting GHI include clouds, aerosols,
water vapor and ozone; among them, clouds and aerosols play a major role [9], while
water vapor and ozone have less influence [10]. Because the pollution of the Qinghai-Tibet
Plateau is less than that of inland areas, the main factor causing irradiance changes is not
aerosols [11,12], and the effects of clouds are generally stronger over higher altitudes [13];
thus, clouds are the first-order influencing factor. Therefore, it is necessary to focus on the
influence of clouds in GHI prediction research in this area.

Machine learning is a popular method for solar radiation prediction. A random
forest (RF) model is widely used in the field of solar radiation prediction because of its
better precision, low risk of overfitting, and concise hyperparameter-tuned process [14].
Sun et al. [15] used meteorological, solar radiation and air pollution index data from the
Haikou, Changchun and Urumqi stations in China to predict radiation values, and the
constructed RF model was superior to an empirical method. Benali et al. [16] used intelligent
persistence, an artificial neural network (ANN), and a RF model to predict varying solar
radiation over 1–6 h in France, and the results showed that the RF was the most effective.
Hou et al. [17] used the prediction model constructed by Himawari-8 AHI data based on
RF to estimate the descending short-wave radiation over China’s surface and achieved
good results. Recently, long short-term memory (LSTM), an improved recurrent neural
network (RNN), has been applied in the field of solar radiation. Qing and Niu [6] used
2 years of radiation data collected from Cape Verde for LSTM model training and prediction,
and the RMSE was 18.34% lower than that of multilayered feedforward neural networks.
Ghimire et al. [18] built a hybridized deep learning (DL) model based on the convolutional
neural network (CNN) and LSTM for half-hourly global solar radiation forecasting, which
was superior to other DL models. Peng et al. [19] proposed a DL model based on complete
ensemble empirical mode decomposition, sine cosine algorithm, and Bi-directional LSTM
to predict multi-step hourly solar radiation, which had higher prediction accuracy than
the comparison model. Liu et al. [20] used 7 years of radiation data from the Atmospheric
Radiation Measurement Center of the US Department of Energy to predict and evaluate
solar radiation, and the results showed that LSTM had the best overall performance, with
results superior to eXtreme Gradient Boosting and Autoregressive Integrated Moving
Average. Clouds are a key parameter for atmospheric science related to solar energy and
are one of the most significant factors influencing solar radiation prediction [21]. Therefore,
Qin et al. [22] used CNN to extract the temporal variation trend of solar radiation and the
spatial pattern of cloud motions from the ground-based observations and the satellite cloud
images, respectively, and then predicted the GHI 1–6 h in the future based on LSTM, thus
improving the accuracy of photovoltaic output forecasting. Because ground-based cloud
images have higher resolution than satellite cloud images, the accuracy of prediction can be
improved by extracting information from ground-based cloud images [23]. Chu et al. [24]
combined sky images and an ANN to build a prediction model for predicting the 1-min
average Direct Normal Irradiance, which was significantly better than a reference model.
In summary, the combination of ground-based cloud images and machine learning can
improve the prediction accuracy of solar radiation; however, there are few studies that take
the time series data of cloud cover, which can reflect the coverage of sky clouds, as model
input variables, and there is no such study on the Qinghai-Tibet Plateau. Therefore, we use
ground-based visible cloud images collected in the Yangbajing area of Tibet to detect the
time series data of cloud cover and build a short-term prediction model of GHI based on
the machine learning algorithm to predict the 10-min average GHI over the subsequent
1–6 h, explore the input characteristics of RF and LSTM models, analyze the influence of
prediction step size on model accuracy, and quantitatively study the influence of cloud
cover on model accuracy.
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The structure of this paper is as follows. The study area, data collection, quality
control of GHI, and ground-based cloud images are introduced in Section 2. In Section 3,
the research methods, including ground-based cloud image preprocessing, cloud detection,
and the principles and construction of the RF and LSTM models are introduced. Finally, the
experimental results, discussion, and conclusions are presented in Sections 4–6, respectively.

2. Data
2.1. General Information of the Study Area

The Yangbajing area (90◦33′E, 30◦05′N) is located 90 km northwest of Lhasa, Tibet,
south of Nyanqing Tanggula Mountain, with an average elevation of 4300 m above sea
level; it has flat terrain and is surrounded by mountains. It has a plateau monsoon semiarid
climate, short spring and autumn, warm and humid summer, and cold and long winter. It is
known for sunny weather and abundant sunshine year-round, with the annual sunshine
time over 2800 h. The Yangbajing Total Atmosphere Observation Station under the Institute
of Atmospheric Physics of the Chinese Academy of Sciences has observed the area since 2018.
As the first comprehensive detection base of all neutral atmosphere and multi-elements in
the Qinghai-Tibet Plateau, it has carried out simultaneous quantitative observation of the
whole atmosphere (near the ground to 110 km) using high vertical resolution (10~100 m),
high time resolution (1 min~1 h) and continuous multi-element observations.

2.2. Irradiance Data

The GHI data used in this study were collected using a four-component radiometer
(see Figure 1a) at the Yangbajing Total Atmospheric Observation Station and measured
using an MR-60 net radiometer from EKO in Japan. The instrument began measurements
in April 2019, and the data collected in 2020 were used in this study. The spectral range
of detection was 285–3000 nm, the output unit was W/m2, and the sampling interval was
1 min. The GHI is the strongest in summer, the second strongest in spring and the weakest
in winter, demonstrating obvious seasonal variation characteristics. The diurnal variation is
a “single-peak” inverted “U” distribution, reaching a peak at 13:00 and fluctuating greatly
at noon. According to the irradiance characteristics, we first preprocess the data and detect
the singularity of the sample after removing nan. Because of the influence of clouds and
terrain [25], the instantaneous value exceeds the solar constant, and the threshold value
is 1500 W/m2. The prediction error is large due to the low value of irradiance obtained
before sunrise and after sunset; therefore, only the data measured between 9:00 am and
18:00 pm were considered in this study. Finally, resampling was carried out using the
10-min average value.

2.3. Ground-Based Cloud Image Data

The ground-based cloud images used in this study were acquired using the visible-
light imaging subsystem of an automatic cloud cover observer (see Figure 1b) installed at the
Yangbajing Total Atmospheric Observation Station. The instrument started its measurement
in April 2019, and the data collected in 2020 were used in this study. The system includes a
visible light imaging unit and a sun tracking unit. The visible light imaging unit consists
of a super wide-angle (fisheye) lens, a camera and a super-hemispherical quartz glass
cover. The super wide-angle lens directly faces the sky for all-sky shooting and imaging.
The super-hemispherical cover can meet the imaging requirements of a 2π solid angle,
and its equal thickness design ensures the uniformity of incident light to avoid additional
distortion. The solar tracking unit is composed of a control platform, a stepper motor,
a transmission mechanism and a shading ball. The control platform calculates the solar
altitude angle according to the local astronomical calendar, controls the stepper motor to
drive the transmission mechanism, and uses the shading ball to shade the direct incident
light of the sun to protect the photosensitive elements from the direct impact of the sun
while avoiding the loss of imaging details around the sun [26]. The system collected data
every 10 min and obtained a full-sky RGB three-channel image with an elevation angle
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above 15◦, a visible band, and a resolution of 4288 × 2848 pixels. Considering the imaging
performance of the equipment, the local solar motion and cloud cover changes, the system
needed to be synchronized with irradiance data, and only the cloud images obtained from
9:00 to 18:00 during the day were retained.

Figure 1. Data monitoring equipment. (a) Four-component radiometer; (b) Total Sky Imager.

2.4. Data Set Settings

Although using more data for training will produce better results, the performance
improvement may not be significant, and the training time will be increased [27], which
increases the calculation cost and the difficulty of application in practice. Therefore, the GHI
and ground-based cloud image data in December 2020, which includes various weather
conditions in the current month without losing generalizability [4], are selected, with a
time resolution of 10 min. The training set and the test set are divided using a ratio of
approximately 3:1, i.e., the time series data from 1 to 23 December are selected as the training
set, and the time series data from 24 to 31 December as the test set. The performance of
the model does not change significantly at different dates, so no additional days are added
for separate evaluation [23]. In this study, the GHI of a few time steps in advance and the
cloud cover time series data obtained via cloud detection is taken as model input variables.
According to the characteristics of different models, reasonable model parameters are
determined by sensitivity experiments. The training, prediction and evaluation of the
model are realized.

3. Methodology

The main contribution of this study is to combine the information extracted from
ground-based cloud images and GHI measurements with machine learning algorithms,
which includes two steps: (1) cloud cover estimation and (2) construction of the irradiance
prediction model. The methods used are introduced in detail below.

3.1. Cloud Cover Estimation
3.1.1. Image Preprocessing

Figure 2a shows the original ground-based cloud image, from which we can see that
buildings and surface background around the automatic cloud cover observer cause some
shading of the sky, and the scattering radiation characteristics of the atmosphere make it
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difficult to identify clouds and clear sky near the horizon [26,28]; this introduces errors into
the subsequent cloud detection and cloud amount calculation, so it is necessary to remove
the ground objects from the cloud image background. Through experiments, setting the
effective radius of the cloud image to 1040 pixels can eliminate the influence of the ground
background to the greatest extent without affecting cloud detection. Transparent channels
are added to the original three RGB image channels, pixels outside the effective radius are
set as transparent, and such pixels are ignored in subsequent processing.

Figure 2. Cloud image processing flowchart. (a) The original cloud image; (b) cloud image pretreat-
ment; (c) NRBR histogram; (d) cloud detection results (in this picture, the white area represents a
cloud pixel, and the blue area represents a clear sky pixel).

The projection of the shading ball and its support on the ground cloud image introduce
errors into the cloud detection, so the shading ball is removed from the cloud image. The
sun’s azimuth angle and zenith angle are calculated according to the shooting time and
position information of the cloud image; then, the position of the sun projection on the
cloud image, that is, the projection position of the shading ball, is calculated [29]. The pixels
in the position and the bracket area are set to be transparent through a transparent channel,
and such pixels are ignored in subsequent processing.

After the preprocessing of the original image introduced above [30] (Figure 2b), the
influence of error points is eliminated for the subsequent cloud detection process, and
accurate data are provided for the subsequent experimental analysis.

3.1.2. Cloud Detection

In this study, the normalized red–blue ratio (NRBR) threshold method is applied in
cloud detection. The scattering of atmospheric molecules is proportional to λ−4 , so the
Rayleigh scattering of molecules with shorter wavelengths increases, which leads to a blue
sky with a larger blue channel (B) and a smaller red channel (R). Clouds are white in the
sky, with small B values and large R values. By calculating the red–blue ratio (RBR) of each
pixel in the cloud image and comparing with the threshold value [31], whether the pixel is
a clear sky pixel (0) or a cloud cluster pixel (1) is evaluated, and a binary image is obtained.
This method has a large error when detecting thin clouds and increased noise [29], while
the NRBR, as a nonlinear monotone decreasing function of the RBR [32], can improve the
image contrast and robustness to noise [30]; its formula is as follows:

NRBR =
B− R
B + R

(1)

where the value range of NRBR is [0, 1]. Using cloud images to analyze the NRBR distri-
bution information, through manual identification and statistical analysis of thousands
of picture samples, setting the threshold value to 0.2 can maximize the cloud detection
accuracy. The NRBR of each pixel of the image is calculated, and the three-channel RGB
image is converted into a single-channel image. The pixel is identified as a cloud point
when the NRBR is less than 0.2, while the pixel is identified as clear sky when the NRBR is
greater than 0.2. The amount of cloud denoted by Cloudfraction can be obtained as follows:

Cloudfraction =
NCloud

NClear + NCloud
(2)
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where NClear is the number of clear sky pixels, and NCloud is the number of cloud pixels.
As shown in Figure 2c, which is the NRBR histogram of the cloud map, the sky is

cloudy, and its NRBR is a bimodal distribution. The left and right peaks represent cloud
and clear sky pixels, respectively, and the trough between the two peaks can be used as
the critical point to distinguish cloud from clear sky pixels. Figure 2d shows the cloud
detection result, and the corresponding calculated cloud cover value is 0.45.

3.1.3. Characteristics of Cloud Cover in the Yangbajing Region

Through statistical analysis of the cloud cover from 9:00 to 18:00 in 2020, the average
value of cloud cover is found to be 0.55. Table 1 shows that cloudy days with cloud cover
above 0.9 occur most frequently, accounting for 35.00%, followed by sunny days with cloud
cover below 0.1, accounting for 23.16%. Table 2 shows that the cloud cover in this area is
large in spring and summer, and the monthly average cloud cover reaches its peak in May,
which is 0.79. The cloud cover is small in autumn and winter, and the monthly average
reaches the minimum value of 0.12 in October, which is related to the melting of snow
and ice in spring and the seasonal variation in precipitation in this area. The cloud cover
fluctuates greatly in winter, and its standard deviation reaches a maximum in January and
a minimum in October. Generally, the proportion of cloudy days in this area is high, the
cloud cover is large, and the fluctuation of cloud cover is frequent, which leads to more
sudden changes in solar radiation and makes it difficult to predict the GHI.

Table 1. Distribution of the cloud fraction in the Yangbajing area in 2020.

[0, 0.1) [0.1, 0.2) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5) [0.5, 0.6) [0.6, 0.7) [0.7, 0.8) [0.8, 0.9) [0.9, 1]

Frequency 3885 1510 975 774 730 672 627 799 931 5872
Proportion

(%) 23.16 9.00 5.81 4.61 4.35 4.01 3.74 4.76 5.55 35.00

Table 2. Monthly variation of the cloud fraction in the Yangbajing area in 2020.

January February March April May June July August September October November December

Mean
value 0.56 0.49 0.64 0.72 0.79 0.66 0.78 0.63 0.55 0.12 0.29 0.28

Standard
deviation 0.41 0.39 0.37 0.32 0.31 0.31 0.28 0.36 0.36 0.19 0.39 0.38

3.2. RF Prediction Model

An RF is an ensemble learning method in machine learning. Each tree is composed of
a random subset of the original data obtained by resampling bootstrapping in the training
process [33]. Each tree is fitted with a set of randomly selected features. This randomization
method improves robustness and reduces the risk of overfitting [16]. Each decision tree is a
basic learner, the whole forest corresponds to ensemble learning, and the average predicted
value of all decision trees is the predicted result of the model.

3.2.1. Data Transformation and Feature Extraction

Because the units of GHI (X) and cloud cover (Y) are different, the first step is to
normalize the data to improve the training rate and reduce the possibility of local optimiza-
tion [34]. The second step is to convert the time series data into supervised learning data
suitable for machine learning through a sliding window, using a GHI history time step
Xt−1,Xt−2,Xt−3. . . . . . Xt−n and a cloud cover history time step Yt−1,Yt−2,Yt−3. . . . . . Yt−p as
input variables, and using a GHI future time step Xt+1,Xt+2,Xt+3. . . . . . Xt+m (m = 1, 2, 3, 4,
5, 6 h) as the output variables [35]. The specific steps are as follows: (1) Splitting the GHI
time series data into a training set, verification set and test set. (2) In advance, 1, 2, 3. . . . . . N
(n < N) time sequences of time steps are used as model input variables, and the model
default parameters are used to train in the training set and verify in the verification set to
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obtain the optimal number of input features (n), that is, the number of advance time steps
(n). (3) The same method is used to determine the optimal number of input features (p) of
cloud cover, that is, the number of advance time steps (p). Finally, the data are transformed
into supervised learning data with (n + p)-dimensional input variables and m-dimensional
output variables by reconstructing the data.

3.2.2. Parameter Tuning (Model Optimization)

Because of the characteristics of time series, the cross-validation method is not used
to adjust parameters; thus, a rolling origin prediction method is used in this experiment.
(1) The data set is split into a training set and test set, training is performed on the training
set, and the first step in the test set is predicted. (2) The measured value of the first step in
the test set is added to the training set, and the whole training set moves backward one
step to ensure that the sample size of the training set is unchanged. (3) The fitting model
is retrained based on the new training set, and the second step in the test set is predicted.
(4) This process is repeated for the entire test set. By continuously updating the prediction
origin and training set and generating predictions according to each origin, the rolling
prediction times are equal to the sample size of the test set, and multiple prediction errors
of the time series can be obtained to ensure the robustness of the model [36], realize the
cross-validation function, and solve the overfitting problem. Finally, the prediction results
are inversely normalized.

3.3. LSTM Prediction Model

LSTM is a type of RNN that is used to address the gradient disappearance problem that
an RNN may encounter in long-term series training. Using the concept of a human brain
neural network, each neuron is an information-processing unit. An LSTM unit consists
of an input gate, an output gate and a forgetting gate. The activation function and tensor
operation are used to adjust the incoming and outgoing information flow and choosing to
“forget” or “remember” the input information, short-term memory and long-term memory
to achieve a low error level [37].

LSTM can stack multiple hidden layers, and each hidden layer can contain multiple
LSTM units, which is more accurate than a single hidden layer [38]. In this study, the
TensorFlow + Keras DL library is adopted, and nine hidden layer neural networks are
adopted. The LSTM architecture is shown in Figure 3, and its construction process is as
follows: (1) Data are normalized. (2) Using the same data transformation method as the RF,
the original GHI and cloud cover time series data are reconstructed into multidimensional
data of (n + p)-dimensional input variables and m-dimensional output variables. (3) For
parameter adjustment (optimization), the input LSTM layer has (n + p)-dimensional input
vectors, and the output layer has 6 * m (m = 1, 2, 3, 4, 5, 6) neurons according to the
forecast horizon, the maximum number of neurons in the hidden layer is set to 220, the
number of neurons in all hidden layers is the same, all layers adopt a Rectified Linear
Unit activation function, the optimizer uses the Adaptive Moment Estimation random
optimization algorithm, the maximum training epoch is set to 200, and the batch parameter
is set to 55. By minimizing the RMSE on the verification set, the model hyperparameters,
such as the best-hidden layer neuron with a forecast horizon of 1–6 h and the training
epoch, are adjusted via grid search. Because the characteristics of time series data are not
cross-validated and the model will randomly initialize weights, each set of parameters is
run 30 times, and the average value of the operation results is used to evaluate the model.
In addition, a dropout layer is used after each hidden layer, the dropout rate is set to 0.1,
and the weight is randomly returned to zero to randomly ignore the neurons and their
connections in the hidden layer [39]. The above methods can effectively avoid the model
overfitting problem, make the model more robust, and improve the generalization of the
model. (4) The results are inversely normalized.
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Figure 3. LSTM model architecture for predicting GHI. First, GHI quality control (singularity
detection and resampling) is carried out, and cloud detection (NRBR) is carried out on ground-
based cloud images. Then, the converted historical time series data of n-dimensional GHI and
p-dimensional cloud cover are input to the LSTM input layer. After several hidden layers and a fully
connected layer, the output layer outputs the predicted m-step GHI value.

3.4. Evaluation Index

The root mean square error (RMSE) is more sensitive to large deviations between
predicted values and measured values. Therefore, when a set of predicted values contains
multiple large errors, the RMSE is more suitable for model evaluation than other indicators,
which is usually the case for solar radiation prediction, and the RMSE is dominant in the
fields of prediction, statistics, econometrics and meteorology [40]. Therefore, the RMSE and
normalized root mean square error (NRMSE) are used to evaluate the performance of the
model in this study, and the RMSE and NRMSE are calculated according to:

RMSE =

√√√√ 1
N

N

∑
t=1

(yt − ŷt)
2 (3)

NRMSE =
RMSE

yt
× 100 (4)

where yt, ŷt, and yt are the measured, predicted and measured mean values of the GHI at
time t, respectively, and N is the number of samples in the data set. The smaller the RMSE
and NRMSE, the higher the model accuracy.

4. Results
4.1. Model Input Feature Analysis

In this study, the historical time series of the GHI and cloud cover are taken as the
model input variables, and the number of input features, that is, the number of advance
time steps, is very important. Exploring the number of advance time steps required by
different models under different forecast horizons can provide a reference for building GHI
prediction models based on machine learning. In this study, the number of input features
selected is the number of advance time steps when selecting the minimum RMSE value. As
shown in Table 3 and Figure 4, the number of GHI input features gradually decreases with
the increasing forecast horizon, which gradually increases from 1 h to 6 h, the RF model
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gradually decreases from 44 to 1, and the LSTM model gradually decreases from 45 to 7.
There is no similar law in the number of input features of cloud cover, but it is most often
equal to 1, which indicates that the cloud cover one step ahead (10 min ahead) is crucial to
the irradiance prediction, that is, the latest input value of cloud cover is the best index of
the future value of irradiance [41]. In addition, when the same input variables are in the
same forecast horizon, the number of LSTM model input features is larger than that of the
RF, which indicates that the LSTM model needs more dimensional data to train and fit the
model compared with the RF.

Table 3. Number of model input features.

Forecast Horizon 1 h 2 h 3 h 4 h 5 h 6 h

GHI
RF 44 7 6 2 1 1

LSTM 45 19 16 10 8 7

Cloud fraction
RF 2 1 1 1 1 1

LSTM 17 4 1 5 1 2

Figure 4. Number of model input features.

4.2. Analysis of the Forecast Horizon and Step Size

Previous studies have shown that a difference in the prediction step size will affect the
accuracy of the model [42]. Therefore, this study designed comparative experiments with
different prediction step sizes. The data are resampled to the one-hour average value, and
the prediction results are compared with the prediction step size of 10 min to explore the
influence of the step size on the model. The prediction step size changes from 10 min to 1 h,
and the sample size changes to 1/6 of the original. The sample size of the training set is
the decisive variable of the model generalization ability, and the sample size will affect the
learning and training effect of the model. Therefore, the data from August to December
are selected for the experiment, with the data from August to November selected as the
training set, and the data from December selected as the test set, to ensure that the sample
sizes of the two experiments are close.

Tables 4 and 5 and Figure 5 show that when the prediction step size is 10 min and
the forecast horizon is gradually increased from 1 h to 6 h, the RMSE of the RF model
gradually increases from 31.84 W/m2 to 79.85 W/m2, and the NRMSE gradually increases
from 6.07% to 15.98%. The RMSE of the LSTM model increased gradually from 26.56 W/m2
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to 80.19 W/m2, and the NRMSE increased gradually from 5.05% to 15.84%. When the
prediction step size was 1 h and the forecast horizon increased gradually from 1 h to 6 h,
the RMSE of the RF model increased gradually from 58.95 W/m2 to 85.35 W/m2, and
the NRMSE increased gradually from 12.46% to 18.19%. The RMSE of the LSTM model
increased gradually from 60.18 W/m2 to 116.58 W/m2, and the NRMSE increased gradually
from 12.73% to 24.91%. With the increase in the forecast horizon, the errors of the RF and
LSTM models gradually increased under both prediction step sizes [16], possibly because
more meteorological information was lost in the longer forecast horizon [43], and the sky
may have changed greatly, especially in cloudy weather [27].

Table 4. Comparison of the model RMSE with different forecast horizons and step sizes. The
amplitude change reflects how much the RMSE changes when the prediction step size changes from
1 h to 10 min, and the best performance of the index is marked in bold font.

RF LSTM

Step Size = 1 h
(W/m2)

Step Size = 10 min
(W/m2)

Amplitude Change
(%)

Step Size = 1 h
(W/m2)

Step Size = 10 min
(W/m2)

Amplitude Change
(%)

1 h 58.95 31.84 45.99 60.18 26.56 55.87
2 h 65.03 43.95 32.42 73.17 42.89 41.38
3 h 69.76 54.93 21.26 86.02 53.58 37.71
4 h 77.46 62.99 18.68 90.53 67.68 25.24
5 h 81.72 71.25 12.81 101.01 70.79 29.92
6 h 85.35 79.85 6.44 116.58 80.19 31.21

Table 5. NRMSE comparison of the model with and without cloud cover input variables. No cloud
and add cloud represent the situation of no cloud cover input and cloud cover input, respectively, and
the amplitude change reflects the change in the NRMSE after adding the cloud cover input variable.
The best performance of the index is marked in bold font.

Step Size = 10 min Step Size = 1 h

RF LSTM RF LSTM

No
Cloud

(%)

Add
Cloud

(%)

Amplitude
Change

(%)

No
Cloud

(%)

Add
Cloud

(%)

Amplitude
Change

(%)

No
Cloud

(%)

Add
Cloud

(%)

Amplitude
Change

(%)

No
Cloud

(%)

Add
Cloud

(%)

Amplitude
Change

(%)

1 h 7.80 6.07 22.18 6.81 5.05 25.84 15.58 12.46 20.03 16.43 12.73 22.52
2 h 9.05 8.42 6.96 9.90 8.20 17.17 15.65 13.80 11.82 19.09 15.45 19.07
3 h 11.29 10.60 6.11 12.36 10.27 16.91 15.89 14.92 6.10 21.70 18.50 14.75
4 h 13.99 12.36 11.65 14.13 13.11 7.22 17.91 16.61 7.26 22.08 19.19 13.09
5 h 16.46 14.16 13.97 15.27 13.87 9.17 18.77 17.57 6.39 22.29 21.34 4.26
6 h 17.85 15.98 10.48 16.68 15.84 5.04 19.41 18.19 6.29 25.10 24.91 0.76

It can be seen from Table 4 that under the same forecast horizon, the accuracy of the RF
and LSTM models with a prediction step size of 10 min is higher than that with a prediction
step size of 1 h. From the broken line of the RMSE amplitude change in Figure 5, it can
be seen that the forecast horizon gradually increases from 1 h to 6 h, and the RMSE of
the RF model decreases by 45.99%, 32.42%, 21.26%, 18.68%, 12.81% and 6.44% compared
with 1 h when the prediction step size is 10 min. The LSTM model decreases by 55.87%,
41.38%, 37.71%, 25.24%, 29.92% and 31.21%, respectively. This shows that the shorter the
prediction step size of the data, that is, the higher the time sampling frequency, the higher
the prediction accuracy of the model will be [44]. This may be because a higher sampling
frequency and time resolution can obtain a more accurate and representative average value,
as the changes of solar irradiance caused by clouds are more likely to be captured [45].
Moreover, the shorter the forecast horizon, the greater the performance improvement will
be. Under the same circumstances, the improvement of the LSTM model is greater than
that of the RF model. The accuracy of different models under different prediction step sizes
is also different. Under a 1-h prediction step size, the accuracy of the RF model is higher
than that of the LSTM model, and the performance gap becomes larger with the increasing



Remote Sens. 2023, 15, 2340 11 of 17

forecast horizon. The accuracy of the LSTM model is higher than that of the RF model in
most cases under the prediction step size of 10 min, which shows that the LSTM model is
more suitable for data with a high time resolution. This is because neural networks can
better deal with complex nonlinear problems and can better reflect the rapidly changing
sky conditions [28].

Figure 5. Comparison of the model RMSE with different forecast horizons and step sizes. The red
and blue broken lines show the RMSE amplitude change in the RF and LSTM models, respectively,
when the prediction step size changes from 1 h to 10 min.

The above results show that the difference in forecast horizon and step size has
different influences on different models; thus, the model should be selected according to
the data resolution, forecast horizon and accuracy requirements.

4.3. Influence of Cloud Cover on Model Accuracy

Clouds are the most important atmospheric phenomenon affecting GHI [43]. Using the
cloud cover as the model input variable can improve the prediction accuracy, but there are
few quantitative studies on the level of improvement. Therefore, the control experiments
with or without cloud cover time series as the model input variable show that the model
parameters remain unchanged.

As shown in Table 5 and Figure 6, the model performance is greatly improved by
adding cloud cover time series as input variables. When the prediction step size is 10 min,
the forecast horizon gradually increases from 1 h to 6 h, and the NRMSE of the RF model
decreases by 22.18%, 6.96%, 6.11%, 11.65%, 13.97% and 10.48%, respectively, and that of
the LSTM model decreases by 25.84%, 17.17%, 16.91%, 7.22%, 9.17% and 5.04%. When the
prediction step size is 1 h, the NRMSE of the RF model decreases by 20.03%, 11.82%, 6.1%,
7.26%, 6.39% and 6.29%, and that of the LSTM model decreases by 22.52%, 19.07%, 14.75%,
13.09%, 4.26% and 0.76%. In particular, when the forecast horizon is 1 h, the NRMSE of
the two models decreases by more than 20% under the different prediction step sizes. In
addition, although the forecast horizon is 2 h, the improvement in the model performance
of the RF model under a 10-min step size is greater than that under a 1-h step size.
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Figure 6. NRMSE comparison of the model with and without cloud cover input variables. (a) RF
model and prediction step size = 10 min; (b) LSTM model and prediction step size = 10 min; (c) RF
model and prediction step size = 1 h; (d) LSTM model and prediction step size = 1 h. The red
broken line is the amplitude change of the NRMSE of the model when the cloud cover input variable
is added.

The above results show that the accuracy of the model can be improved by adding
cloud cover, and the maximum improvement is the forecast horizon of 1 h; as shown in
Figure 7, the prediction step size is 10 min, the forecast horizon is 1 h, and the R-squared
of both models is above 0.95, indicating a high degree of fit. This influence will gradually
change with the change in the forecast horizon. Figure 8 shows that from 12:10 to 14:00, the
cloud cover gradually increases from 0.18 to 1, and the GHI changes abruptly. In Figure 8a,
the forecast horizon is 1 h compared with the light red curve, the dark red curve is obviously
closer to the gray measured curve, and the changing trend is more similar to the measured
value, which can more accurately reflect the sudden change in GHI (capture the GHI trend).
Even if the appearance of clouds changes greatly, cloud cover can accurately reflect the
influence of its change on solar radiation. At this time, adding cloud cover as an RF model
input variable can significantly improve the model accuracy. In Figure 8b, the forecast
horizon is 5 h, and the dark red curve and light red curve are close, which are obviously far
away from the gray measured curves. Both models cannot accurately predict when the GHI
fluctuates greatly, which shows that the cloud cover can no longer accurately reflect the
influence of its change on GHI at this time, and adding cloud cover as an RF model input
variable can no longer significantly improve the accuracy of the model. The conclusion of
the LSTM model is the same as that of the RF model. Figure 9 is a scatter diagram of the
measured values and the predicted values of the model on the same day. Figure 9a,b show
the forecast horizon of the RF model for 1 h and 5 h, respectively, and Figure 9c,d show the
forecast horizon of the LSTM model for 1 h and 5 h, respectively. Figure 9a,b show that
the coefficient of determination (R-squared) is the largest when the cloud cover is used as
the RF model input variable and the forecast horizon is 1 h, reaching 0.939, and the fitting
degree of the model is the highest. Figure 9c,d show that the coefficient of determination
(R-squared) is the largest when the cloud cover is used as the LSTM model input variable
and the forecast horizon is 1 h, reaching 0.961, and the fitting degree of the model is the
highest. Both models show that a forecast horizon of 1 h and adding cloud cover as an
input variable can significantly improve the model accuracy compared to a forecast horizon
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of 5 h and the model unable to identify the abrupt radiation change caused by cloud cover.
Therefore, taking cloud cover as the model input variable is suitable for predicting scenes
with a duration of less than 4 h.

Figure 7. The scatter plot of the predicted value (vertical axis) and measured value (horizontal axis) of
GHI when the prediction step size is 10 min, the forecast horizon is 1 h, and the cloud cover is added
as the input variable of the model. (a) RF model; (b) LSTM model. The red line is the fitting regression
line of the predicted values and measured values, R-squared is the coefficient of determination, and
the color on the color bar represents the frequency of each pair.

Figure 8. Time series diagram of the measured irradiance value and predicted irradiance value
(27 December 2020). (a) Forecast horizon = 1 h; (b) Forecast horizon = 5 h. The gray (measured) curve
is the measured value, the dark red (RF-Cloud) and light red (RF-Cloudless) curves are the prediction
curves with and without clouds as the RF model input variables. The dark blue (LSTM-Cloud) and
light blue (LSTM-Cloudless) curves are the prediction curves with and without clouds as the LSTM
model input variables.
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Figure 9. Scatter diagram of the measured GHI value and predicted GHI value (27 December 2020).
(a) RF and forecast horizon = 1 h; (b) RF and forecast horizon = 5 h; (c) LSTM and forecast horizon = 1 h;
(d) LSTM and forecast horizon = 5 h. The red and blue lines are the fitting regression lines of the
predicted values and measured values with or without cloud cover as the model input variable,
respectively, in which R-squared is the coefficient of determination.

5. Discussion

This study shows that adding cloud cover time series as model input variables can
greatly improve the accuracy of GHI prediction, which shows that solar irradiance pre-
diction should not only rely on data-driven machine learning and DL models but also be
considered from the perspective of physics. Clouds are the most important atmospheric
phenomena affecting solar radiation, and clouds can affect solar radiation through cloud
cover. Therefore, the ground-based cloud image is combined with machine learning and
DL, and the cloud cover time series data obtained from cloud detection are taken as the
input variable of the model. By introducing a physics-based prediction model, the con-
tribution of cloud cover is distinguished, and the influence of cloud cover on the model
accuracy is quantitatively studied, which improves the interpretability of the model and
proves the importance and practicability of incorporating physics into the model in im-
proving the prediction accuracy. In practical application, it is difficult to obtain a large
number of ground-based cloud images and GHI data. In order to reduce the difficulty in



Remote Sens. 2023, 15, 2340 15 of 17

practical application, this study selects one month of GHI and ground-based cloud images
for experiments, but the difference in sample size will affect the prediction accuracy of the
model and then affect the research results. For example, from Table 2, it can be seen that
the monthly average of cloud cover is larger in spring and summer, both above 0.6, while it
is smaller in autumn and winter, and the fluctuation of cloud cover is different in different
months. Generally speaking, the greater the cloud cover, the greater the fluctuation, and the
difficulty of model prediction increases. Therefore, choosing the data of different months
as the training set of the model for learning and fitting, the prediction accuracy is different.
In view of the possible impact of sample size differences on the research results, this study
also uses the data from other months for the same experiment and obtains similar results,
which verifies the effectiveness and universality of the proposed method.

One of the key points of this study is to take the ground-based visible cloud image as
the input variable of the model, with the traditional NRBR threshold method adopted for
cloud detection. This method is not sufficiently accurate to identify thin clouds and different
types of clouds; various types of clouds have different influences on solar radiation [46].
Therefore, future work will focus on the accurate identification of different types of clouds,
giving weights according to their respective physical characteristics and further improving
the prediction accuracy. At the same time, in the preprocessing of cloud images, the
background of ground objects and shading balls that may cause cloud detection errors
are simply deducted, which will remove real information on cloud images. In the future,
we can consider image restoration to reduce errors. In addition, the aerosol is also an
important factor affecting irradiance. Because the aerosol content in the Qinghai-Tibet
Plateau is small, the influence of aerosol is not considered in this study. The aerosol content
in low altitude areas is large, so aerosol optical depth and other data can be input into the
model constructed by this study to further reduce the uncertainty of GHI prediction.

6. Conclusions

In this study, a short-term prediction GHI model based on machine learning is explored.
The model is based on RF and LSTM algorithms and takes the GHI and cloud cover time
series data as input variables to predict the GHI over the subsequent 1–6 h, which is
verified using monitoring data in the Yangbajing area of the Qinghai-Tibet Plateau. The
experimental results show that cloud cover is the main factor affecting solar radiation
reaching the surface, and the prediction accuracy of the model can be greatly improved by
adding cloud cover time series as an input variable. When the forecast horizon is 1 h, the
NRMSE of the RF and LSTM models decreases by more than 20% compared with that of the
model without the cloud cover input variable. However, when the forecast horizon exceeds
4 h, the cloud cover can no longer accurately reflect the influence of its change on GHI. At
this time, adding cloud cover as an input variable can no longer significantly improve the
accuracy of the model, so the input cloud cover variable is suitable for a forecast horizon
within 4 h. At the same time, a comparative experiment shows that the prediction step size
has a great influence on the model accuracy. When the forecast horizon is 1 h, the RMSE of
the RF and LSTM models decreases by 45.99% and 55.87%, respectively, under a 10-min
prediction step size compared with that under a 1-h step size, and different models are
also affected by the prediction step size under different forecast horizons. In addition, the
number of input features of input variables, that is, the number of advance time steps, is
critical to the prediction accuracy of the model. Determining the number of input features
of different models under different forecast horizons can provide a reference for building
high-precision prediction models.

Through this study, it is verified that RF and LSTM machine learning algorithms are
feasible for building a short-term GHI prediction model in the Tibet area. By adding cloud
cover input variables as well as selecting high-time resolution data and an appropriate
number of input features, the model error can be greatly reduced, which provides a new
method with high precision for solar power generation and GHI prediction.
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