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Abstract: By sampling perturbed state vectors from each ensemble forecast at additional time levels
shifted by ±τ (where τ is a selected time interval) from the analysis time, time-expanded sampling
(TES) can not only sample timing errors (or phase errors) but also triple the analysis ensemble
size for covariance construction without increasing the forecast ensemble size. In this study, TES
was applied to the convection-allowing ensemble-based warn-on-forecast system (WoFS), for four
severe storm events, to reduce the computational costs that constrain real-time applications in the
assimilation of remote-sensing data from radars and the geostationary satellite GOES-16. For each
event, TES was implemented against a 36-member control experiment (E36) by reducing the forecast
ensemble size to 12 but tripling the analysis ensemble size to 12 × 3 = 36 with τ = 2.5 min, 5 min and
7.5 min in three TES experiments, named E12×3τ2.5, E12×3τ5 and E12×3τ7.5, respectively. A 0–6-h
forecast was created hourly after the second hour during the assimilation in each experiment. The
assimilation statistics were evaluated for each experiment applied to each event and were found to
be little affected by the TES, while reducing the computational cost. The forecasts produced in each
experiment were verified against multi-sensor observed/estimated rainfall, reported tornadoes and
damaging winds for each event. The verifications indicated that the forecasts produced in the three
TES experiments had about the same capability and quality as that in the E36 for predicting hourly
rainfall and the probabilities of tornadoes and damaging winds; in addition, the predictive capability
and quality were not sensitive to τ, although they were slightly enhanced by selecting τ = 7.5 min.
These results suggest that TES is attractive and useful for cost-saving real-time applications of WoFS
in the assimilation of remote-sensing data and the generation of short-term severe-weather forecasts.

Keywords: remote-sensing data assimilation; ensemble analysis and prediction; thunderstorm

1. Introduction

Increasing the lead times for tornado, hail, damaging-wind and flash-flood warnings
to reduce loss of life, injury and the economic costs of high-impact weather is a key goal
in the building of a weather-ready nation [1]. Toward this goal, a convection-allowing
warn-on-forecast system (WoFS) was envisioned and developed [2–5] as a probabilistic
convective-scale ensemble analysis and forecast system that assimilates remote-sensing
data from radars and the geostationary satellite GOES-16 (with all the available in situ
observations) into a high-resolution convection-resolving model ensemble. However, be-
cause ensemble forecasts at convective scales are limited by the quick turnaround times and
frequent updates required by forecasters and severe-weather-emergency managers, real-
time applications of WoFS are constrained and challenged by the available computational
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resources and costs, although the WoFS has been successfully implemented in real-time
settings for pre-operational applications [6–9]. Thus, there is an important question as to
how to improve the efficiency of real-time WoFS implementations.

To address this issue, the time-expanded sampling (TES) approach proposed by Xu
et al. [10,11] was applied to the WoFS in this study to reduce the computational cost of
ensemble Kalman filter (EnKF) in the assimilation of remote-sensing data from radars and
the geostationary satellite GOES-16, cycled every T = 15 min over a regional domain, to
generate short-term (0–6 h) forecasts for high-impact weather events. As explained by Xu
et al. [10,11], the idea behind the TES technique was inspired by the often-observed fact
that model-predicted weather systems, especially severe thunderstorms, usually develop
and/or propagate either faster or slower than those observed in the real atmosphere.
Therefore, the predicted field at a time level before or after the analysis time may better
represent the true state than the level at the analysis time itself. The difference between the
predicted fields sampled before or after the analysis time and that sampled at the analysis
time may represent, to a certain extent, the model’s forecast errors in both the intensity
and the location of the predicted weather system. By sampling perturbed state vectors
from each ensemble forecast at additional time levels shifted, for instance, by ±τ, from
the analysis time, TES can not only sample timing and/or phase errors but also triple the
analysis ensemble size for covariance construction without increasing the ensemble size in
forecast updates. Because TES shifts the ensemble forecast members valid at different times
to the analysis time, the method was also called the valid-time-shifting method (VTS) in
some recent studies [12–14], but this paper still uses the name of TES originally proposed
by Xu et al. [10,11].

Although TES was shown to be useful and effective for EnKF assimilations of simu-
lated radar observations [11], real radar observations over mesoscale and synoptic-scale
domains [14–16], the method has not been applied to an EnKF for the assimilation of
remote-sensing data from both radars and the geostationary satellite GOES-16 for short-
term (0–6 h) forecasts of severe storms. Therefore, the aim in this paper is to apply TES
to the WoFS for four severe storm events that occurred in the southern and/or central
US on 28 April and 17, 23 and 26 May in 2021, respectively. These severe storm events
were chosen due to the wide array of convective scales present and multiple instances of
high-impact weather, including tornadoes, in addition to large hail and damaging winds.

As the first application of TES to WoFS, this study intends to answer the follow-
ing practically important questions: (i) Under various severe-weather conditions, how
successfully can TES be applied to WoFS in improving computational efficiency without
compromising the quality of analysis and subsequent short-term prediction of high-impact
weather? (ii) With a wide range of severe-weather scenarios to capture, is there an optimal
sampling-time interval τ that leads to better analyses and subsequent predictions? If yes,
how sensitive are the quality of the analyses and subsequent predictions to τ (specified
between T/6 and T/2 where T = 15 min is the aforementioned assimilation cycle time win-
dow)? To answer these questions, we compare analyses with TES versus those without TES
and further examine the effects of TES on short-term forecasts launched during continuous
EnKF cycling. In addition, by studying and understanding the sensitivities of the analysis
and forecast performances to the sampling-time interval τ, useful insights and/or guidance
may be obtained for potential future real-time applications of TES to the WoFS.

The next section describes the WoFS configuration, its rapid-cycling EnKF and the
observations presented in this study. Section 3 overviews the four severe storm events,
describes TES and presents the design of the assimilation experiments. Section 4 presents
and examines the experiment results and provides qualitative and quantitative comparisons
between the assimilation experiments with and without TES. The conclusions follow in
Section 5.
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2. WoFS and GSI-Based Rapid-Cycling EnKF

The WoFS is an on-demand ensemble data-assimilation and -forecasting system de-
signed to generate short-term (0–6 h) numerical weather-forecast products for providing
decision makers or local emergency-management personnel with guidance regarding haz-
ardous weather events, such as tornadoes, damaging winds, large hail and flash flooding.
The current WoFS uses a customized advanced research weather research and forecasting
model (WRF-ARW) based on version 3.9.1 [17], coupled with a community gridpoint
statistical interpolation (GSI)-based EnKF system [18]. The WoFS assimilates conventional
radar reflectivity and radial velocity, satellite cloud water path [19] and GOES-16 advanced
baseline imager radiance [8] on a relocatable regional domain with a 3pkm horizontal
resolution and 51 vertical levels. Most of the conventional observations (temperature,
dewpoint, winds, pressure from surface instruments, aircraft and radiosondes) are con-
tained in hourly prepbufr files and assimilated into the WoFS when available using a
15-min time lag. Oklahoma Mesonet data [20] are also assimilated every 15 min in each
cycle to complement other conventional observations in the prepbufr file if the model
domain includes Oklahoma. The GSI includes the community radiative transfer model as a
forward-observation operator that translates model’s state variables into simulated satellite
radiances for comparison with observations [21].

All the observations were assimilated with flow-dependent error covariances gener-
ated by the EnKF data-assimilation scheme proposed by Whitaker et al. [22] and all the
model variables were updated in each assimilation cycle. The ensemble spread (defined
by the standard deviation of ensemble members from their mean) was maintained by
applying different sets of model boundary-layer physics and radiation schemes to each
member (see Table 3 in [5]). Horizontal and vertical localizations (for removing spurious
long-range correlations caused by inevitable under-sampling in the EnKF) were applied
by using the Gaspari-and-Cohn method [23] and were varied as functions of observation
type. The conventional observations had the longest (60 km) localization length, while
high-density radar data had the shortest (18 km) localization. The radar-reflectivity ob-
servations were multi-radar multi-sensor (MRMS) products generated from the WSR-88D
Doppler radar network [24,25]. The negative reflectivity values were set to zero during
the MRMS preprocessing phase and the data were further thinned to a 5-km resolution.
Reflectivity values between 0 and 15 dBZ were not assimilated to provide a buffer between
precipitation and nonprecipitation (defined as 0 dBZ) regions. Radial-velocity observations
were created using the raw level-II WSR-88D data, which were dealiazed, followed by
objective analysis at a 5-km resolution. Only radial-velocity observations within 150 km
of a particular radar that lay near or within the domain were used. Radar-reflectivity
and radial-velocity observations were assimilated every 15 min, although their original
temporal resolutions were mostly about 5 min.

For the conventional observations (temperature, dewpoint, winds and pressure,
mainly from the Oklahoma Mesonet), radar reflectivity, radial-velocity and cloud wa-
ter path (CWP) observations, the specified observation-error standard deviations and
localization radii and depths are listed in Table 1. Among the three water-vapor channels
of GOES-16, only clear-sky-brightness temperature observations from two channels at
6.2-micron and 7.3-micron wavelengths, denoted as BT62c and BT73c, respectively, are
presented in this paper. Although all the original data in these channels were sampled
every 5 min at a 2-km horizontal resolution, the BT62c and BT73c data were thinned to a
15-km resolution to reduce the impact of spatial correlation and assimilated every 15 min.
These water-vapor channels were sensitive to low-level water-vapor content in clear-sky
regions; their weighting functions peaked at 625 hPa, assuming a standard atmosphere.
The observation-error standard deviations and localization radii and depths specified for
the BT62c and BT73c are also listed in Table 1.
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Table 1. List of observation-error standard deviations and localization radii and depths, where p (or
po) denotes the vertical level of pressure at correlated grid (or observation) point.

Observation Error Standard
Deviation

Localization Radius
(km)

Localization Depth
ln(po/p)

Temperature 1.0 (◦K) 60 0.85

Dewpoint 1.0 (◦K) 60 0.85

U wind 1.0 (m/s) 60–100 0.85

V wind 1.0 (m/s) 60–100 0.85

Pressure 0.75 (hPa) 60 0.85

Reflectivity 5.0–7.0 (dBZ) 18 0.8

Radial velocity 3.0 (m/s) 18 0.8

CWP 0.025–0.2 (kg/m2) 36 0.9

BT62c 1.25 (◦K) 36 4.0

BT73c 1.75 (◦K) 36 4.0

The EnKF used in this paper with the WoFS was cycled every T = 15 min, beginning at
1500 UTC and ending at 0300 UTC the next day (Figure 1a). A 6-h forecast was created at
the top of each hour, starting from 1700 UTC, during the continuous EnKF cycling. Initial
(or boundary) conditions were provided by an experimental 36-member HRRR ensemble
(HRRRE [26]) using 1-h forecasts from the 1400 UTC analysis (or forecasts generated
from the first nine members of the 1200 UTC cycle). For all the four severe storm events
considered in this study, the WoFS regional domain had 300 × 300 grid points with a 3-km
grid resolution. All the ensemble members used the two-moment NSSL variable-density
cloud-microphysics scheme [27]. During each cycle, the temperature, humidity, 3D winds,
surface pressure, diabatic heating and hydrometeor variables were updated.
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3. Event Overviews and Experiment Design
3.1. Event Overviews

Four severe storm events, which occurred in April and May 2021, were selected to
analyze the impact and effectiveness of time-expanded sampling. All these four events had
multiple instances of high-impact weather, including tornadoes, in addition to large hails
and damaging winds. Beyond this common link, the atmospheric characteristics varied
substantially among the four cases.

3.1.1. Event on 28 April 2021

During the afternoon and evening of 28 April 2021, a dryline formed and combined
with ample moisture, instability and shear in the atmosphere to create several rounds
of storms across several counties in southwestern Texas. These storms moved eastward
towards the Interstate 35 corridor through the late evening. Some of these storms pro-
duced very large hail, damaging winds and an isolated tornado near San Antonio, Texas
(Figure 2a). The main storm, along with a secondary storm behind it, produced hail be-
tween 1.5 inches and 3 inches in diameter near Uvalde County. As the two storms entered
Medina County, they merged and a large supercell formed. This strong supercell continued
across Medina County and produced multiple incidences of giant hail (with reported diam-
eters over 5 inches), a large swath of straight-line wind damage, with winds up to 110 mph
and an embedded EF-1 tornado southeast of Hondo Texas (inside Medina County). A
6.4-inch-diameter hailstone was also confirmed as having occurred in Hondo, establishing
a record for the largest hailstone in the state of Texas.

3.1.2. Event on 17 May 2021

Around noon on 17 May 2021, an outbreak of severe storms threatened more than
33 million people in the southern Plains. The SPC highlighted parts of western Texas
as being under a Level-4 risk of severe weather, including Abilene and Lubbock. Early
in the afternoon, scattered thunderstorms rapidly developed over portions of western
Texas, eastern New Mexico and Colorado near a dryline. These storms, including several
supercells, were responsible for the large hail, tornadoes that occurred in eastern New
Mexico and Texas Panhandle (Figure 2b). These supercell thunderstorms evolved into a line
of storms moving eastward across a significant portion of Oklahoma and northern Texas.

3.1.3. Event on 23 May 2021

May 24 2021 was a day on which several tornadoes touched down in western Kansas
(Figure 2c). A cold front had moved to the area on 23 May and was stalled across western
Kansas on May 24. Around 3 pm (central time) in the afternoon, storms began to form
along and just north of the cold front. Four of them quickly became tornadic, eventually
producing tornadoes across Wallace, Logan, Thomas and Sheridan Counties, KS [28]. The
most severe storm caused high-end EF-1 damage, with estimated wind speeds reaching
approximately 110 mph in Selden KS.

3.1.4. Event on 26 May 2021

On 26 May 2021, an upper-level storm system, initially over the southwestern United
States, approached the Nebraska and Kansas areas and sent various disturbances across
these regions. With ample moisture, instability and increased wind shear, thunderstorms
initiated along a dryline and progressed towards the northeast and east. A couple of the
storms evolved into supercells, resulting in several reported tornadoes west of Nebraska
and Kansas border and central area of Kansas (Figure 2d).
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3.2. Description of TES and Experiment Design

The TES populates ensemble members by incorporating forecasts sampled at time
levels neighboring the analysis time into the ensemble. Typically, the sampling-time levels
centered at the jth analysis time (tj) are t = tj + mτ for m = 0, ±1, ±2, . . . ± M, where τ

denotes the sampling-time interval [10,11]. The ensemble size can be increased by a factor
of 2M + 1, from N = Ns to N = Ns(2M + 1). When M = 0, the TES reduces to the conventional
EnKF approach, with only Ns ensembles updated at each analysis time. According to
previous studies [10,11], M can be simply set to 1 (as shown in Figure 1b) and the sampling-
time interval τ should be selected to ensure 0 < 2Mτ ≤ 2T, so τ should be between 0 and T
for M = 1, where T (=15 min in this study) is the assimilation-cycle-time window. Ideally, τ
should be selected optimally and adaptively, according to the spatial and temporal scales
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of the main weather system covered and resolved by the model and observing system.
Results for optimization of τ were obtained from idealized experiments with simulated
radar observations in [11]. According to these results, properly selecting τ can further, but
only slightly, improve the ensemble analyses and subsequent forecasts and, further, the
improvements are not sensitive to τ as long as τ is specified in a properly confined range
near and around T/2 for M = 1. We tested the sensitivity of the WoFS performance to τ in
the four real-data cases of severe storms.

For each severe storm event overviewed in Section 3.1, four experiments were designed
and performed in this study. As listed in Table 2, the first experiment, named E36, used
the same baseline configuration as that described for the WoFS in Section 2, which had
36 ensemble members in EnKF-data-assimilation updating runs and 18 members in forecast
runs. The remaining three experiments, named E12×3τ2.5, E12×3τ5 and E12×3τ7.5,
focused on the cost-saving feature of TES by reducing the ensemble size from 36 to 12 (see
Table 2) in WoFS EnKF-data-assimilation updating runs with τ set to 2.5, 5 and 7.5 min,
respectively, while also reducing the ensemble size in forecast runs to 12.

Table 2. Experiment configurations.

Experiment Name Description

E36 Ns = 36 and M = 0 without TES

E12×3τ2.5 Ns = 12 and M = 1 with TES and τ = 2.5 min

E12×3τ5 Ns = 12 and M = 1 with TES and τ = 5 min

E12×3τ7.5 Ns = 12 and M = 1 with TES and τ = 7.5 min

4. Experiment Results and Comparisons
4.1. Assimilation Statistics

The number of assimilated BT62c (or BT73c) observations depends on the cloud-free
areas within the analysis domain, while the number of reflectivity observations relies on
the areas of convective precipitation present within the analysis domain. For the 28 April
2021 severe storm event, the number of assimilated BT62c (or reflectivity) observations was
plotted as a function of time throughout the entire assimilation window (49 assimilation
cycles from 1500 UTC to 0300 UTC the next day) in Figure 3a,b. The number of assimilated
BT73c observations was very similar to that of the BT62c.
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Figure 3. (a) Number of BT62c observations plotted by the red curve as a function of time over the
entire assimilation window (49 assimilation cycles from 1500 UTC to 0300 UTC next day) for the
event on 28 April 2021. (b) As in (a), but for number of reflectivity observations.

As shown in Figure 3a, the number of assimilated BT62c observations gradually
decreased over the time period from 1500 to 2330 UTC. This was due to the decrease in the
clear-sky area in the analysis domain during this period, as the dryline moved eastward,



Remote Sens. 2023, 15, 2358 8 of 25

with more high-cloud covered areas behind the dryline moving into the domain from the
western boundary and new convection developing along and to the east of the dryline
inside the domain. Subsequently, the number of BT62c observations increased slightly, as
some cloudy areas moved out of the analysis domain from the eastern boundary.

As illustrated in Figure 3b, the number of assimilated reflectivity observations gradu-
ally decreased over the time period from 1500 to 2000 UTC. This was due to the decrease
in the precipitation area in the analysis domain during this period, as a major convec-
tive precipitation area moved northeastward, out of the analysis domain. Subsequently,
the number of reflectivity observations increased, again as new convective precipitation
developed along and to the east of the dryline inside the domain.

For a given type of observation, we denote the mth observation as ym and the ob-
servation operator that maps the model state vector x to ym as Hm(x). We then define
and denote the mean innovation (or BIAS) and the root-mean-square innovation (RMSI),
respectively, as

BIAS: d ≡ ∑mdm/M

and
RMSI: D ≡ (∑mdm

2/M)1/2, (1)

where dm ≡ ym − Hm(x) is the innovation from ym, x is the state vector of the ensemble
mean and ∑m denotes the summation over the integer m from 1 to M—the number of
assimilated observations of the given type. With x given by the prior (forecast) or posterior
(analysis) ensemble mean in the definition of dm, the prior (or posterior) BIAS and RMSI
are calculated for each type of remote-sensing data immediately before or after the analysis
time in each assimilation cycle. The calculated BIAS (or RMSI) formed a zig-zag function of
time (from 1500 UTC to 0300 UTC the next day) as it reduced from a prior to a subsequent
value immediately after the analysis in each assimilation cycle, before increasing to a prior
value during the next assimilation cycle.

As examples, the BIAS and RMSI calculated from E36 (or E12×3τ7.5) for the event on
28 April 2021 are plotted by the red and blue zig-zag curves for the BT62c in Figure 4a,b,
respectively and for the reflectivity in Figure 4c,d, respectively. The two curves from E36
and E12×3τ7.5 in Figure 4a,b (or Figure 4c,d) are very close to each other and exhibit about
the same temporal variation, which can be loosely related to and explained by the time
changes in the cloud or precipitation coverage discussed above for the temporal variation
in the number of BT62c or reflectivity observations in Figure 3a,b.

The BIAS and RMSI calculated from the E36 (or E12×3τ7.5) for the BT73c were very
similar to those plotted by the red and blue zig-zag curves for the BT62c in Figure 4a,b,
respectively. Similar results were observed for the E12×3τ2.5 and E12×3τ5 versus the E36.
The prior and subsequent BIAS and RMSI averaged over all the 49 assimilation cycles (from
1500 UTC to 0300 UTC the next day) from each of the four experiments are listed in the
second and fourth (and third and fifth) columns in Table 3 for each type of remote-sensing
data. As listed in Table 3, the averaged prior and subsequent BIASs and RMSIs from the
three TES experiments were all close to that from the E36. For each type of remote-sensing
data, the averaged prior BIAS and RMSI from each TES experiment reduced to the averaged
subsequent BIAS and RMSI, respectively, by about the same amount as that from the E36.
These results all indicate that the E12×3τ2.5, E12×3τ5 and E12×3τ7.5 all had nearly the
same assimilation statistics as the E36 and, furthermore, that the assimilation statistics were
not sensitive to τ (specified between 2.5 and T/2 = 7.5 min).
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Figure 4. (a) BIAS d calculated for BT62c from E36 (or E12×3τ7.5) for the event on 28 April 2021 and
plotted by red (or blue) curve as a function of time (from 1500 UTC to 0300 UTC next day). (b) As in
(a), but for RMSI D calculated for BT62c. (c) As in (a), but calculated for reflectivity. (d) As in (b), but
calculated for reflectivity.

Table 3. BIAS, RMSI, ensemble spread and CR for BT62c, BT73c and reflectivity averaged over all the
49 assimilation cycles from each experiment for the event on 28 April 2021.

d (BIAS in ◦K) D (RMSI in ◦K) S (Spread in ◦K)
CR

Prior Posterior Prior Posterior Prior Posterior

BT62c

E36 0.26 −0.001 1.173 0.555 1.05 0.497 1.533

E12×3τ2.5 0.26 0.008 1.211 0.626 1.038 0.484 1.448

E12×3τ5 0.254 −0.001 1.184 0.602 1.06 0.492 1.482

E12×3τ7.5 0.256 −0.018 1.175 0.566 1.146 0.501 1.532

BT73c

E36 0.643 0.246 1.527 0.816 1.233 0.586 1.727

E12×3τ2.5 0.628 0.249 1.569 0.893 1.225 0.564 1.671

E12×3τ5 0.614 0.251 1.497 0.861 1.232 0.574 1.725

E12×3τ7.5 0.676 0.242 1.574 0.820 1.385 0.595 1.736

Reflectivity

E36 4.738 3.642 11.205 8.656 4.589 1.658 0.737

E12×3τ2.5 4.83 3.815 11.484 9.019 4.814 1.608 0.724

E12×3τ5 4.429 3.302 10.97 8.26 5.373 1.699 0.788

E12×3τ7.5 4.338 2.978 10.529 7.697 5.899 1.741 0.851
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The ensemble spread in the space of a given type of observation is defined and
denoted by

s ≡ {∑m∑n[Hm(xn) − ∑nHm (xn)/N]2/[M(N − 1)]}1/2, (2)

where ∑m is the same as in (1), xn denotes the model state vector represented by the
nth ensemble member and ∑n denotes the summation over integer n from 1 to N—the
ensemble size represented by the number of ensemble members. With xn given by the prior
(forecast) or posterior (analysis), the prior or subsequent ensemble spread is calculated
for each type of remote-sensing data immediately before or after the analysis time in each
assimilation cycle. The calculated ensemble spread s also forms a zig-zag function of time
(from 1500 UTC to 0300 UTC the next day) as it reduces from a prior to a subsequent value
immediately after the analysis in each assimilation cycle, before increasing to a prior value
during the next assimilation cycle.

As examples, the ensemble spreads calculated for the BT62c (or reflectivity) from the
E36 and E12×3τ7.5 performed for the event on 28 April 2021 are plotted by the red and
blue zig-zag curves, respectively, in Figure 5a,b. Again, the two curves from the E36 and
E12×3τ7.5 in Figure 5a,b are very close to each other and exhibit about the same temporal
variations, which can also be loosely related to and explained by the time changes in the
cloud (or precipitation) coverage discussed above for the temporal variation in the number
of BT62c and reflectivity observations in Figure 3a,b, respectively.
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Figure 5. (a) As in Figure 4a, but for spread s calculated for BT62c. (b) As in (a), but calculated for
reflectivity. (c) As in (a), but for CR. (d) As in (c), but calculated for reflectivity.

The ensemble spread calculated from the E36 and E12×3τ7.5 for the BT73c is very
similar to that plotted by the red and blue zig-zag curves for the BT62c in Figure 5a. Similar
results were observed for the E12×3τ2.5 and E12×3τ5 versus the E36. The prior and
subsequent ensemble spread averaged over all the 49 assimilation cycles (from 1500 UTC to
0300 UTC the next day) from each of the four experiments is listed in the sixth and seventh
columns, respectively, in Table 3 for each type of remote-sensing data. As shown in the
table, the averaged prior and subsequent spreads from the three TES experiments are all
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close to that from the E36. For each type of remote-sensing data, the averaged prior spread
from each TES experiment reduced to the averaged posterior spread by about the same
amount as that from the E36. These results indicate again that the E12×3τ2.5, E12×3τ5 and
E12×3τ7.5 all had nearly the same assimilation statistics as the E36 and, further, that the
assimilation statistics were not sensitive to τ.

Since ym and Hm(x) are two different estimates of the same truth, dm ≡ ym − Hm(x),
defined in (1), can be written into dm = om − em, where om and em denote the errors of ym and
Hm(x), respectively. With x given by the prior (forecast) ensemble mean, ∑momem should be
zero, or nearly zero, due to the independency between the observation error om and the
forecast error em. In this case, we have

D2 = ∑mdm
2/M ≈ ∑m(om

2 + em
2)/M

≈ σo
2 + ∑m∑n[Hm(xn) − ∑nHm (xn)/N]2/[M(N − 1)] = σo

2 + s2,
(3)

where σo
2 is the observation-error variance and em

2 ≈ ∑n[Hm(xn) − ∑nHm (xn)/N]2/(N − 1)
is used to estimate the error variance of the prior (forecast) ensemble mapped onto the
observation type and location of the mth observation. Here, (3) acts as a diagnostic tool
that can be employed for consistency checks. In particular, if the forecast-error variance is
accurately estimated by prior s2, the consistency relationship in (3) should be well satisfied
and the consistency ratio (CR) defined by

CR ≡ (σo
2 + s2)1/2/D (4)

should be close to 1.
For the event on 28 April 2021, the CRs calculated for the BT62c and the reflectivity

from the E36 (or E12×3τ7.5) are plotted by the red and blue curves in Figure 5c,d, respec-
tively. The two curves in Figure 5c,d are very close to each other and the curve from the
E12×3τ7.5 is slightly closer to 1 than that from the E36, although both curves became close
to 1 in the later assimilation cycles. If they had been plotted, the CRs for the BT62c from
the E12×3τ2.5 and E12×3τ5 would have been mostly between the red and blue curves in
Figure 5c. These results imply that the forecast-error variance was accurately estimated
for the BT62c in each experiment in the later assimilation cycles. The CRs calculated for
the BT73c are not shown as they were very similar to those for the BT62c. In Figure 5d,
the curve from the E12×3τ7.5 is also closer to 1 than that from the E36, while the latter
is mostly below 1. The CRs for the reflectivity from the E12×3τ2.5 and E12×3τ5 (not
plotted) were mostly between the two curves in Figure 5d. These results imply that the
forecast-error variance was accurately estimated in each experiment and better estimated
in the E12×3τ7.5 than in the E36.

The CRs averaged over all the 49 assimilation cycles (from 1500 UTC to 0300 UTC
the next day) in each experiment are listed in the last column of Table 3 for each type of
remote-sensing data. As listed in Table 3, the averaged CRs from the three TES experiments
were all close to that from the E36. The proximity of the CRs from the three TES experiments
to their respective CRs from the E36 further indicates that the three TES experiments all
had nearly the same assimilation statistics as the E36 and, further, that the assimilation
statistics were not sensitive to τ. A similar proximity in assimilation statistics between
the four experiments and insensitivity to τ were observed for each of the three remaining
severe storm events (which occurred on 17, 23 and 26 May 2021), but the detailed results
are omitted for conciseness.

4.2. Forecast Performances
4.2.1. Overall Evaluation

To evaluate the overall performances of the precipitation forecasts, the probability-
matched (PM) ensemble means [29] of hourly accumulated precipitation forecasts were
calculated for the four severe storm events in each experiment and verified against the
Stage IV multi-sensor observed/estimated hourly rainfall (hereafter referred to as observed
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hourly rainfall) from the National Centers for Environmental Prediction [30]. Here, as
explained in [29], the PM mean was used to address the issues with traditional ensemble-
mean-precipitation forecasts, which often underestimate extreme precipitation events and
exhibit smoothed spatial patterns. By increasing the sizes of the large precipitation areas
and shrinking or eliminating the smaller areas, the PM mean preserved the spatial structure
of the ensemble mean while incorporating the distribution of the amounts of precipitation
from the individual ensemble members, resulting in a more accurate precipitation forecast
that retained higher amplitudes and exhibited a bias that was approximately equal to the
average bias of the ensemble members. At this point, by using 2.5-mm, 5-mm, or 10-mm
thresholds for hourly accumulated precipitation, the equitable threat score (ETS; [31]) was
calculated for the PM ensemble mean of the hourly accumulated precipitation in each
forecast and then averaged over not only the 11 forecasts (initiated hourly from 1700 UTC
to 0300 UTC the next day) but also the four severe storm events for each type of experiment.

The averaged ETSs calculated using 2.5-mm, 5-mm and 10-mm thresholds are shown
by the differently colored curves for the four types of experiment as functions of the forecast
lead time in Figure 6a–c. As shown in each panel in Figure 6, the averaged ETS calculated
from the E12×3τ7.5 was very close to that from the E36, especially for the 2–4 h forecasts,
although it was slightly below that from the E36 for the 5–6 h forecasts. The averaged ETSs
from the E12×3τ2.5 and E12×3τ5 were also close to those from the E36, but they were
slightly below those from the E12×3τ7.5 and E36.

The statistical method of single-factor variance analysis [32] was used to determine
whether the average ETSs from the four types of experiment, referred to as the four groups,
were statistically significant. In this case, for each forecast lead time and each threshold, we
sampled 11 × 4 = 44 ETSs from eleven forecasts over the four events in each group, so the
F-value, calculated as a random variable from the between-group variance divided by the
sum of within-group variances, obeyed the Fm,n distribution, with (m, n) = (4 − 1, 44 − 4) =
(3, 40), where m (or n) is the degree of freedom calculated for computing the between-group
variance (or the sum of the within-group variances). The F-values calculated for the three
forecast lead times are listed in each row in Table 4 for each threshold. Clearly, these
F-values were all much lower than the critical value of Fα = 4.31 (or 2.84), taken from the
Fm,n distribution for the α = 1% (or 5%) significance level. This validated the null hypothesis,
namely, that there were no significant differences between the average ETSs from the four
types of experiment for each forecast lead time and each threshold.

Table 4. F-values calculated for three forecast lead times and three precipitation thresholds.

Forecast Lead Time 1 h 3 h 6 h

Threshold

2.5 mm 0.342 0.094 0.109

5 mm 0.842 0.314 0.621

10 mm 0.868 0.307 0.749

To provide a broader view of the forecast accuracies produced from each type of
experiment, contingency-based metrics were calculated (by using 2.5-mm, 5-mm and
10-mm thresholds) for the PM ensemble means of the hourly accumulated precipitation
forecasts in each type of experiment. These metrics included four contingency elements:
the probability of detection (POD), the success ratio (SR) or false alarm rate (FAR = 1 − SR),
the critical success index (CSI) and the frequency bias (FB). To provide a concise and clear
depiction of the forecast performance, the four contingency elements were merged into one
graph—the categorical-performance diagram [33]. Performance diagrams of this type are
plotted in the 3 × 3 panels in Figure 7 to show the average accuracy scores calculated using
three different thresholds for the forecasts with three different lead times from each type of
experiment, while the average was taken as described above for the averaged ETSs.



Remote Sens. 2023, 15, 2358 13 of 25

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 25 
 

 

type of experiment, while the average was taken as described above for the averaged 

ETSs. 

 

Figure 6. (a) Averaged ETSs calculated using 2.5-mm threshold for PM ensemble means of hourly 

accumulated precipitation forecasts plotted by differently colored curves for the four types of ex-

periment as functions of forecast lead time. (b) As in (a), but calculated using a 5-mm threshold. (c) 

As in (a), but calculated using a 10-mm threshold. The average was taken over not only the 11 fore-

casts (initiated hourly from 1700 UTC to 0300 UTC next day) but also the four severe storm events 

for each type of experiment. 

Figure 6. (a) Averaged ETSs calculated using 2.5-mm threshold for PM ensemble means of hourly
accumulated precipitation forecasts plotted by differently colored curves for the four types of experi-
ment as functions of forecast lead time. (b) As in (a), but calculated using a 5-mm threshold. (c) As in
(a), but calculated using a 10-mm threshold. The average was taken over not only the 11 forecasts
(initiated hourly from 1700 UTC to 0300 UTC next day) but also the four severe storm events for each
type of experiment.
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Figure 7. (a–c) Performance diagrams for averaged PM ensemble means of hourly accumulated
precipitation forecasts with 1-h, 3-h and 6-h lead times, respectively, while accuracy scores calculated
using 2.5-mm threshold are shown by differently colored dots for different types of experiment.
(d–f) As in (a–c), but calculated using 5-mm threshold. (g–i) As in (a–c), but calculated using 10-mm
threshold. The CSI (or FB) values are shown by hyperbolic (or straight slanted) contour lines in each
panel. Four differently colored dots, corresponding to the four different types of experiment, are
shown at the bottom of the figure. The average was taken as described in the caption in Figure 6.

Note that the forecast accuracy increased as the POD, SR, CSI and FB all approached
one, meaning that the perfect forecast lies in the upper-right corner of the diagram, while
the forecast accuracy decreased as the POD, SR and CSI approached zero and the FB
approached infinity, meaning that the worst forecast lies on the lower-left corner of the
diagram. Thus, among the four colored dots in each diagram, the dot located closest to the
upper right corner shows the highest accuracy score, while the dot located closest to the
lower-left corner shows the lowest accuracy score. Based on this information, it is apparent,
from Figure 7, that the four types of experiment had very similar forecast accuracies, which
decreased successively as the forecast lead time increased from 1 to 3 and, subsequently,
to 6 h. The results in Figure 7 indicate that the three TES experiments had nearly the
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same accuracy levels in terms of precipitation forecasting as the E36 and, further, that the
precipitation-forecast accuracy was not sensitive to τ, although the accuracy improved
slightly/slowly and became increasingly close to that of the E36 as the τ increased from
2.5 min to 5 min and, subsequently, to 7.5 min.

4.2.2. Best Forecast-Performance Case: 28 April 2021 Severe Storm Event

For the severe storm event on 28 April 2021, the PM ensemble means of the hourly
accumulated precipitation generated from 1-h, 3-h and 6-h forecasts valid at 0200 UTC on
29 April in each experiment are plotted in Figure 8, while the observed hourly rainfall (also
valid at 0200 UTC on 29 April) is plotted in the last panel at the bottom of Figure 8. As
shown in the first column in Figure 8, the PM ensemble means of the hourly accumulated
precipitation forecasts from the four experiments had very similar overall distributions and
intensities and the PM ensemble mean from the E12×3τ7.5 was slightly closer to that from
the E36 (and also closer to the observed hourly rainfall) than those from the E12×3τ2.5 and
E12×3τ5. When the forecast lead time increased to 3 and 6 h, the PM ensemble means from
the four experiments remained close to each other, but their distance from the observed
hourly rainfall decreased, as shown, respectively, in the second and third columns of
Figure 8. Thus, regardless of the increase in the forecast lead time, the PM ensemble means
for the hourly accumulated precipitation forecasts from the three TES experiments had
about the same predictive capability as that from the E36 and, further, this capability was
not sensitive to τ, although τ = 7.5 min appears to have been optimal.

The object-based verification method [34] was also used to assess the quality of hourly
accumulated precipitation forecasts versus the observed hourly rainfall. The observed
objects were defined as areas of hourly rainfall ≥ 2.5 (5 or 10) mm in the observed hourly
rainfall. The observed objects at 0200 UTC 29 on April 2021 are shown by the blue shades
outlined by blue loops in the first, second and third panels in the top row in Figure 9. The
forecasted objects in the PM ensemble mean (or an individual ensemble members) were
defined as the areas of hourly accumulated precipitation ≥ 2.5 mm, 5 mm or 10 mm in
the forecasted PM ensemble mean (or on individual ensemble members). The forecasted
objects determined by using each of the three thresholds from the 3-h forecast in each
experiment are shown in each row below the top row in Figure 9.

As shown in each column in Figure 9 for each selected hourly rainfall threshold, the
observed objects were closely matched with the forecasted objects in the PM ensemble mean
(although they were not well matched with the forecasted objects in the individual ensemble
members) produced in each experiment. In addition, the four experiments, especially the
three TES experiments, produced similar forecasted objects in the PM ensemble mean for
each selected threshold. This feature was unchanged when the forecast lead time changed
from 3 h to 1 h (or 6 h), although the forecasted objects matched the observed objects more
(or less) closely than those shown in Figure 9. Thus, as the computational efficiency was
improved by the TES, the quality of the PM ensemble mean of the hourly accumulated
precipitation forecast was affected little by the TES and was not sensitive to τ.

Forecasts of strong updraft helicity (UH) in the vertical layer 2–5 km above the ground
(called the 2–5 km UH) can be used as gauges of mesocyclone forecasts [35] and verified
against local storm reports issued by the National Weather Service. To perform this type of
verification for the event on 28 April 2021, the velocity field forecasted from each ensemble
member in each experiment was preprocessed in the following three steps: (i) Calculate
the 2–5 km UH at each horizontal grid point from the forecasted velocity field over the
6-h-forecast time period starting from 2300 UTC. (ii) Search for the maximum 2–5 km UH
over the 6-h-forecast time period at each horizontal grid point. (iii) Derive the probability
of the maximal 2–5 km UH > 50 m2s−2 from the ensemble of the maximal 2–5 km UH
obtained in step (ii) at each horizontal grid point for each experiment. The horizontal
field of the derived probability forecast was plotted for each experiment in each panel in
Figure 10 against the reported locations of the tornadoes (shown by the red triangles) and
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damaging winds (shown by the blue squares) occurring during the 6-h time period starting
from 2300 UTC on 28 April.
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Figure 8. (a) PM ensemble mean of hourly accumulated precipitation generated from 1-h forecast
valid at 0200 UTC on 29 April in E36 for the event on 28 April 2021. (b) As in (a), but from a 3-h
forecast. (c) As in (a), but from a 6-h forecast. (d–f) As in (a–c), but generated in E12×3τ2.5. (g–i) As
in (a–c), but generated in E12×3τ5. (j–l) As in (a–c), but generated in E12×3τ7.5. (m) Stage IV
multi-sensor observed/estimated hourly rainfall valid at 0200 UTC on 29 April 2021.
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Figure 9. (a–c) Observed objects of hourly rainfall ≥ 2.5 mm, 5 mm and 10 mm, respectively, valid at
0200 UTC on 29 April 2021, shown by blue shades outlined by blue loops. (d–f) Forecasted objects of
hourly accumulated precipitation ≥ 2.5 mm, 5 mm and 10 mm, respectively, in PM ensemble mean
(or different ensemble members) generated from 3-h forecast in E36 valid at 0200 UTC on 29 April
2021, shown by gray shades outlined by black loops (or different-translucent-color shades), while the
contours of observed objects, shown by blue loops in panels (a–c), are duplicated in (d–f), respectively.
(g–i) As in (d–f), but generated in E12×3τ2.5. (j–l) As in (d–f), but generated in E12×3τ5. (m–o) As
in (d–f), but generated in E12×3τ7.5.
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Figure 10. (a) Probability of forecasted maximal 2–5-km UH > 50 m2s−2 (over the 6-h-forecast time
period initiated at 2300 UTC) generated in E36, plotted by color shades for the event on 28 April 2021.
(b) As in (a), but generated in E12×3τ2.5. (c) As in (a), but generated in E12×3τ5. (d) As in (a), but
generated in E12×3τ7.5. The red triangles and blue squares in each panel partially duplicate those in
Figure 1a reported for tornadoes and damaging winds, respectively, occurring during the 6-h-forecast
time period (that is, from 2300 UTC to 0500 UTC the next day, rather than from 1800 UTC to 0900
UTC the next day, as shown in Figure 1a).

As shown in each panel in Figure 10, the forecasted probability (of the maximal
2–5 km UH > 50 m2s−2) was very high (>80%) near the reported locations of the tornadoes
(shown by the red triangle) and damaging winds (shown by the five blue squares) near San
Antonio and, further, the forecasted probability was also high (>40%) along the reported
locations of damaging winds (shown by a series of 14 blue squares) extending from Central
Texas towards Oklahoma, although the forecasted probability was low (<20%) around the
reported locations of the tornadoes (shown by a red triangle) and damaging winds (shown
by two blue squares) near the eastern boundary of Oklahoma. These verifications indicate
that the velocity forecasts from the three TES experiments had about the same capability
and quality as that from the E36 for the probabilistic prediction of tornadoes and damaging
winds and, further, that the capability and quality of the probabilistic prediction were not
sensitive to τ (specified between 2.5 and 7.5 min).
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4.2.3. Worst Forecast-Performance Case: 17 May 2021 Severe Storm Event

For the severe storm event on 17 May 2021, the PM ensemble means of the hourly
accumulated precipitations from the 1-h, 3-h and 6-h forecasts valid at 0100 UTC on 18 May
are plotted in three panels in each row in Figure 11 for each experiment, in comparison
with the observed hourly rainfall (also valid at 0100 UTC on 18 May) plotted in the last
panel at the bottom of Figure 11. As shown in Figure 11, in comparison with Figure 8, the
PM ensemble means from the four experiments also had very similar overall distributions
and intensities and, further, the PM ensemble mean from the E12×3τ7.5 was also slightly
closer to that from the E36 (and also closer to the observed hourly rainfall, at least, for
the 1-h forecast) than those from the E12×3τ2.5 and E12×3τ5 (for each forecast lead time,
as shown in each column). However, when the forecast lead time increased to 3 (or 6)
hours, the differences between PM ensemble means from the four experiments and the
observed hourly rainfall became greater than the differences shown for the event on the
28 April 2021 in the second (or third) column in Figure 8. Despite the degraded predictive
capabilities for this event, which had the worst forecast, the PM ensemble means for the
hourly accumulated precipitation forecasts from the three TES experiments maintained a
similar predictive capability to that from the E36 and, further, this capability was still not
sensitive to τ.

The object-based verification method was used again to assess the quality of the hourly
accumulated precipitation forecasts compared to the observed hourly rainfall for the event
on 17 May 2021. Figure 12 plots the forecasted objects versus the observed objects valid at
0100 UTC on 18 May for the event on 18 May 2021 in a manner that is similar to those plotted
in Figure 9 (valid at 0200 UTC for the event on 28 April 2021). As shown in each column in
Figure 12 for each selected hourly rainfall threshold, the observed objects were still largely
matched with the forecasted objects in the PM ensemble mean from each experiment,
but not as closely as those shown in Figure 9 for the event on 28 April 2021. The four
experiments, especially the three TES experiments, still produced similar forecasted objects
in the PM ensemble mean for each selected threshold. This feature was still unchanged
when the forecast lead time changed from 3 h to 1 h (or 6 h), although the forecasted objects
matched the observed objects more (or less) closely than those shown in Figure 12. Thus,
the quality of the PM ensemble mean of the hourly accumulated precipitation forecast was
still affected little by the TES and was not sensitive to τ for the event on 17 May 2021.

Figure 13 plots the horizontal field of the probability forecasts derived from the
four experiments against the reported locations of the tornadoes (shown by the three red
triangles) and damaging winds (shown by the blue squares) occurring during the 6-h time
period starting from 2200 UTC on 17 May. As demonstrated in each panel in Figure 13, the
forecasted probability (of the maximal 2–5 km UH > 50 m2s−2) was very high (>70% for the
E36 in panel (a) and >80% for the three TES experiments in panels (b)–(d)) at and around
the reported location of the tornado (shown by the three densely packed red triangles)
in Central Texas. The forecasted probability was also high (>40% for the E36 in panel (a)
and >50% for the three TES experiments in panels (b–d)) near the reported location of
the tornado (shown by the red triangle) in New Mexico, outside the western boundary of
Texas, but the forecasted high probability over a broad area of North Central Texas did
not closely match the reported locations of the tornadoes and damaging winds scattered
in this broad area. These verifications reaffirm that the velocity forecasts from the three
TES experiments had about the same capability and quality as that from the E36 for the
probabilistic prediction of tornadoes and damaging winds and, further, that the capability
and quality of the probabilistic prediction were not sensitive to τ, although they were all
degraded for this event, which had the worst forecast.
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Figure 13. As in Figure 10, but generated from the forecast initiated at 2200 UTC on 17 May for
the severe storm event on 17 May 2021. The red triangles and blue squares in each panel partially
duplicate those in Figure 1b, reported for tornadoes and damaging winds, respectively, which
occurred during the 6-h-forecast time period (that is, from 2200 UTC to 0400 UTC the next day, rather
than from 1800 UTC to 0900 UTC the next day, as shown in Figure 1b).

5. Conclusions

In this paper, the cost-saving time-expanded sampling (TES) approach [10,11] was
applied to the convection-allowing ensemble-based warn-on-forecast system (WoFS) in
EnKF assimilations of remote-sensing data from radars and the geostationary satellite
GOES-16 to generate short-term (0–6-h) forecasts for four severe storm events that occurred
in the southern and/or central US in April and May 2021. For each event, TES was
compared with a 36-member control experiment (E36) by reducing the forecast ensemble
size to 12 while tripling the analysis ensemble size to 12 × 3 = 36 with the TES time interval
set to τ = 2.5 min, 5 min and 7.5 min in the three TES experiments. The assimilation statistics
were evaluated for each TES experiment versus the E36 for each event and, further, the
forecasts produced in each experiment (including the E36) were verified against multi-
sensor observed/estimated rainfall, reported tornadoes and damaging winds for each
event. The main results are summarized below:
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(i) Under various severe-weather conditions, represented by the four severe storm events
considered in this study, TES can be successfully applied to the WoFS in assimilat-
ing remote-sensing data from radars and the geostationary satellite GOES-16, with
improved computational efficiency and without compromising the quality of the
analysis and subsequent short-term prediction of high-impact weather.

(ii) With a wide range of severe-weather scenarios to capture, there is an optimal sampling-
time interval τ, which can lead to better analyses and subsequent predictions. For
the wide range of severe-weather scenarios (overviewed in Section 3.1 for the four
severe storm events) in this study, the optimal sampling-time interval was found to
be τ = T/2 (where T = 15 min is the assimilation-cycle-time window), although the
quality of the analysis and the subsequent predictive capability were not sensitive to
τ (selected between T/6 and T/2).

The results summarized above suggest that TES is appealing and useful for cost-
saving real-time applications of WoFS in the assimilation of remote-sensing data and the
generation of short-term severe-weather forecasts. For data-assimilation cycles, the model
integration for each updating run in the E36 uses two cores with the NSSL supercomputer.
In total, 36 × 2 = 72 cores were used for the ensemble model integration during one data-
assimilation window. The use of TES reduced the number of updating runs to one third
of that in the E36 and, thus, reduced the number of cores from 72 used in E36 to only
12 × 2 = 24. Note that the integration time for each updating run in the TES experiment
with τ = T/6 (or T/2) increased from T in the E36 to 7T/6 (or 3T/2), so the computational
cost for the data-assimilation cycles in the TES experiment is 7/18 (or 1/2) of the cost
for those in the E36, demonstrating a saving of 11/18 (or 1/2) of the computational cost.
However, in terms of the computer storage for the data assimilation, both the E36 and
the TES runs used about the same space. Although only 12 members of the model run
needed to be saved, the model fields at two extra time levels consumed a portion of
the disk space. For each forecast at the top of each hour, the E36 experiment ran with
18 ensemble members (36 cores) and each TES experiment ran with 12 members (24 cores),
implying an unfair advantage for the E36 in terms of forecast-quality evaluations (because
the forecast ensemble size in each TES experiment was smaller than that in the E36), but
the computational cost for the forecast runs in each TES experiment was lower than those
in the E36.

According to the results obtained with simulated radar observations in [11], further
increases in τ beyond T/2 do not significantly improve the analysis and forecast, but they
do increase the computational cost significantly, as explained above. Thus, for real-time
applications of TES with the WoFS, an optimal τ should be selected by properly balancing
the two competing factors: (i) increasing τ (beyond T/2) to further improve the analysis
and forecast; and (ii) decreasing τ (below T/2) to further reduce the computational cost.
The results obtained in this study suggest that an optimal selection can be achieved by
setting τ = T/2, although the question of how to properly balance the two competing
factors requires continued research beyond this study.

The insensitivity to τ is particularly attractive for real-time applications, as it implies
that labor-intensive adaptive tuning and/or the cumbersome event-based selection of τ
can be avoided or skipped in preparing TES for the future real-time applications described
in this study. However, in general, the proper selection of τ should be confined within a
scale-dependent range that is consistent with the spatial and temporal scales of the main
weather system covered and resolved by the model and observing system. This scale
dependence was shown in previous real-data applications of TES [13–16]. Consequently,
the question of how to properly select multiple scale-dependent values of τ to apply TES to
the new weather-adaptive dual-resolution hybrid WoFS remains open [36]. Addressing
this issue is crucial to produce cost-saving real-time implementations of this new hybrid
WoFS and requires continued research on TES beyond this study.
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