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Abstract: Shape segmentation in urban environments forms the foundation for tasks such as classifi-
cation and reconstruction. Most artificial buildings with complex structures are composed of multiple
simple geometric primitives. Based on this assumption, this paper proposes a divisive hierarchical
clustering algorithm that uses shape classification and outliers reassignment to segment LiDAR
point clouds in order to effectively identify the various shapes of structures that make up buildings.
The proposed method adopts a coarse-to-fine strategy. Firstly, based on the geometric properties
of different primitives in a Gaussian sphere space, coarse extraction is performed using Gaussian
mapping and the DBSCAN algorithm to identify the primary structure of various shapes. Then,
the error functions are constructed after parameterizing the recognized shapes. Finally, a minimum
energy loss function is built by combining the error functions and binary integer programming (BIP)
to redistribute the outlier points. Thereby, the accurate extraction of geometric primitives is achieved.
Experimental evaluations on real point cloud datasets show that the indicators of precision, accuracy,
and F1 score of our method are 0.98, 0.95, and 0.96 (point assignment) and 0.97, 0.95, and 0.95 (shape
recognition), respectively. Compared with other state-of-the-art methods, the proposed method can
efficiently segment planar and non-planar structures with higher quality from building point clouds.

Keywords: hierarchical clustering; BIP; LiDAR point cloud; segmentation

1. Introduction

The detection of building structures is the basis of building digitization and the primary
step in 3D urban reconstruction. With the development of sensors and platforms, 3D point
clouds have become the primary data source for sensing cities, which are mainly derived
from LiDAR [1] and multi-view stereo [2] datasets. LiDAR can quickly and directly acquire
a 3D point cloud of a target surface via non-contact active measurement, avoiding the
complicated solving of image correspondence in MVS. Due to its excellent characteristics,
such as the low influence of weather, short data acquisition period, and high accuracy,
LiDAR technology is gradually becoming the major data source for the 3D reconstruction of
urban scenes [3,4], autonomous driving [5], and emergency response systems [6]. However,
LiDAR point clouds are disordered and unsemantic, essentially comprising a downsampled
representation of the 3D world geometry, and do not provide structural information about
the target. Thus, point cloud segmentation is necessary prior to further applications.

Point cloud segmentation involves dividing point clouds into groups with similar
properties based on spatial and geometric information [7]. Artificial buildings with complex
structures can be regarded as a combination of multiple geometric primitives. Based on this
assumption, point cloud segmentation can theoretically extract all building components.
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However, most research focuses on plane extraction and ignores other structures. In
addition, the problem of assigning points at sharp features is a challenge for accurate
segmentation. Therefore, this paper proposes a divisive hierarchical clustering algorithm
in order to address these issues. According to the anisotropy characteristic of normal
vectors, they can reflect the local orientation of the object surface, i.e., the normal vectors
are consistent on the same surface, while they present a scattered distribution when dealing
with sharp features or noise. Based on this fact, a two-stage clustering method is proposed
in this paper to segment the building point clouds. Additionally, the major contributions of
this paper are as follows:

(1) A novel framework for building segmentation via shape classification and outliers
reassignment is presented.

(2) A coarse segmentation method based on a combination of Gaussian mapping and
DBSCAN is developed. The plane, cone, cylinder, and sphere structures that make
up the target are identified based on the morphological differences of different shape
primitives presented in Gaussian spherical space.

(3) A fine segmentation based on the BIP models is proposed. The complete segmentation
is achieved by the constructed minimum energy function, which reassigns the outlier
points to each recognized primitive.

The remainder of this paper is organized as follows. Section 2 provides a brief review
of the existing literature on point cloud segmentation. Section 3 describes the details and
key steps of the proposed segmentation approach. Section 4 shows the performance of
the proposed approach on both synthetic and real point cloud datasets and presents a
discussion of the method and the experimental results. Finally, we draw our conclusions in
Section 5.

2. Related Works

Point cloud segmentation for buildings has been the focus of much research [8,9].
Numerous different strategies have been proposed for different scenarios and applica-
tions [10–12]. This section briefly reviews the segmentation methods, including region
growing, model fitting, clustering, and hierarchical clustering.

2.1. Region Growing

The accuracy and efficiency of the region-growing algorithm are influenced by three
factors: seed points, neighborhoods, and discriminant conditions. For the choice of seed
point, the most popular current method is to select the point with the least curvature
as the initial seed point during each iteration [13]. Since the seed point is located in the
smoothest region, growing from it can reduce the total number of segmented fragments
and thus improve the algorithm’s efficiency. Regarding the neighborhood, the traditional
region-growing approach uses k-dimension trees (kd trees) [14] to search the range of
k-neighborhoods (or r-balls). This approach does not consider the neighborhood’s geomet-
ric properties, which tends to produce under-segmentation or over-segmentation problems.
Methods have been proposed to overcome this problem via adapting the neighborhood
while considering the geometrical content [15] or via using voxels with good planarity as
neighborhoods [16]. Regarding the discriminant conditions, the geometric properties of
primitives such as Euclidean distance and normal vector are commonly used [17]. More-
over, there are some studies that aim to improve the region growth in other ways; for
example, Zhu et al. [18] optimized the point cloud normal vectors, especially around
the sharp features. Thus, the region-growing method can extract the planar structures
of buildings completely. Dong et al. [19] proposed a hybrid region-growing method on
LiDAR point clouds of buildings with points and surfaces as primitives to improve the
algorithm’s efficiency.
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2.2. Model Fitting

Most of the existing model-fitting methods rely on Hough transform (HT) [20] and
random sample consensus (RANSAC) [21] algorithms. HT is a classical feature detection
technique and performs well when processing 2D images. However, in 3D point clouds,
the parameters of HF increase, and the algorithm’s complexity increases exponentially.
Therefore, some methods enhance the performance of HT by reducing the cost of the voting
process to improve efficiency, such as Randomized HT [22], Probabilistic HT (PHT) [23],
and improved methods based on PHT, such as Adaptive PHT [24] and Progressive PHT [25].
These methods are applied to point cloud segmentation to identify planes [26] and ge-
ometric structures such as cylinders and cones [27]. Compared with HT, the RANSAC
method greatly improves computational efficiency and is robust to noise. However, the
RANSAC method is prone to generate artifacts because it strives to find a geometry with
the highest number of points in each iteration. To solve this problem, Chen et al. [28] pro-
posed an improved RANSAC algorithm with localized sampling to segment building roofs.
Xu et al. [29] proposed a weighted RANSAC algorithm that considers the point-plane
distance and the normal vector consistency for building plane segmentation from LiDAR
point clouds. RANSAC methods have been widely applied to building roof detection [30]
from LiDAR point clouds and building facade detection [31] from oblique photogrammetric
point clouds.

2.3. Clustering

Euclidean distance clustering [32] is a typical clustering method that uses the Euclidean
distance between points as a clustering criterion. In addition to distance, standard point
cloud features include normal vector, curvature, and color. For example, Filin [33] used the
curvature and color of point clouds for surface clustering. Nurunnabi et al. [34] used the
curvature and normal vector to cluster the outlier points in a point cloud. Typical clustering
algorithms include k-mean [35], its improvement algorithms, and mean shift [36]. K-mean
requires a pre-determined number of clusters, k, and the random initialization of the cluster
centers may lead to algorithm instability. To solve this issue, the ISODATA algorithm [37]
adjusted the number of clustering centers by splitting and merging operations. The k-
means++ algorithm [38] introduced the principle that the initial clustering centers should
be as far away from each other as possible to distribute the clustering centers. In addition,
density-based clustering algorithms [39–41] are also a popular strategy. Chen [42] used
the exponential function density clustering model to extract indoor objects from LiDAR
point clouds. Wang [43] improved the DBSCAN algorithm by automating the calculation
of parameters to complete the segmentation of urban environments. Chen [44] introduced
coplanar constraints to the DBSCAN algorithm to achieve the segmentation of building
shapes. However, over-segmentation is prone to be caused when using this method alone,
so it is commonly used for coarse segmentation [45] or combined with other methods [46].
Due to a scene’s complexity, it is difficult for a single clustering method to extract accurate
and complete surface structures. Thus, hierarchical clustering with a combination of
multiple clustering algorithms is the more popular method nowadays.

2.4. Hierarchical Clustering

The hierarchical clustering method performs the hierarchical decomposition or con-
solidation of data objects [47]. According to different choices, the hierarchical clustering
method can be further divided into agglomerative branches [48] and divisive branches [49].
Agglomerative hierarchical clustering, which uses a bottom-up strategy, first classifies each
object as a group and then merges these groups into larger groups. In contrast, divisive
hierarchical clustering, which uses a top-down strategy, first classifies all objects in a group
and then gradually subdivides them into smaller groups. Divisive clustering is generally
more complex than agglomerative clustering because it partitions the data until each clus-
ter contains one data item [50]. However, divisive clustering is more accurate because
it considers the data’s global distribution when partitioning it into a top-level partition.
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Feng et al. [51] proposed a plane extraction method based on agglomerative hierarchical
clustering for organized point clouds. Li et al. [52] extracted the initial planar patches via
an octree-based method and then applied agglomerative hierarchical clustering to merge
the adjacent planar patches for roof segmentation from airborne LiDAR. Lu et al. [53]
combined pairwise linkage and divisive hierarchical clustering to extract planar structures
of buildings in LiDAR point clouds. Kung et al. [54] applied agglomerative hierarchical
clustering to merge the supervoxels into surfaces for iterative curve shape extraction. Hier-
archical clustering can also be applied to classification and recognition. Jurado et al. [49]
proposed the unsupervised classification of natural materials in a point cloud based on
divisive hierarchical clustering. Zhang et al. [55] proposed an agglomerative–divisive
hierarchical clustering for organ classification and fruit recognition for a whole fruit tree in
a natural environment.

3. Methods
3.1. Overview of the Proposed Approach

Starting from the LiDAR point cloud, the overall workflow of our method is shown in
Figure 1. The proposed method adopts a coarse-to-fine strategy and consists of two stages.
In the coarse segmentation stage, because the normal vectors of the same geometric shapes
are distributed centrally on the Gaussian sphere, the normal vectors of the point cloud
are mapped onto the Gaussian sphere. Then, according to the different density distribu-
tions presented by the groups on the Gaussian sphere, we use the DBSCAN clustering
method to classify the different shapes and complete the coarse extraction. In the fine
segmentation stage, the main task consists of two components: one is to refine each shape
class by combining Euclidean distance classification and parameterization; the other is to
construct an optimization function, which reassigns the outliers using BIP to complete the
fine segmentation.
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Figure 1. Workflow of the proposed method.

3.2. Coarse Segmentation

Based on the assumption that complex buildings are composed of simple shapes,
four geometric shapes are used as primitives: plane, cylindrical, conic, and spherical
surfaces. A single shape can be easily identified based on the density distribution of the
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Gaussian sphere, as shown in Figure 2. For example, points on a plane are presented as a
spot on the Gaussian sphere (Figure 2b, red point), and points on a cylindrical surface are
presented as a circle at the center of the Gaussian sphere (Figure 2b, yellow ring), points
on the conical surface are also presented as a circle, but its center is not at the center of the
Gaussian sphere (Figure 2b, green ring), and points on the spherical surface have the same
presentation on the Gaussian sphere (Figure 2b, blue sphere). However, in complex scenes,
multi-directional, multi-species, and multi-scale primitives are overlapped on the Gaussian
sphere, so the primary task of this method is to classify all geometric shapes.
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Figure 2. The Gaussian mapping of four shapes. (a) Represents the four geometric shapes in 3D
coordinate space. (b) Represents the Gaussian spherical space and the results of the four shapes after
Gaussian mapping. Different colors indicate different shapes.

The Gaussian sphere is a space with a center of (0,0,0) and a radius of 1 unit. Firstly, the
normal vectors of the point cloud are estimated by a PCA algorithm. The normal vector of
each point conforms to nx2 + ny2 + nz2 = 1. The normal vectors of all points are mapped into
the Gaussian sphere space to obtain the new point set gpi = {(nx, ny, nz); nx2 + ny2 + nz2 = 1}.
Since the normal vectors of the one plane in 3D space are consistent, the density of points on
the Gaussian sphere increases with the number of points on the same structure. In addition,
points on structures with the same orientation but different scales will also gather on the
Gaussian sphere. Thus, based on this feature, the DBSCAN method [56] is used to extract
the set of points with a high-density distribution. The DBSCAN method is a density-based
clustering algorithm with noise immunity that does not require one to specify the number
of class species. It exploits the high-density connectivity of clusters to find high-density
regions and can extract sets of arbitrary shapes. In this paper, a point-by-point traversal
strategy is used, i.e., if a point is not the core point, it is ignored, and if it is, a new cluster is
created, and all neighboring points are added to the cluster. If there are other core points
in the neighborhood, their neighborhood points are also added to the cluster recursively.
This process is repeated until there are no more points to add to the cluster. During the
clustering process, the number of neighborhood points (NN) of the core points needs to be
recorded. As for the neighborhood search strategy, instead of the suggested R*-tree in the
original DBSCAN, the kd-tree is used for a faster k-nearest neighbor search.

To distinguish shapes, a 3D spatial point feature is introduced, which can be calculated
by three eigenvalues λ1, λ2, λ3 (λ1 > λ2 > λ3) of a singular value decomposition (SVD) of
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the covariance matrix. When λ1 >> 0, λ2 >> 0, λ3 >> 0, the point cluster exhibits a random
distribution; when λ1 >> 0, λ2 >> 0, λ3 ∼= 0, the point cluster exhibits a planar distribution;
when λ1 >> 0, λ2 ∼= 0, λ3 ∼= 0, the point cluster exhibits a linear distribution; when λ1 ∼= 0,
λ2 ∼= 0, λ3 ∼= 0, the point cluster exhibits a sparse spot distribution. Thus, based on these
features, the measures are derived to describe the geometric properties as follows:

Pλ = λ2−λ3
λ1

Lλ = λ1−λ2
λ1

(1)

where Pλ indicates the probability that the geometry is similar to a plane, and a larger value
of Pλ indicates a flatter local geometry; Lλ indicates the probability that the geometry is
similar to a line, and a larger value of Lλ indicates a thinner local geometry. Considering
the influence of noise, two empirical thresholds are set. λ > 0.8 means λ >> 0, and λ < 0.2
means λ ∼= 0.

Finally, shape classification is achieved via a step-by-step analysis of the structure. The
specific procedure is as follows:

(1) The DBSCAN algorithm is executed in the Gaussian sphere space to obtain multiple
clusters ς = {G1, G2, . . . , Gi};

(2) For a cluster Gi, a spatial resampling is performed with an interval of 0.01 m, and then
a point in Gi is selected and searched for points within the radius of r/2;

(3) After calculating the eigenvalues of the searched points, if all three eigenvalues are
less than 1, Gi is a spot, and the corresponding point groups in the 3D point cloud
space are marked as planes. Then, the shape features are derived using Equation (1);
if Pλ < Lλ, Lλ is linear, its radius is calculated. If the radius is 1 m, the corresponding
points groups in the 3D point cloud space are marked as cylinders. If the radius is
less than 1 m, those groups are marked as cones. Note that when Gi is judged to
be linear, this cluster may contain another spot cluster, as shown in Figure 3. The
generated local highlight phenomenon is evident in the circle of Figure 3c, so we
count the average value of NN for the core points in Gi. If the NN of the core point is
larger than the average value, it and its neighbors are marked as local highlighting
regions and selected as a new cluster;

(4) The 3D spherical surface is also presented as a uniformly distributed spherical struc-
ture in the Gaussian sphere space. Thus, for the points of the spherical surface, the
NN of core points should be close. In the Gaussian sphere space, after excluding the
identified points, the remaining points connected and have close NN values to each
other are selected as clusters and marked as spherical shapes.
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of the point clouds in a Gaussian sphere. (c) Represents the clustering results, and the colors are
rendered using the point density.
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3.3. Fine Segmentation
3.3.1. Shape Parameterization

After completing the above processes, the point cloud can be divided into classified
shapes SPs and outlier points Φ. SPi = {sp1, sp2, . . . ,spj}, all the spj belong to the same
type of primitive with different parameters. To facilitate the subsequent parameterization,
each shape needs to be extracted separately. Firstly, a point p is selected from SPi, and
the distance from its neighboring points to p is calculated. If the distance is less than the
threshold value of 2× RES, the neighboring point is divided into spj, where Res denotes the
average point distance of the point cloud. Then, the points other than p in spj are selected,
and the above process is repeated until the number of elements in spj does not increase.
This procedure is repeated until all clusters are completed. The remaining points are stored
in the Φ. Further parameter calculation of spj is needed for each type.

Planes

Three non-collinear points can theoretically calculate the plane parameters ax + by + cz + d = 0.
Considering the effect of noise, the least squares solver is used to calculate the parameters
to ensure that the solved plane can optimally fit the point cloud, so the objective function is:

min
N

∑
i=1
‖a(xi − x) + b(yi − y) + c(zi − z‖) (2)

where x, y, z are the centers of points. This is a typical min||Ax|| problem. The SVD
decomposition is performed on matrix A. The eigenvector corresponding to the smallest
eigenvalue is (a, b, c), and then d is calculated using the center of points.

Cylinder

Solving cylinder parameters consists of two parts: the determination of the initial
parameter values and the establishment of the error equation. According to the geometric
characteristics of the cylindrical surface, the distance from the point (x, y, z) on the cylindri-
cal surface to the axis vectors u is cylindrical radii r. Then, according to this characteristic,
the error equation is established as follows:

f =

√
(x− x0)

2 + (y− y0)
2 + (z− z0)

2 −
[
ux(x− x0) + uy(y− y0) + uz(z− z0)

]2 − r (3)

After linearization, the solution can also be solved using the least squares method. The
initial values of the axes u0 can be derived from the normal vector of the corresponding
cluster Gi on the Gaussian sphere. Then, a planar circle can be obtained by slicing the points
spj from the direction perpendicular to the axis u0. The radius and center of the ring are the
initial r0 and the point m0 on the axis u0.

Cone and Sphere

The parameters of the cone include the vertex v, cone angle θ, and axis vector u, and
the parameters of the sphere include the center coordinates o and radius r. Considering
the existence of cone frustum, the coordinates of cone vertices are difficult to initialize,
which leads to the low efficiency of the least squares solution. Similarly, there are mostly
incomplete spherical structures, and it is challenging to initialize the spherical center.
Therefore, for the parameterization of these two primitives, this paper uses a RANSAC-
based method [57] to iteratively select several points randomly in the cluster for parameter
solution and then selects the optimally fitted model as the final result.

3.3.2. Outlier Reassignment

For further accurate segmentation, outlier points need to be reassigned. A popular
method uses the distance from the point to the model as the criterion. However, there are
some disadvantages when relying on this single metric, such as the selection of a threshold
value and spurious surfaces caused by local fitting. Thus, three metrics are designed to
reassign the outlier points as follows.
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Fitting

The point p(x, y, z) fitted into the shape model should ensure the minimum distance to
this shape. For different primitives, the distances from point p to the model are calculated
differently. We mark Dp, Dcy, Dco, and Ds to denote the distances of point-to-plane, point-
to-cylinder, point-to-cone, and point-to-sphere, as shown in Equation (4):

Dp(p) = |ax + by + cz + d|
Dcy(p) = ||mp× u1| − r1|

Dco(p) = |vp| sin
(

arccos |vp·u2|
|vp| − θ

)
Ds(p) = ||op| − r2|

(4)

where m is the point on the axis of the cylinder, u1 and u2 are the axes of the cylinder and
cone, respectively, v is the vertex of the cone, o is the center of the sphere, and r1 and r2 are
the radii of the cylinder and sphere, respectively. Thus, the construction of the metric is
Equation (5), where Dt∈{Dp, Dcy, Dco, Ds}.

O1 = minDt(pi) (5)

Connectivity

To avoid spurious facets, the points of the same shape must be connected to each other.
For points pi, pj, and pk, the neighbors of their 2 × RES range are used as buffers I, J, and K.
If I∩J1∅, and J∩K1∅, I and K are connected. Then, a connected set Π is built. If Π contains
the points of the shape, then Π is connected with the shape. The metric is Equation (6):

O2 = IsFound(pi), pi ∈ Π (6)

Consistency

If a point has the minimum distance to two shapes simultaneously, then this point
can be judged as the junction of these shapes. Voiding edge jaggedness, the points on the
intersection should be classified as the same shape. The metric is Equation (7), where ξi

and ξj denote the shape to which the point belongs:

O3 = same
(

ξi, ξj
)

, ∀(i, j) ∈ ε (7)

Finally, a minimum energy function based on the BIP model is used to discriminate
the outlier points. BIP is a special linear optimization with variables xi∈{0, 1}. A multi-
dimensional variable ξ = {l1, l2, . . . , ln}, li∈{0, 1} is constructed whose dimension is the
number of detected shapes. Different values of ξ represent different shapes; for example,
ξ1 = {1, 0, 0, . . . , 0} and ξ2 = {0, 1, 0, . . . , 0} denote two shapes. Since a point in Φ can
be assigned to only one shape, it is necessary to constrain |ξ| = 1. Finally, the minimum
energy function is constructed as follows:

min ∑
i=1

Dt(pi) ∗ ξn{
O2
∧

O3
|ξ| = 1

, pi ∈ Φ (8)

4. Experiments and Discussion

To verify the efficiency and robustness of the proposed method, experiments are
conducted on both synthetic data and real-point cloud datasets. The proposed approach
was implemented with C++ in Windows and carried out on a computer with an Intel Core
i9-9900K processor and 64 GB of RAM. In addition, qualitative comparisons are performed
between the proposed method and four popular and recent approaches: region-growing
(RG), RANSCA, PLINKAGE [53], and QTPS [58]. The region-growing and RANSAC
methods are the most popular, widely adopted algorithms for point cloud segmentation.
PLINKAGE and QTPS are recently published hierarchical clustering algorithms. All point
cloud datasets are preprocessed for normal vector estimation using the PCA algorithm.
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4.1. Evaluation Metrics

To evaluate the segmentation quality, four traditional metrics are employed, i.e.,
Precision, Recall, and F1-Score.

Precision = TP
TP+FP

Recall = TP
TP+FN

F1 Score = 2× Precision×Recall
Preccision+Recall

(9)

We calculated the corresponding metrics for points and surfaces, respectively. For
the metric of points (Precisionp, Recallp, F1p), TP (true positive) indicates the number of
points correctly assigned; FN (false negative) indicates the number of points present in the
ground-truth data but not assigned; and FP (false positive) indicates the number of points
incorrectly assigned. For the metrics of shapes (Precisions, Recalls, F1s), TP is the number
of shapes correctly detected; FN is the number of shapes in the ground-truth model but not
detected; FP is the number of shapes falsely detected.

4.2. Experiments on Synthetic Data

Six synthetic datasets are used to test the proposed method. These datasets are
generated from modeling in Sketchup and sampling points in CloudCompare. The detailed
data descriptions are listed in Table 1.

Table 1. Details of synthetic datasets.

Synthetic Dataset Number of Points Number of Shapes Average Point
Distance (m)

Cube 12,000 6 0.04
Cylinder 7999 3 0.05

Cone 7993 2 0.03
Pyramid 10,000 5 0.03

Hollow cube 20,019 7 0.03
Torus 20,006 24 0.03

The experimental results are shown in Figure 4. The planar structures appear clustered
as points on the Gaussian sphere, while the points at the edges are presented as isolated
points on the Gaussian sphere due to the scattering of their normal vectors, as shown in
Figure 4b. Then, after the clustering process, various geometric primitives are identified,
while the outlier points are mainly distributed at the edges of the shapes, as shown in
Figure 4c. These phenomena are exactly as expected. Finally, the outlier points are reas-
signed to achieve the fine segmentation of each shape, as shown in Figure 4d. Since there is
no noise in the synthetic data, the proposed method can segment all points correctly. In
addition, the execution time of the algorithm is shown in Figure 5. The algorithm’s time
consumption is positively related to the number of point clouds.

The shape detection ability of the comparison methods is shown in Figure 6. The RG
method can segment different shapes, including plane and curved surfaces but cannot
handle boundaries. The RANSAC method can segment single shapes but performs weakly
when handling mixed shapes and is prone to over-segmentation. The PLINKAGE method
produces under-segmentation when dealing with mixed shapes. The QTPS method has
strong planar segmentation ability and offers the strongest boundary handling capability
compared to the other three methods, but it cannot segment curved surfaces.

The robustness to noise is essential for the point cloud segmentation method. Random
noise is inevitable in the real point cloud and is difficult to evaluate quantitatively. To
evaluate the robustness of the proposed algorithm, the Torus point cloud is selected as the
experimental object, and we add different noise levels following a Gaussian distribution.
The percentages of the noise are 10%, 20%, 30%, 40%, and 50%, and the standard deviations
(s.d.) of the noise are 3 mm, 6mm, and 10 mm.
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Figure 6. Shape segmentation of comparison methods.

The execution time of the proposed algorithm at different noise levels is shown in
Figure 7, which clearly shows that the time consumption is proportional to the number
of noise points and the standard deviation of the noise. There are two reasons for this
result: (1) the more noise points there are, the more data processing is necessary, which
increases the processing time; (2) the larger the standard deviation of the noise, the larger
the bias of the normal vectors calculated by PCA. The PCA is a least-squares procedure
fitting to the local surface with robustness. Still, when the standard deviation of the noise
is too large, the accuracy of the estimated normal vectors decreases. Thus, the larger the
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standard deviation of the noise, the larger the bias of the estimated normal vectors, which
in turn leads to more isolated points on the Gaussian sphere and more time being required
to reassign these isolated points.
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The accuracy metrics of the segmentation results at different noise levels are shown
in Figure 8. The figure shows that the proposed algorithm gives excellent segmentation
results when the percentage of additional noise is less than 50%, and the noise standard
deviation is less than 10 mm. In these cases, the noise not located on the plane boundary is
fitted into the plane model and does not influence the model parameters. The noise located
on the plane boundary may be reassigned incorrectly, so it causes some fluctuation in the
precision at different noise levels. However, when the percentage of additional noise is 50%,
and the standard deviation is 10 mm, the precision decreases substantially. By analyzing
the procedures and the final segmentation results, there is over-segmentation in the result,
which is caused by the confusion of the inner and outlier points on the Gaussian square. In
addition, our method uses the minimum energy function to reassign the outlier points, so
the experimental result for Recall is 1 because FN = 0.
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Figure 9 shows the accuracy metrics of segmented points from all methods at a
noise level of 50% and s.d. of 10 mm on a Torus point cloud. The optimal results are
achieved by the proposed method and the QTPS method, indicating the strong robustness
of these two algorithms. In a comparison between the RG method and the RANSAC
method, the former has poor robustness and eliminates the noise and its neighboring
points, which results in lower Recall; the latter has stronger robustness but is easily affected
by noise to produce over-fitting problems, resulting in lower precision. Similar to the RG,
the PLINKAGE method presents weak robustness, and although it has a high precision
value, a large number of noise points and their neighboring points are eliminated in the
segmentation procedure.
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4.3. Experiments on Real Point Cloud Datasets

Ten real datasets are used to test the proposed method, as shown in Figures 10 and 11.
The detailed data descriptions are listed in Table 2. The experimental datasets are airborne
laser scanning point clouds acquired in Vaihingen, Germany, and Toronto, Canada [59].
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Table 2. Details of real datasets.

Datasets Areas Sensors Flying
Height (m)

Acquired Date
(Month, Year)

Number of
Points

Number of
Shapes

Average Point
Distance (m)

#1 Vaihingen Leica ALS50 500 08, 2008 10,488 6 0.48
#2 Vaihingen Leica ALS50 500 08, 2008 926 6 0.65
#3 Vaihingen Leica ALS50 500 08, 2008 952 9 0.65
#4 Vaihingen Leica ALS50 500 08, 2008 1412 8 0.7
#5 Vaihingen Leica ALS50 500 08, 2008 3827 8 0.65
#6 Toronto ALTM-Orion M 650 02, 2009 44,094 36 0.6
#7 Toronto ALTM-Orion M 650 02, 2009 38,601 28 0.75
#8 Toronto ALTM-Orion M 650 02, 2009 12,574 9 0.8
#9 Toronto ALTM-Orion M 650 02, 2009 56,267 24 0.75

#10 Toronto ALTM-Orion M 650 02, 2009 59,053 10 0.7

# denotes the number of datasets.

4.3.1. Qualitative Evaluations

To further evaluate the proposed method, contrastive analysis is performed with
four state-of-the-art point cloud segmentation methods on ten typical datasets, as shown
in Figures 12 and 13. For datasets #1–#5, all buildings possess typical roof structures with
low heights, no point clouds on the elevation, low noise, clear edges, and uniform point
cloud density. All methods can segment the main shapes of the objects. The RG method
relies on the angular difference between the normals of adjacent points, which enables
it to detect most of the plane correctly. However, the normal vectors’ divergence at the
planes’ intersections makes it difficult for the RG method to correctly assign the points
there, as in dataset #4. In addition, the RG method is susceptible to noise and tends to form
holes in the segmentation results, as in dataset #1. Compared with the RG method, the
RANSAC method has stronger robustness, as can be seen in datasets #1 and #5. However, it
is affected by the point cloud density; when the point cloud is dense, the complete structure
can be extracted, and when the point cloud density is sparse, there will be unassigned
points at the intersections, as can be seen in datasets #2 and #3. Similar to the RG method,
the PLINKAGE method is sensitive to noise and tends to create holes in segmented planes.
Furthermore, it often misses some points when processing shapes’ boundaries. QTPS uses
a robust hierarchical clustering strategy based on a supervoxel, which can handle edges,
especially when dealing with sparse point clouds. However, when dealing with a dense
point cloud, there may be cross-border supervoxels, resulting in jaggedness at the edges, as
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can be seen in dataset #1. Our approach yields the optimal segmentation on all datasets,
benefiting from the clustering on the Gaussian sphere that extracts the main shapes and the
BIP optimization that reassigns outlier points to optimal shapes.
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For datasets #6–#10, the building structures are tall and complex, and point clouds exist
on some elevations, with more noise and isolated points and a non-uniform point cloud
density. Additionally, all methods can extract the objects’ primary structure. Among them,
the PLINKAGE method, which is most affected by noise, generates the most significant
number of holes and fragments. In contrast, the RG method is also affected by noise, but it
chooses to denote the points that cannot participate in region growth as outliers. Although
it generates voids, it does not classify these noises into new classes. The RANSAC and
QTPS methods are robust to noise and generate fewer fragments, but these methods are
more affected by isolated points. The former tends to create spurious facets, and the latter
tends to cluster isolated points as fragments or form spurious facets with other isolated
points due to the lack of means to deal with isolated points. Isolated points are not rare in
ALS point clouds and often appear at locations with non-uniform density on the façade.
The PLINKAGE method is prone to local convergence when dealing with these points,
resulting in over-segmentation results. The Gaussian mapping used in this method is
highly resistant to noise. This method eliminates isolated points or sparse points if they
are far away from the primary shapes, i.e., if they are not linked to the primary shapes. In
addition, all methods except the QTPS method have the ability to handle surfaces, as can
be seen in dataset #10.
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4.3.2. Quantitative Evaluations

Figure 14 shows the accuracy metrics of the proposed method and comparison meth-
ods on ten datasets. These metrics can reflect the quality of segmentation results in different
aspects. For the three metrics of Precisionp, Recallp and F1-Scorep, the segmentation re-
sults are analyzed in terms of the point level. A lower Precisionp value indicates that the
segmentation results in a large number of mis-segmented points. For example, in dataset
#4, the RG method over-segments the same plane into multiple planes. In dataset #10, the
QTPS method has difficulty handling the curved surface structure, causing the surface to
be over-segmented into multiple small facets. A lower value of Recallp indicates that more
points in the point cloud are not segmented and are finally considered outliers. For example,
in dataset #4, the PLINKAGE method only succeeds in segmenting a small portion in each
plane, and the other points in a large area are considered outliers.

Additionally, in dataset #1, the RG method similarly leads to more points being
considered outliers due to the influence of noise. For the three metrics Precisions, Recalls,
and F1-Scores, the segmentation results are analyzed in terms of the shape level. A lower
value of Precisions indicates a large number of fragments in the segmentation results. For
example, in dataset #10, QTPS uses fragmented facets to fit the surface, and in dataset #8,
PLINKAGE generates a large number of fragments due to noise sensitivity. A lower value
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of Recalls indicates that more shapes in the point cloud are not segmented. For example, in
dataset #3, QTPS fails to extract detailed structures around the building. F1-Score is the
harmonic mean of Precision and Recall.
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Although the RG method is noise-sensitive, it is known to have high precision. How-
ever, on datasets #7 and #8, Precisions is lower, but Precisionp is higher due to the fact that
the main structures in the point cloud can be extracted. Still, more fragments are extracted
due to the non-uniform density, which is especially evident in Figure 13. The segmentation
of the RANSAC method generally has a high Recall value. In these experiments, the Recallp
of most RANSAC results are higher than 0.8, and some of them are greater than 0.9. For
dataset #3, due to its small number of structures, missing out on some detailed structures
can cause a larger change in the Recalls value. For datasets #7 and #9, there are several
cases where planes close to each other are identified as the same plane, which causes the
Recalls value to decrease. Currently, the most popular methods are the RG and RANSAC
methods. From the experimental results, it can be concluded that the former method has
good precision and high efficiency. Still, the segmentation result is not complete when it
comes to outlier reassignment, which is equivalent to the coarse extraction of this paper.
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Additionally, the lack of shape parameterization makes it difficult to apply to a subsequent
3D reconstruction and other requirements. The latter has higher Recall and can parameter-
ize shapes, but the problem of spurious facets is challenging to avoid, which changes the
spatial topology of the extracted shapes, making subsequent applications more difficult.

Similar to the proposed method, the PLINKAGE and QTPS methods also adopt a
hierarchical clustering strategy. Most PLINKAGE method results have F1-Score values
higher than 80% at the point level, while their F1 values at the shape level are lower than
70%. Because this algorithm has excellent shape detection capabilities, only the connection
characteristics of local points are considered, which makes the algorithm vulnerable to noise
and outlier points, so a large number of fragments are generated. QTPS has strong plane
extraction capabilities, and, similar to the PLINKAGE method, the segmentation quality at
the point level is much higher than that at the shape level. The main reason for this is that it
is unable to recognize curved structures and is sensitive to isolated points. The PLINKAGE
method uses Gaussian kernels to calculate the density of each point. Then, it chooses the
point with the maximum local density as the center for clustering, which tends to produce
over-segmentation on a point cloud with a non-uniform density. The QTPS method uses
the strategy of supervoxel-based region growth, which optimizes the supervoxel to satisfy
strict planarity and then extracts the accurate planar structure. From the experimental
results, it can be concluded that this method does not eliminate isolated points. Too many
isolated points can greatly reduce the quality of point cloud segmentation. In addition, a
large number of supervoxels need to be optimized, which consumes much time.

Most of the accuracy metrics of the results from the proposed method are higher
than 0.9, except for Recallp and Recalls from datasets #6 and #7. There are very sparse
point clouds on the building façade of these two datasets, which make it difficult to form
high-brightness point spots when mapped onto the Gaussian sphere, so this part cannot
be identified in the main shape. Finally, the time consumption of each algorithm is shown
in Figure 15. The time consumption of the RG, RANSAC, and PLINKAGE methods is
proportional to the number of point clouds, and the time consumption of the QTPS method
and the proposed method grows exponentially with the number of point clouds.
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datasets and real datasets, it can be found that various shape primitives can be identified
intuitively on a Gaussian sphere with high accuracy. Then, this paper adopts an outlier
reassignment strategy based on the BIP optimization model for the unrecognized outlier
points. The optimization equation uses the minimum energy function and combines a
variety of constraints to reassign the remaining points, performing complete multi-shape
segmentation. The average F1-Scorep and F1-Scores of this method are 0.96 and 0.95,
respectively. Nevertheless, the efficiency of this method is still lower than that of the RG
and RANSAC methods, and further optimization is required in future research.

5. Conclusions

This paper proposes a two-stage automatic hierarchical clustering method for accurate
building segmentation from LiDAR point clouds. In the first stage, we use Gaussian map-
ping to identify various types of geometric shapes composing the building and explicitly
parameterize them to complete the point cloud’s coarse segmentation. In the second stage,
we use the BIP optimization model to reassign the outlier points to complete the fine
segmentation. Through experiments with synthetic and real datasets, it is proven that our
method can complete the segmentation of common building shapes with high accuracy.
Compared with other state-of-the-art methods, the segmentation results of the proposed
method are significantly improved in terms of completeness and accuracy, proving its
broad application prospects in 3D building reconstruction.
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