Ocean Eddies in the Drake Passage: Decoding Their Three-Dimensional Structure and Evolution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Evaluation of GLORYS12 Dataset
3.2. Eddy Radius, Voriticity and Propagation
3.3. EOF Analysis of Eddy Annual and Monthly Variations
3.4. Eddy Variations with Water Depth
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Provost, C.; Renault, A.; Barré, N.; Sennéchael, N.; Garçon, V.; Sudre, J.; Huhn, O. Two repeat crossings of Drake Passage in austral summer 2006: Short-term variations and evidence for considerable ventilation of intermediate and deep waters. Deep Sea Res. Part II Top. Stud. Oceanogr. 2011, 58, 2555–2571. [Google Scholar] [CrossRef]
- Nowlin Jr, W.D.; Whitworth III, T.; Pillsbury, R.D. Structure and transport of the Antarctic Circumpolar Current at Drake Passage from short-term measurements. J. Phys. Oceanogr. 1977, 7, 788–802. [Google Scholar] [CrossRef]
- Hofmann, E.E.; Whitworth III, T. A synoptic description of the flow at Drake Passage from year-long measurements. J. Geophys. Res. Ocean. 1985, 90, 7177–7187. [Google Scholar] [CrossRef]
- Morrow, R.; Donguy, J.-R.; Chaigneau, A.; Rintoul, S.R. Cold-core anomalies at the subantarctic front, south of Tasmania. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2004, 51, 1417–1440. [Google Scholar] [CrossRef]
- Park, Y.H.; Park, T.; Kim, T.W.; Lee, S.H.; Hong, C.S.; Lee, J.H.; Rio, M.H.; Pujol, M.I.; Ballarotta, M.; Durand, I. Observations of the Antarctic Circumpolar Current over the Udintsev Fracture Zone, the narrowest choke point in the Southern Ocean. J. Geophys. Res. Ocean. 2019, 124, 4511–4528. [Google Scholar] [CrossRef]
- Gutierrez-Villanueva, M.O.; Chereskin, T.K.; Sprintall, J. Upper-Ocean Eddy Heat Flux across the Antarctic Circumpolar Current in Drake Passage from Observations: Time-Mean and Seasonal Variability. J. Phys. Oceanogr. 2020, 50, 2507–2527. [Google Scholar] [CrossRef]
- Meredith, M.P.; Woodworth, P.L.; Chereskin, T.K.; Marshall, D.P.; Allison, L.C.; Bigg, G.R.; Donohue, K.; Heywood, K.J.; Hughes, C.W.; Hibbert, A. Sustained monitoring of the Southern Ocean at Drake Passage: Past achievements and future priorities. Rev. Geophys. 2011, 49, RG4005. [Google Scholar] [CrossRef]
- Joyce, T.; Patterson, S.; Millard, R., Jr. Anatomy of a cyclonic ring in the Drake Passage. Deep Sea Res. Part A Oceanogr. Res. Pap. 1981, 28, 1265–1287. [Google Scholar] [CrossRef]
- Sprintall, J. Seasonal to interannual upper-ocean variability in the Drake Passage. J. Mar. Res. 2003, 61, 27–57. [Google Scholar] [CrossRef]
- Barré, N.; Provost, C.; Sennechael, N.; Lee, J.H. Circulation in the Ona Basin, southern Drake Passage. J. Geophys. Res. Ocean 2008, 113, C04033. [Google Scholar] [CrossRef]
- Bryden, H.L.; Heath, R.A. Energetic eddies at the northern edge of the Antarctic Circumpolar Current in the southwest Pacific. Prog. Oceanogr. 1985, 14, 65–87. [Google Scholar] [CrossRef]
- Barré, N.; Provost, C.; Renault, A.; Sennéchael, N. Fronts, meanders and eddies in Drake Passage during the ANT-XXIII/3 cruise in January–February 2006: A satellite perspective. Deep Sea Res. Part II Top Stud. Oceanogr. 2011, 58, 2533–2554. [Google Scholar] [CrossRef]
- Zhang, B.; Klinck, J.M. The effect of Antarctic Circumpolar Current transport on the frontal variability in Drake Passage. Dyn. Atmos. Ocean 2008, 45, 208–228. [Google Scholar] [CrossRef]
- Lenn, Y.-D.; Chereskin, T.K.; Sprintall, J.; McClean, J.L. Near-surface eddy heat and momentum fluxes in the Antarctic Circumpolar Current in Drake Passage. J. Phys. Oceanogr. 2011, 41, 1385–1407. [Google Scholar] [CrossRef]
- Trani, M.; Falco, P.; Zambianchi, E. Near-surface eddy dynamics in the Southern Ocean. Polar Res. 2011, 30, 11203. [Google Scholar] [CrossRef]
- de Szoeke, R.A.; Levine, M.D. The advective flux of heat by mean geostrophic motions in the Southern Ocean. Deep Sea Res. Part A Oceanogr. Res. Pap. 1981, 28, 1057–1085. [Google Scholar] [CrossRef]
- Frenger, I.; Münnich, M.; Gruber, N. Imprint of Southern Ocean mesoscale eddies on chlorophyll. Biogeosciences 2018, 15, 4781–4798. [Google Scholar] [CrossRef]
- Kahru, M.; Mitchell, B.; Gille, S.; Hewes, C.; Holm-Hansen, O. Eddies enhance biological production in the Weddell-Scotia confluence of the Southern Ocean. Geophys. Res. Lett. 2007, 34, L14603. [Google Scholar] [CrossRef]
- Korb, R.E.; Whitehouse, M. Contrasting primary production regimes around South Georgia, Southern Ocean: Large blooms versus high nutrient, low chlorophyll waters. Deep Sea Res. Part I Oceanogr. Res. Pap. 2004, 51, 721–738. [Google Scholar] [CrossRef]
- Erickson, Z.K.; Thompson, A.F.; Cassar, N.; Sprintall, J.; Mazloff, M.R. An advective mechanism for deep chlorophyll maxima formation in southern Drake Passage. Geophys. Res. Lett. 2016, 43, 10846–10855. [Google Scholar] [CrossRef]
- Jersild, A.; Delawalla, S.; Ito, T. Mesoscale Eddies Regulate Seasonal Iron Supply and Carbon Drawdown in the Drake Passage. Geophys. Res. Lett. 2021, 48, e2021GL096020. [Google Scholar] [CrossRef]
- Bernard, A.; Ansorge, I.; Froneman, P.; Lutjeharms, J.; Bernard, K.; Swart, N. Entrainment of Antarctic euphausiids across the Antarctic Polar Front by a cold eddy. Deep Sea Res. Part I Oceanogr. Res. Pap. 2007, 54, 1841–1851. [Google Scholar] [CrossRef]
- Hu, J.; Gan, J.; Sun, Z.; Zhu, J.; Dai, M. Observed three-dimensional structure of a cold eddy in the southwestern South China Sea. J. Geophys. Res. Ocean. 2011, 116. [Google Scholar] [CrossRef]
- Zhang, Z.; Tian, J.; Qiu, B.; Zhao, W.; Chang, P.; Wu, D.; Wan, X. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea. Sci. Rep. 2016, 6, 24349. [Google Scholar] [CrossRef]
- He, Q.; Zhan, H.; Cai, S.; He, Y.; Huang, G.; Zhan, W. A new assessment of mesoscale eddies in the South China Sea: Surface features, three-dimensional structures, and thermohaline transports. J. Geophys. Res. Ocean. 2018, 123, 4906–4929. [Google Scholar] [CrossRef]
- Qiu, C.; Liang, H.; Huang, Y.; Mao, H.; Yu, J.; Wang, D.; Su, D. Development of double cyclonic mesoscale eddies at around Xisha Islands observed by a ‘Sea-Whale 2000’autonomous underwater vehicle. Appl. Ocean. Res. 2020, 101, 102270. [Google Scholar] [CrossRef]
- Liu, Z.; Liao, G.; Hu, X.; Zhou, B. Aspect ratio of eddies inferred from Argo floats and satellite altimeter data in the ocean. J. Geophys. Res. Ocean. 2020, 125, e2019JC015555. [Google Scholar] [CrossRef]
- Petersen, M.R.; Williams, S.J.; Maltrud, M.E.; Hecht, M.W.; Hamann, B. A three-dimensional eddy census of a high-resolution global ocean simulation. J. Geophys. Res. Ocean. 2013, 118, 1759–1774. [Google Scholar] [CrossRef]
- Cunningham, S.; Alderson, S.; King, B.; Brandon, M. Transport and variability of the Antarctic circumpolar current in drake passage. J. Geophys. Res. Ocean. 2003, 108. [Google Scholar] [CrossRef]
- Jean-Michel, L.; Eric, G.; Romain, B.-B.; Gilles, G.; Angélique, M.; Marie, D.; Clément, B.; Mathieu, H.; Olivier, L.G.; Charly, R. The Copernicus global 1/12 oceanic and sea ice GLORYS12 reanalysis. Front. Earth Sci. 2021, 9, 698876. [Google Scholar] [CrossRef]
- Lellouche, J.-M.; Le Galloudec, O.; Greiner, E.; Garric, G.; Regnier, C.; Drevillon, M.; Bourdallé-Badie, R.; Bricaud, C.; Drillet, Y.; Le Traon, P.-Y. The Copernicus Marine Environment Monitoring Service global ocean 1/12 physical reanalysis GLORYS12V1: Description and quality assessment. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 8–13 April 2018; p. 19806. [Google Scholar]
- Pujol, M.-I.; Faugère, Y.; Taburet, G.; Dupuy, S.; Pelloquin, C.; Ablain, M.; Picot, N. DUACS DT2014: The new multi-mission altimeter data set reprocessed over 20 years. Ocean Sci. 2016, 12, 1067–1090. [Google Scholar] [CrossRef]
- Ezraty, R.; Girard-Ardhuin, F.; Piollé, J.-F.; Kaleschke, L.; Heygster, G. Arctic and Antarctic Sea Ice Concentration and Arctic Sea Ice Drift Estimated from Special Sensor Microwave Data; Département d’Océanographie Physique et Spatiale (IFREMER): Brest, France; University of Bremen: Bremen, Germany, 2007. [Google Scholar]
- Cabanes, C.; Grouazel, A.; von Schuckmann, K.; Hamon, M.; Turpin, V.; Coatanoan, C.; Paris, F.; Guinehut, S.; Boone, C.; Ferry, N. The CORA dataset: Validation and diagnostics of in-situ ocean temperature and salinity measurements. Ocean Sci. 2013, 9, 1–18. [Google Scholar] [CrossRef]
- Szekely, T.; Gourrion, J.; Pouliquen, S.; Reverdin, G.; Merceur, F. CORA, Coriolis Ocean Dataset for Reanalysis. 2019. Available online: https://www.seanoe.org/data/00351/46219/ (accessed on 13 January 2022).
- Artana, C.; Ferrari, R.; Bricaud, C.; Lellouche, J.-M.; Garric, G.; Sennéchael, N.; Lee, J.-H.; Park, Y.-H.; Provost, C. Twenty-five years of Mercator ocean reanalysis GLORYS12 at Drake Passage: Velocity assessment and total volume transport. Adv. Space Res. 2021, 68, 447–466. [Google Scholar] [CrossRef]
- Xia, Q.; Li, G.; Dong, C. Global Oceanic Mass Transport by Coherent Eddies. J. Phys. Oceanogr. 2022, 52, 1111–1132. [Google Scholar] [CrossRef]
- Artana, C.; Provost, C.; Poli, L.; Ferrari, R.; Lellouche, J.M. Revisiting the Malvinas Current Upper Circulation and Water Masses Using a High-Resolution Ocean Reanalysis. J. Geophys. Res. Ocean. 2021, 126, e2021JC017271. [Google Scholar] [CrossRef]
- Meng, Y.; Liu, H.; Lin, P.; Ding, M.; Dong, C. Oceanic mesoscale eddy in the Kuroshio extension: Comparison of four datasets. Atmos. Ocean. Sci. Lett. 2021, 14, 100011. [Google Scholar] [CrossRef]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M. Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 2011, 91, 167–216. [Google Scholar] [CrossRef]
- Fu, L.-L.; Chelton, D.B.; Le Traon, P.-Y.; Morrow, R. Eddy dynamics from satellite altimetry. Oceanography 2010, 23, 14–25. [Google Scholar] [CrossRef]
- Okubo, A. Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep Sea Res. Oceanogr. Abstr. 1970, 17, 445–454. [Google Scholar] [CrossRef]
- Weiss, L.A. Bankruptcy resolution: Direct costs and violation of priority of claims. J. Financ. Econ. 1990, 27, 285–314. [Google Scholar] [CrossRef]
- Chaigneau, A.; Gizolme, A.; Grados, C. Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns. Prog. Oceanogr. 2008, 79, 106–119. [Google Scholar] [CrossRef]
- Nencioli, F.; Dong, C.; Dickey, T.; Washburn, L.; McWilliams, J.C. A vector geometry–based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight. J. Atmos. Ocean. Technol. 2010, 27, 564–579. [Google Scholar] [CrossRef]
- Cui, W.; Wang, W.; Zhang, J.; Yang, J. Identification and census statistics of multicore eddies based on sea surface height data in global oceans. Acta Oceanol. Sin. 2020, 39, 41–51. [Google Scholar] [CrossRef]
- Xing, T.; Yang, Y. Three mesoscale eddy detection and tracking methods: Assessment for the South China Sea. J. Atmos. Ocean. Technol. 2021, 38, 243–258. [Google Scholar] [CrossRef]
- Chen, G.; Hou, Y.; Chu, X. Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure. J. Geophys. Res. Ocean. 2011, 116, C06018. [Google Scholar] [CrossRef]
- Mkhinini, N.; Coimbra, A.L.S.; Stegner, A.; Arsouze, T.; Taupier-Letage, I.; Béranger, K. Long-lived mesoscale eddies in the eastern Mediterranean Sea: Analysis of 20 years of AVISO geostrophic velocities. J. Geophys. Res. Ocean. 2014, 119, 8603–8626. [Google Scholar] [CrossRef]
- Schaeffer, A.; Gramoulle, A.; Roughan, M.; Mantovanelli, A. Characterizing frontal eddies along the East Australian Current from HF radar observations. J. Geophys. Res. Ocean. 2017, 122, 3964–3980. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, S.; Lin, X.; Qiu, B.; Yu, L. Characteristics of 3-Dimensional Structure and Heat Budget of Mesoscale Eddies in the South Atlantic Ocean. J. Geophys. Res. Ocean. 2021, 126, e2020JC016922. [Google Scholar] [CrossRef]
- Dong, C.; Lin, X.; Liu, Y.; Nencioli, F.; Chao, Y.; Guan, Y.; Chen, D.; Dickey, T.; McWilliams, J.C. Three-dimensional oceanic eddy analysis in the Southern California Bight from a numerical product. J. Geophys. Res. Ocean. 2012, 117, C00H14. [Google Scholar] [CrossRef]
- Lin, X.; Dong, C.; Chen, D.; Liu, Y.; Yang, J.; Zou, B.; Guan, Y. Three-dimensional properties of mesoscale eddies in the South China Sea based on eddy-resolving model output. Deep Sea Res. Part I Oceanogr. Res. Pap. 2015, 99, 46–64. [Google Scholar] [CrossRef]
- Qiu, C.; Yi, Z.; Su, D.; Wu, Z.; Liu, H.; Lin, P.; He, Y.; Wang, D. Cross-Slope Heat and Salt Transport Induced by Slope Intrusion Eddy’s Horizontal Asymmetry in the Northern South China Sea. J. Geophys. Res. Ocean. 2022, 127, e2022JC018406. [Google Scholar] [CrossRef]
- Klinck, J.; Nowlin, W. Antarctic Circumpolar Current. In Encyclopedia of Ocean Sciences; Steele, J., Thorpe, S., Turekian, K., Eds.; Academic Press: Cambridge, MA, USA, 2001; Volume 151, p. 159. [Google Scholar]
- Frenger, I.; Münnich, M.; Gruber, N.; Knutti, R. Southern Ocean eddy phenomenology. J. Geophys. Res. Ocean. 2015, 120, 7413–7449. [Google Scholar] [CrossRef]
- Yang, G.; Lin, X.; Han, G.; Liu, Y.; Chen, G.; Wang, J. Three-dimensional characteristics of mesoscale eddies simulated by a regional model in the northwestern Pacific Ocean during 2000–2008. Acta Oceanol. Sin. 2022, 41, 74–93. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, X.; Zhao, H.; Liu, Y.; Han, G.; Zhang, H.; Liao, X. Ocean Eddies in the Drake Passage: Decoding Their Three-Dimensional Structure and Evolution. Remote Sens. 2023, 15, 2462. https://doi.org/10.3390/rs15092462
Lin X, Zhao H, Liu Y, Han G, Zhang H, Liao X. Ocean Eddies in the Drake Passage: Decoding Their Three-Dimensional Structure and Evolution. Remote Sensing. 2023; 15(9):2462. https://doi.org/10.3390/rs15092462
Chicago/Turabian StyleLin, Xiayan, Hui Zhao, Yu Liu, Guoqing Han, Han Zhang, and Xiaomei Liao. 2023. "Ocean Eddies in the Drake Passage: Decoding Their Three-Dimensional Structure and Evolution" Remote Sensing 15, no. 9: 2462. https://doi.org/10.3390/rs15092462
APA StyleLin, X., Zhao, H., Liu, Y., Han, G., Zhang, H., & Liao, X. (2023). Ocean Eddies in the Drake Passage: Decoding Their Three-Dimensional Structure and Evolution. Remote Sensing, 15(9), 2462. https://doi.org/10.3390/rs15092462