Effects of Land Cover Change on Vegetation Carbon Source/Sink in Arid Terrestrial Ecosystems of Northwest China, 2001–2018
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.3. Methods
2.3.1. CASA Model
2.3.2. Model Improvements
2.3.3. NEP Estimation Algorithm
2.3.4. Trend Analysis
2.3.5. Scenario Design
3. Results
3.1. Validation of NPP Estimation Results
3.2. Land Cover Change during the Study Periods
3.3. Spatial Distribution and Temporal Variation of Carbon Source/Sink
3.3.1. Spatial Distribution of Carbon Source/Sink
3.3.2. Temporal Variation in Vegetation Carbon Sources/Sinks
3.4. Effects of Land Cover Change on Vegetation Carbon Source/Sink
3.4.1. Changes in NEP in the Context of Expansion of Different Land Cover Types
3.4.2. Results of Modeling Scenario Design
4. Discussion
4.1. Overall Vegetation Carbon Source/Sink in the ARNWC
4.2. Vegetation Carbon Source/Sink in Different Land Cover Types and Their Response to Land Cover Change
4.3. Uncertainties
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Friedlingstein, P.; Jones, M.W.; O’Sullivan, M.; Andrew, R.M.; Bakker, D.C.E.; Hauck, J.; Le Quere, C.; Peters, G.P.; Peters, W.; Pongratz, J.; et al. Global Carbon Budget 2021. Earth Syst. Sci. Data 2022, 14, 1917–2005. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Hauck, J.; Olsen, A.; Peters, G.P.; Peters, W.; Pongratz, J.; Sitch, S.; et al. Global Carbon Budget 2020. Earth Syst. Sci. Data 2020, 12, 3269–3340. [Google Scholar] [CrossRef]
- Zhu, X.J.; Yu, G.R.; He, H.L.; Wang, Q.F.; Chen, Z.; Gao, Y.N.; Zhang, Y.P.; Zhang, J.H.; Yan, J.H.; Wang, H.M.; et al. Geographical statistical assessments of carbon fluxes in terrestrial ecosystems of China: Results from upscaling network observations. Glob. Planet. Chang. 2014, 118, 52–61. [Google Scholar] [CrossRef]
- Yao, Y.T.; Li, Z.J.; Wang, T.; Chen, A.P.; Wang, X.H.; Du, M.Y.; Jia, G.S.; Li, Y.N.; Li, H.Q.; Luo, W.J.; et al. A new estimation of China’s net ecosystem productivity based on eddy covariance measurements and a model tree ensemble approach. Agric. For. Meteorol. 2018, 253–254, 84–93. [Google Scholar] [CrossRef]
- Fang, J.Y.; Guo, Z.D.; Piao, S.L.; Chen, A.P. Terrestrial vegetation carbon sinks in China, 1981–2000. Sci. China Ser. D-Earth Sci. 2007, 50, 1341–1350. [Google Scholar] [CrossRef]
- Houghton, R.A.; Hackler, J.L.; Lawrence, K.T. The US carbon budget: Contributions from land-use change. Science 1999, 285, 574–578. [Google Scholar] [CrossRef]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Chang. Hum. Policy Dimens. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Song, C.H.; Zhang, K.R.; Cheng, X.L.; Band, L.E.; Zhang, Q.F. Effects of land use/land cover and climate changes on terrestrial net primary productivity in the Yangtze River Basin, China, from 2001 to 2010. J. Geophys. Res. Biogeosci. 2014, 119, 1092–1109. [Google Scholar] [CrossRef]
- Chen, Y.N.; Yang, Q.; Luo, Y.; Shen, Y.J.; Pan, X.L.; Li, L.H.; Li, Z.Q. Ponder on the issues of water resources in the arid region of northwest China. Arid Land Geogr. 2012, 35, 1–9. [Google Scholar] [CrossRef]
- Cai, D.W.; Ge, Q.S.; Wang, X.M.; Liu, B.L.; Goudie, A.S.; Hu, S. Contributions of ecological programs to vegetation restoration in arid and semiarid China. Environ. Res. Lett. 2020, 15, 114046. [Google Scholar] [CrossRef]
- Xie, S.D.; Mo, X.G.; Hu, S.; Liu, S.X. Contributions of climate change, elevated atmospheric CO2 and human activities to ET and GPP trends in the Three-North Region of China. Agric. For. Meteorol. 2020, 295, 108183. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, X.Z.; Zhou, R.; Tian, T.; Cui, J.Y.; Zhao, L.; Wang, G.R.; Xiong, Y.C. Labor force transfer, vegetation restoration and ecosystem service in the Qilian Mountains. J. Environ. Manag. 2021, 288, 112387. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.F.; Mu, S.J.; Li, J.L. Effects of ecological restoration projects on land use and land cover change and its influences on territorial NPP in Xinjiang, China. CATENA 2014, 115, 85–95. [Google Scholar] [CrossRef]
- Bai, X.Y.; Fu, J.X.; Li, Y.; Li, Z. Attributing vegetation change in an arid and cold watershed with complex ecosystems in northwest China. Ecol. Indic. 2022, 138, 108835. [Google Scholar] [CrossRef]
- Gu, Q.; Wei, J.; Luo, S.C.; Ma, M.G.; Tang, X.G. Potential and environmental control of carbon sequestration in major ecosystems across arid and semi-arid regions in China. Sci. Total Environ. 2018, 645, 796–805. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.N.; Li, W.H.; Deng, H.J.; Fang, G.H. Potential impacts of climate change on vegetation dynamics in Central Asia. J. Geophys. Res. Atmos. 2015, 120, 12345–12356. [Google Scholar] [CrossRef]
- Zhu, S.H.; Li, C.F.; Shao, H.; Ju, W.M.; Lv, N.N. The response of carbon stocks of drylands in Central Asia to changes of CO2 and climate during past 35 years. Sci. Total Environ. 2019, 687, 330–340. [Google Scholar] [CrossRef]
- Hubau, W.; Lewis, S.L.; Phillips, O.L.; Affum-Baffoe, K.; Beeckman, H.; Cuni-Sanchez, A.; Daniels, A.K.; Ewango, C.E.N.; Fauset, S.; Mukinzi, J.M.; et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 2020, 579, 80–87. [Google Scholar] [CrossRef]
- Pan, Y.D.; Birdsey, R.A.; Fang, J.Y.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef]
- Tang, X.L.; Zhao, X.; Bai, Y.F.; Tang, Z.Y.; Wang, W.T.; Zhao, Y.C.; Wan, H.W.; Xie, Z.Q.; Shi, X.Z.; Wu, B.F.; et al. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proc. Natl. Acad. Sci. USA 2018, 115, 4021–4026. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Saatchi, S.S.; Yang, Y.; Yu, Y.F.; Pongratz, J.; Bloom, A.A.; Bowman, K.; Worden, J.; Liu, J.J.; Yin, Y.; et al. Changes in global terrestrial live biomass over the 21st century. Sci. Adv. 2021, 7, eabe9829. [Google Scholar] [CrossRef] [PubMed]
- Bodesheim, P.; Jung, M.; Gans, F.; Mahecha, M.D.; Reichstein, M. Upscaled diurnal cycles of land-atmosphere fluxes: A new global half-hourly data product. Earth Syst. Sci. Data 2018, 10, 1327–1365. [Google Scholar] [CrossRef]
- Ichii, K.; Ueyama, M.; Kondo, M.; Saigusa, N.; Kim, J.; Carmelita Alberto, M.; Ardoe, J.; Euskirchen, E.S.; Kang, M.; Hirano, T.; et al. New data-driven estimation of terrestrial CO2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression. J. Geophys. Res. Biogeosci. 2017, 122, 767–795. [Google Scholar] [CrossRef]
- Jung, M.; Schwalm, C.; Migliavacca, M.; Walther, S.; Camps-Valls, G.; Koirala, S.; Anthoni, P.; Besnard, S.; Bodesheim, P.; Carvalhais, N.; et al. Scaling carbon fluxes from eddy covariance sites to globe: Synthesis and evaluation of the FLUXCOM approach. Biogeosciences 2020, 17, 1343–1365. [Google Scholar] [CrossRef]
- Ciais, P.; Tan, J.; Wang, X.; Roedenbeck, C.; Chevallier, F.; Piao, S.L.; Moriarty, R.; Broquet, G.; Le Quere, C.; Canadell, J.G.; et al. Five decades of northern land carbon uptake revealed by the interhemispheric CO2 gradient. Nature 2019, 568, 221–225. [Google Scholar] [CrossRef]
- Thompson, R.L.; Patra, P.K.; Chevallier, F.; Maksyutov, S.; Law, R.M.; Ziehn, T.; van der Laan-Luijkx, I.T.; Peters, W.; Ganshin, A.; Zhuravlev, R.; et al. Top-down assessment of the Asian carbon budget since the mid 1990s. Nat. Commun. 2016, 7, 10724. [Google Scholar] [CrossRef]
- Wang, J.; Feng, L.; Palmer, P.I.; Liu, Y.; Fang, S.X.; Bosch, H.; O’Dell, C.W.; Tang, X.P.; Yang, D.X.; Liu, L.X.; et al. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data. Nature 2020, 586, 720–723. [Google Scholar] [CrossRef]
- Chang, J.F.; Ciais, P.; Wang, X.H.; Piao, S.L.; Asrar, G.; Betts, R.; Chevallier, F.; Dury, M.; Francois, L.; Frieler, K.; et al. Benchmarking carbon fluxes of the ISIMIP2a biome models. Environ. Res. Lett. 2017, 12, 5002. [Google Scholar] [CrossRef]
- Piao, S.L.; Huang, M.T.; Liu, Z.; Wang, X.H.; Ciais, P.; Canadell, J.G.; Wang, K.; Bastos, A.; Friedlingstein, P.; Houghton, R.A.; et al. Lower land-use emissions responsible for increased net land carbon sink during the slow warming period. Nat. Geosci. 2018, 11, 739–743. [Google Scholar] [CrossRef]
- Fang, J.Y.; Ke, J.H.; Tang, Z.Y.; Chen, A.P. Implications and estimations of four terrestrial productivity parameters. Chin. J. Plant Ecol. 2001, 25, 414–419. [Google Scholar]
- Zhao, J.F.; Ma, J.Y.; Zhu, Y.J. Evaluating impacts of climate change on net ecosystem productivity (NEP) of global different forest types based on an individual tree-based model FORCCHN and remote sensing. Glob. Planet. Chang. 2019, 182, 103010. [Google Scholar] [CrossRef]
- Ruimy, A.; Saugier, B.; Dedieu, G. Methodology for the estimation of terrestrial net primary production from remotely sensed data. J. Geophys. Res. Atmos. 1994, 99, 5263–5283. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, Y.; Wu, Q.; Liu, S.; Song, C.; Xiao, J.; Band, L.E.; Vose, J.M. Vegetation structural change and CO2 fertilization more than offset gross primary production decline caused by reduced solar radiation in China. Agric. For. Meteorol. 2021, 296, 108207. [Google Scholar] [CrossRef]
- Dunne, J.P.; John, J.G.; Shevliakova, E.; Stouffer, R.J.; Krasting, J.P.; Malyshev, S.L.; Milly, P.C.D.; Sentman, L.T.; Adcroft, A.J.; Cooke, W.; et al. GFDL’s ESM2 Global Coupled Climate-Carbon Earth System Models. Part II: Carbon System Formulation and Baseline Simulation Characteristics. J. Clim. 2013, 26, 2247–2267. [Google Scholar] [CrossRef]
- Liu, C.Y.; Dong, X.F.; Liu, Y.Y. Changes of NPP and their relationship to climate factors based on the transformation of different scales in Gansu, China. CATENA 2015, 125, 190–199. [Google Scholar] [CrossRef]
- Huang, H.; Calabrese, S.; Rodriguez-Iturbe, I. Variability of ecosystem carbon source from microbial respiration is controlled by rainfall dynamics. Proc. Natl. Acad. Sci. USA 2021, 118, e2115283118. [Google Scholar] [CrossRef]
- Pei, Z.-Y.; Ouyang, H.; Zhou, C.-P.; Xu, X.-L. Carbon Balance in an Alpine Steppe in the Qinghai-Tibet Plateau. J. Integr. Plant Biol. 2009, 51, 521–526. [Google Scholar] [CrossRef]
- Yao, J.Q.; Yang, Q.; Liu, Z.H.; Li, C.Z. Spatio-temporal change of precipitation in arid region of the Northwest China. Acta Ecol. Sin. 2015, 35, 5846–5855. [Google Scholar]
- Wang, H.J.; Li, Z.; Niu, Y.; Li, X.C.; Cao, L.; Feng, R.; He, Q.N.; Pan, Y.P. Evolution and Climate Drivers of NDVI of Natural Vegetation during the Growing Season in the Arid Region of Northwest China. Forests 2022, 13, 1082. [Google Scholar] [CrossRef]
- Peng, S.Z.; Ding, Y.X.; Liu, W.Z.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Tang, W.J.; Yang, K.; Qin, J.; Li, X.; Niu, X.L. A 16-year dataset (2000–2015) of high-resolution (3 h, 10 km) global surface solar radiation. Earth Syst. Sci. Data 2019, 11, 1905–1915. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. Data Descriptor: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.H.; Fang, J.Y.; Ma, W.H.; Guo, D.L.; Mohammat, A. Large-scale pattern of biomass partitioning across China’s grasslands. Glob. Ecol. Biogeogr. 2010, 19, 268–277. [Google Scholar] [CrossRef]
- Mohammat, A.; Yang, Y.H.; Guo, Z.D.; Fang, J.Y. Carbon contents and its vertical distribution in alpine grasslands in Bayinbulak, middle stretch of the Tianshan Mountains of Xinjiang. Chin. J. Plant Ecol. 2006, 30, 545–552. [Google Scholar]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial ecosystem production—A process model-based on global satellite and surface data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Zhu, W.Q.; Pan, Y.Z.; Zhang, J.S. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing. Chin. J. Plant Ecol. 2007, 31, 413–424. [Google Scholar]
- Goward, S.N.; Huemmrich, K.F. Vegetation canopy par absorptance and the normalized difference vegetation index—An assessment using the sail model. Remote Sens. Environ. 1992, 39, 119–140. [Google Scholar] [CrossRef]
- Yan, S.C.; Wu, Y.; Fan, J.L.; Zhang, F.C.; Guo, J.J.; Zheng, J.; Wu, L.F.; Lu, J.S. Quantifying nutrient stoichiometry and radiation use efficiency of two maize cultivars under various water and fertilizer management practices in northwest China. Agric. Water Manag. 2022, 271, 107772. [Google Scholar] [CrossRef]
- Zhu, W.Q.; Pan, Y.Z.; He, H.; Yu, D.Y.; Hu, H.B. Simulation of maximum light use efficiency for some typical vegetation types in China. Chin. Sci. Bull. 2006, 51, 457–463. [Google Scholar] [CrossRef]
- Feng, Y.M.; Yao, A.D.; Jiang, L.N. Improving the CASA model and applying it to estimate the net primary productivity of arid region ecology system. J. Arid Land Resour. Environ. 2014, 28, 39–43. [Google Scholar] [CrossRef]
- Jiao, W.; Chen, Y.; Li, Z. Remote sensing estimation and the reasons for temporal-spatial differences of vegetation net primary productivity in arid region of Northwest China. Chin. J. Ecol. 2017, 36, 181–189. [Google Scholar]
- Pan, J.H.; Wen, Y. Estimation and spatial-temporal characteristics of carbon sink in the arid region of northwest China. Acta Ecol. Sin. 2015, 35, 7718–7728. [Google Scholar]
- Brandt, M.; Hiernaux, P.; Rasmussen, K.; Tucker, C.J.; Wigneron, J.-P.; Diouf, A.A.; Herrmann, S.M.; Zhang, W.M.; Kergoat, L.; Mbow, C.; et al. Changes in rainfall distribution promote woody foliage production in the Sahel. Commun. Biol. 2019, 2, 133. [Google Scholar] [CrossRef]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R.; Farquhar, G.D. Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys. Res. Lett. 2013, 40, 3031–3035. [Google Scholar] [CrossRef]
- Yang, Y.H.; Shi, Y.; Sun, W.J.; Chang, J.F.; Zhu, J.X.; Chen, L.Y.; Wang, X.; Guo, Y.P.; Zhang, H.T.; Yu, L.F.; et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Sci. China Life Sci. 2022, 65, 861–895. [Google Scholar] [CrossRef]
- Su, Y.G.; Wu, L.; Zhang, Y.M. Characteristics of carbon flux in two biologically crusted soils in the Gurbantunggut Desert, Northwestern China. CATENA 2012, 96, 41–48. [Google Scholar] [CrossRef]
- Li, X.R.; Kong, D.S.; Tan, H.J.; Wang, X.P. Changes in soil and vegetation following stabilisation of dunes in the southeastern fringe of the Tengger Desert, China. Plant Soil 2007, 300, 221–231. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Nie, H.L. Effects of biological soil crusts on seedling growth and element uptake in five desert plants in Junggar Basin, western China. Chin. J. Plant Ecol. 2011, 35, 380–388. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.N.; Zhang, Q.F.; Li, Y. Spatial patterns of vegetation carbon sinks and sources under water constraint in Central Asia. J. Hydrol. 2020, 590, 125355. [Google Scholar] [CrossRef]
- Huang, H.C.; Wen, L.Y.; Kong, X.B.; Chen, W.G.; Sun, X.B. The Impact of Spatial Pattern Evolution of Cultivated Land on Cultivated Land Suitability in China and Its Policy Implication. China Land Sci. 2021, 35, 61–70. [Google Scholar]
- Liu, Y.S.; Fang, F.; Li, Y.H. Key issues of land use in China and implications for policy making. Land Use Policy 2014, 40, 6–12. [Google Scholar] [CrossRef]
- Xu, E.Q.; Zhang, H.Q.; Xu, Y.M. Exploring land reclamation history: Soil organic carbon sequestration due to dramatic oasis agriculture expansion in arid region of Northwest China. Ecol. Indic. 2020, 108, 105746. [Google Scholar] [CrossRef]
- Xu, Z.H.; Fan, W.G.; Wei, H.J.; Zhang, P.; Ren, J.H.; Gao, Z.C.; Ulgiati, S.; Kong, W.D.; Dong, X.B. Evaluation and simulation of the impact of land use change on ecosystem services based on a carbon flow model: A case study of the Manas River Basin of Xinjiang, China. Sci. Total Environ. 2019, 652, 117–133. [Google Scholar] [CrossRef]
- Liu, F.; Zeng, Y.N. Analysis of the spatio-temporal variation of vegetation carbon source/sink in Qinghai Plateau from 2000–2015. Acta Ecol. Sin. 2021, 41, 5792–5803. [Google Scholar]
- Fang, J.Y.; Guo, Z.D.; Hu, H.F.; Kato, T.; Muraoka, H.; Son, Y. Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth. Glob. Chang. Biol. 2014, 20, 2019–2030. [Google Scholar] [CrossRef]
- Guo, Z.D.; Hu, H.F.; Li, P.; Li, N.Y.; Fang, J.Y. Spatio-temporal changes in biomass carbon sinks in China’s forests from 1977 to 2008. Sci. China-Life Sci. 2013, 56, 661–671. [Google Scholar] [CrossRef]
- Cai, Z.Z.; Huai, Y.J.; Bai, T.; Dong, L. Recent Changes of Grassland Cover in Xinjiang Based on NDVI Analysis. J. Basic Sci. Eng. 2020, 28, 1369–1381. [Google Scholar] [CrossRef]
- Li, Y.G.; Liu, W.; Feng, Q.; Zhu, M.; Yang, L.S.; Zhang, J.T. Effects of land use and land cover change on soil organic carbon storage in the Hexi regions, Northwest China. J. Environ. Manag. 2022, 312, 114911. [Google Scholar] [CrossRef]
- Shi, Y.F.; Shen, Y.P.; Kang, E.; Li, D.L.; Ding, Y.J.; Zhang, G.W.; Hu, R.J. Recent and future climate change in northwest china. Clim. Chang. 2007, 80, 379–393. [Google Scholar] [CrossRef]
- Zhang, F.G.; Zeng, B.; Yang, T.B. Spatiotemporal distribution changes in alpine desert belt in Qilian Mountains under climate changes in past 30 years. Chin. J. Plant Ecol. 2019, 43, 305–319. [Google Scholar] [CrossRef]
- Zhai, Y.X.; Zhang, F.Y.; Ma, L.N. Changes of Production-Living-Ecology Land Transformation and Eco-environmental Effects in Xinjiang in Last 40 Years. Chin. J. Soil Sci. 2022, 53, 514–523. [Google Scholar] [CrossRef]
- Wu, R.; Li, Z.G.; Wang, S.J. The varying driving forces of urban land expansion in China: Insights from a spatial-temporal analysis. Sci. Total Environ. 2021, 766, 142591. [Google Scholar] [CrossRef] [PubMed]
- Ding, T.; Sun, Y.G.; Huang, C.; Mu, C.L.; Fan, Y.Q.; Lin, J.; Qin, Y.N. Pathways of clean energy heating electrification programs for reducing carbon emissions in Northwest China. Renew. Sustain. Energy Rev. 2022, 166, 112679. [Google Scholar] [CrossRef]
- Zhang, X.X.; Brandt, M.; Tong, X.W.; Ciais, P.; Yue, Y.M.; Xiao, X.M.; Zhang, W.M.; Wang, K.L.; Fensholt, R. A large but transient carbon sink from urbanization and rural depopulation in China. Nat. Sustain. 2022, 5, 321–328. [Google Scholar] [CrossRef]
- Du, J.Q.; Fu, Q.; Fang, S.F.; Wu, J.H.; He, P.; Quan, Z.J. Effects of rapid urbanization on vegetation cover in the metropolises of China over the last four decades. Ecol. Indic. 2019, 107, 105458. [Google Scholar] [CrossRef]
- Ding, L.P.; Zhou, Q.M.; Wei, J.C. Estimation of Endocarpon pusillum Hedwig carbon budget in the Tengger Desert based on its photosynthetic rate. Sci. China-Life Sci. 2013, 56, 848–855. [Google Scholar] [CrossRef]
- Poulter, B.; Frank, D.; Ciais, P.; Myneni, R.B.; Andela, N.; Bi, J.; Broquet, G.; Canadell, J.G.; Chevallier, F.; Liu, Y.Y.; et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 2014, 509, 600–603. [Google Scholar] [CrossRef]
- Ye, X.; Chuai, X.W. Carbon sinks/sources? Spatiotemporal evolution in China and its response to built-up land expansion. J. Environ. Manag. 2022, 321, 115863. [Google Scholar] [CrossRef]
- Fu, J.Y.; Wang, W.G.; Zaitchik, B.; Nie, W.S.; Fei, E.X.; Miller, S.M.; Harman, C.J. Critical Role of Irrigation Efficiency for Cropland Expansion in Western China Arid Agroecosystems. Earths Future 2022, 10, e2022EF002955. [Google Scholar] [CrossRef]
- Liu, H.C.; Fan, J.; Liu, B.Y.; Wang, L.; Qiao, Q. Practical Exploration of Ecological Restoration and Management of the Mountains-Rivers-Forests-Farmlands-Lakes-Grasslands System in the Irtysh River Basin in Altay, Xinjiang. J. Resour. Ecol. 2021, 12, 766–776. [Google Scholar]
- Yu, T.; Jiapaer, G.; Long, G.; Li, X.; Jing, J.Y.; Liu, Y.; De Maeyer, P.; Van de Voorde, T. Interannual and seasonal relationships between photosynthesis and summer soil moisture in the Ili River basin, Xinjiang, 2000–2018. Sci. Total Environ. 2022, 856 Pt 2, 159191. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.J.; Liu, H.J.; Cui, D.; Chen, C. Spatiotemporal dynamics of grassland degradation in Yili Valley of Xinjiang over the last 15 years. Pratacultural Sci. 2018, 35, 508–520. [Google Scholar]
- Houghton, R.A. Keeping management effects separate from environmental effects in terrestrial carbon accounting. Glob. Chang. Biol. 2013, 19, 2609–2612. [Google Scholar] [CrossRef]
- Li, W.; MacBean, N.; Ciais, P.; Defourny, P.; Lamarche, C.; Bontemps, S.; Houghton, R.A.; Peng, S.S. Gross and net land cover changes in the main plant functional types derived from the annual ESA CCI land cover maps (1992–2015). Earth Syst. Sci. Data 2018, 10, 219–234. [Google Scholar] [CrossRef]
- Yan, J.J.; Zhang, G.P.; Ling, H.B.; Han, F.F. Comparison of time-integrated NDVI and annual maximum NDVI for assessing grassland dynamics. Ecol. Indic. 2022, 136, 108611. [Google Scholar] [CrossRef]
- Hao, D.; Bisht, G.; Huang, M.; Ma, P.-L.; Tesfa, T.; Lee, W.-L.; Gu, Y.; Leung, L.R. Impacts of Sub-Grid Topographic Representations on Surface Energy Balance and Boundary Conditions in the E3SM Land Model: A Case Study in Sierra Nevada. J. Adv. Model. Earth Syst. 2022, 14, e2021MS002862. [Google Scholar] [CrossRef]
- Bair, E.H.; Stillinger, T.; Dozier, J. Snow Property Inversion From Remote Sensing (SPIReS): A Generalized Multispectral Unmixing Approach With Examples From MODIS and Landsat 8 OLI. IEEE Trans. Geosci. Remote Sens. 2021, 59, 7270–7284. [Google Scholar] [CrossRef]
- Tesfa, T.K.; Leung, L.R.; Ghan, S.J. Exploring Topography-Based Methods for Downscaling Subgrid Precipitation for Use in Earth System Models. J. Geophys. Res. Atmos. 2020, 125, e2019JD031456. [Google Scholar] [CrossRef]
- Xie, X.; Li, A.; Tian, J.; Wu, C.; Jin, H. A fine spatial resolution estimation scheme for large-scale gross primary productivity (GPP) in mountain ecosystems by integrating an eco-hydrological model with the combination of linear and non-linear downscaling processes. J. Hydrol. 2023, 616, 128833. [Google Scholar] [CrossRef]
Group | Parameter | Data Source | Period | Spatial Resolution | Temporal Resolution |
---|---|---|---|---|---|
Vegetation | Land cover | European Space Agency | 1992–2020 | 300 m | Yearly |
NDVI | MODIS MOD13Q1 | 2000–2022 | 250 m | 16-day | |
EVI | MODIS MOD13Q1 | 2000–2022 | 250 m | 16-day | |
Climate | Temperature [41] | National Earth System Science Data Center | 1901–2100 | 1 km | Monthly |
Precipitation [41] | National Earth System Science Data Center | 1901–2100 | 1 km | Monthly | |
Surface solar radiation [42] | National Tibetan Plateau Data Center | 1983–2018 | 0.1° (~10 km) | Monthly | |
Evapotranspiration [43] | Terra Climate | 1958–2021 | 1/24° (~4 km) | Monthly | |
Potential evapotranspiration [43] | Terra Climate | 1958–2021 | 1/24° (~4 km) | Monthly | |
Boundary | Study area boundary | National Cryosphere Desert Data Center | – | – | – |
Cropland | Forestland | Grassland | Urban Areas | Bare Areas | |
---|---|---|---|---|---|
εmax | 0.604 | 0.774 | 0.380 | 0.202 | 0.301 |
Group | Scenario | Land Cover Type | NDVI/EVI | Rad | Tem | WSI | Pre |
---|---|---|---|---|---|---|---|
land cover change | L1 | ▲ | △ | △ | △ | △ | △ |
L2 | ▲ | ▲ | △ | △ | △ | △ | |
land cover change and Climate Change | LC1 | ▲ | ▲ | ▲ | ▲ | ▲ | ▲ |
LC2 | ▲ | △ | ▲ | ▲ | ▲ | ▲ | |
LC3 | △ | ▲ | △ | △ | △ | △ |
Year | Cropland | Forestland | Grassland | Urban Areas | Bare Areas |
---|---|---|---|---|---|
2001 | 137,764.5 | 17,148.25 | 451,596.5 | 730.25 | 1,448,575 |
Percentage | 6.70% | 0.83% | 21.97% | 0.04% | 70.46% |
2018 | 152,862.25 | 19,332.25 | 455,680.75 | 2615.25 | 1,425,324 |
Percentage | 7.44% | 0.94% | 22.17% | 0.13% | 69.33% |
change | 15,097.75 | 2184 | 4084.25 | 1885 | −23,251 |
Percentage | 10.96% | 12.74% | 0.90% | 258.13% | −1.61% |
From | To | ||||
---|---|---|---|---|---|
Cropland | Forestland | Grassland | Urban Areas | Bare Areas | |
Cropland | 133,151.75 | 339.50 | 2433.00 | 1083.75 | 756.50 |
96.65% | 0.25% | 1.77% | 0.79% | 0.55% | |
Forestland | 150.00 | 16,635.00 | 318.50 | 1.00 | 43.75 |
0.87% | 97.01% | 1.86% | 0.01% | 0.26% | |
Grassland | 6332.50 | 2328.50 | 434,464.00 | 556.75 | 7914.75 |
1.40% | 0.52% | 96.21% | 0.12% | 1.75% | |
Urban areas | 0.00 | 0.00 | 0.00 | 730.25 | 0.00 |
0.00% | 0.00% | 0.00% | 100.00% | 0.00% | |
Bare areas | 13,228.00 | 29.25 | 18,465.25 | 243.50 | 1,416,609.00 |
0.91% | 0.00% | 1.27% | 0.02% | 97.79% |
Cropland to Forestland (12) | Cropland to Grassland (13) | Cropland to Urban Areas (14) | Cropland to Bare Areas (15) |
Forestland to Cropland (21) | Forestland to Grassland (23) | Forestland to Urban areas (24) | Forestland to Bare areas (25) |
Grassland to Cropland (31) | Grassland to Forestland (32) | Grassland to Urban areas (34) | Grassland to Bare areas (35) |
Bare areas to Cropland (51) | Bare areas to Forestland (52) | Bare areas to Grassland (53) | Bare areas to Urban areas (54) |
Type | Cropland | Forestland | Grassland | Urban Areas | Bare Areas | Total |
---|---|---|---|---|---|---|
Total NEP (Tg C) | ||||||
2001 | 24.64 | 6.69 | 23.50 | 0.03 | 18.82 | 73.68 |
2018 | 33.00 | 7.24 | 25.86 | 0.11 | 18.85 | 85.06 |
Change | 8.36 | 0.55 | 2.36 | 0.08 | 0.03 | 11.38 |
Percentage | 33.93% | 8.22% | 10.04% | 266.67% | 0.16% | 15.45% |
Average NEP (g C m−2 a−1) | ||||||
2001 | 178.87 | 389.86 | 52.03 | 38.94 | 12.99 | 35.84 |
2018 | 215.85 | 374.25 | 56.75 | 43.15 | 13.23 | 41.37 |
Change | 36.98 | −15.61 | 4.72 | 4.21 | 0.24 | 5.53 |
Percentage | 20.67% | −4.00% | 9.07% | 10.81% | 1.85% | 15.43% |
Type | Cropland | Forestland | Grassland | Urban Areas | Bare Areas | Total |
---|---|---|---|---|---|---|
Total NEP for LC1 (Tg C) | ||||||
2001 | 24.64 | 6.69 | 23.50 | 0.03 | 18.82 | 73.68 |
2018 | 33.00 | 7.24 | 25.86 | 0.11 | 18.85 | 85.06 |
Change | 8.36 | 0.55 | 2.36 | 0.08 | 0.03 | 11.38 |
Total NEP for L1 (Tg C) | ||||||
2018 | 26.04 | 7.61 | 23.06 | 0.11 | 18.63 | 75.45 |
Change | 1.40 | 0.92 | −0.44 | 0.08 | −0.19 | 1.77 |
Percentage for LC1 | 16.75% | 167.27% | −18.64% | 100.00% | −633.33% | 15.55% |
Total NEP for L2 (Tg C) | ||||||
2018 | 33.30 | 7.79 | 26.99 | 0.12 | 20.23 | 88.43 |
Change | 8.66 | 1.10 | 3.49 | 0.09 | 1.41 | 14.75 |
Percentage for LC1 | 103.59% | 200.00% | 147.88% | 112.50% | 4700.00% | 129.61% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, H.; Jiapaer, G.; Yu, T.; Zhang, L.; Chen, B.; Lin, K.; Li, X. Effects of Land Cover Change on Vegetation Carbon Source/Sink in Arid Terrestrial Ecosystems of Northwest China, 2001–2018. Remote Sens. 2023, 15, 2471. https://doi.org/10.3390/rs15092471
Tu H, Jiapaer G, Yu T, Zhang L, Chen B, Lin K, Li X. Effects of Land Cover Change on Vegetation Carbon Source/Sink in Arid Terrestrial Ecosystems of Northwest China, 2001–2018. Remote Sensing. 2023; 15(9):2471. https://doi.org/10.3390/rs15092471
Chicago/Turabian StyleTu, Haiyang, Guli Jiapaer, Tao Yu, Liancheng Zhang, Bojian Chen, Kaixiong Lin, and Xu Li. 2023. "Effects of Land Cover Change on Vegetation Carbon Source/Sink in Arid Terrestrial Ecosystems of Northwest China, 2001–2018" Remote Sensing 15, no. 9: 2471. https://doi.org/10.3390/rs15092471
APA StyleTu, H., Jiapaer, G., Yu, T., Zhang, L., Chen, B., Lin, K., & Li, X. (2023). Effects of Land Cover Change on Vegetation Carbon Source/Sink in Arid Terrestrial Ecosystems of Northwest China, 2001–2018. Remote Sensing, 15(9), 2471. https://doi.org/10.3390/rs15092471