Real Aperture Radar Angular Super-Resolution Imaging Using Modified Smoothed L0 Norm with a Regularization Strategy
Abstract
:1. Introduction
2. Signal Model for Real Aperture Radar Imaging
3. Proposed Modified Smoothed Norm-Based Method
3.1. Main Framework of Norm Minimization
3.2. Traditional SL0 Algorithm
3.2.1. Initialization of Traditional SL0 Algorithm
3.2.2. Main Loop of Traditional SL0 Algorithm
3.3. Proposed MSL0 Algorithm
Algorithm 1 Conventional SL0 algorithm |
Initialization: |
1. |
(e.g., |
2. , |
Mainloop: |
end |
Output: |
3.3.1. Regularization Strategy for Antenna Measurement Matrix
3.3.2. Hard Threshold Operator in the Iterative Procedure
Algorithm 2 The MSL0 algorithm |
Initialization: |
1. |
(e.g., |
2. |
Mainloop: |
end |
Output: |
3.3.3. Complexity Analysis of the Proposed Algorithm
4. Simulation Results for Super-Resolution Algorithms
5. Influence of the SNR on the Imaging Results and Target Location Performance
5.1. Influence of SNR on Imaging Results
5.2. Influence of SNR on Target Location Performance
6. Experimental Data Results
7. Discussion
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jose, E.; Adams, M.; Mullane, J.S.; Patrikalakis, N.M. Predicting millimeter wave radar spectra for autonomous navigation. IEEE Sens. J. 2010, 10, 960–971. [Google Scholar] [CrossRef]
- Milias, C.; Andersen, R.B.; Muhammad, B.; Kristensen, J.T.; Lazaridis, P.I.; Zaharis, Z.D.; Mihovska, A.; Hermansen, D.D. Uas-borne radar for autonomous navigation and surveillance applications. IEEE Trans. Intell. Transp. Syst. 2023, 24, 7215–7229. [Google Scholar] [CrossRef]
- Gao, X.; Roy, S.; Xing, G. Mimo-sar: A hierarchical high-resolution imaging algorithm for mmwave fmcw radar in autonomous driving. IEEE Trans. Veh. Technol. 2021, 70, 7322–7334. [Google Scholar] [CrossRef]
- Huang, Y.; Liao, G.; Zhang, Z.; Xiang, Y.; Li, J.; Nehorai, A. Sar automatic target recognition using joint low-rank and sparse multiview denoising. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1570–1574. [Google Scholar] [CrossRef]
- Huang, Y.; Liao, G.; Xu, J.; Li, J.; Yang, D. Gmti and parameter estimation for mimo sar system via fast interferometry rpca method. IEEE Trans. Geosci. Remote Sens. 2017, 56, 1774–1787. [Google Scholar] [CrossRef]
- Jia, Y.; Cui, G.; Kong, L.; Yang, X. Multichannel and multiview imaging approach to building layout determination of through-wall radar. IEEE Geosci. Remote Sens. Lett. 2013, 11, 970–974. [Google Scholar] [CrossRef]
- Tang, Q.; Li, J.; Wang, L.; Jia, Y.; Cui, G. Multipath imaging for nlos targets behind an l-shaped corner with single-channel uwb radar. IEEE Sens. J. 2021, 22, 1531–1540. [Google Scholar] [CrossRef]
- Valencia, E.; Camps, A.; Rodriguez-Alvarez, N.; Park, H.; Ramos-Perez, I. Using gnss-r imaging of the ocean surface for oil slick detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 6, 217–223. [Google Scholar] [CrossRef]
- Du, L.; Liu, H.; Bao, Z.; Zhang, J. Radar automatic target recognition using complex high-resolution range profiles. IET Radar Sonar Navig. 2007, 1, 18–26. [Google Scholar] [CrossRef]
- Kirscht, M.; Mietzner, J.; Bickert, B.; Dallinger, A.; Hippler, J.; Meyer-Hilberg, J.; Zahn, R.; Boukamp, J. An airborne radar sensor for maritime and ground surveillance and reconnaissance—Algorithmic issues and exemplary results. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 9, 971–979. [Google Scholar] [CrossRef]
- Xu, G.; Xing, M.; Zhang, L.; Liu, Y.; Li, Y. Bayesian inverse synthetic aperture radar imaging. IEEE Geosci. Remote Sens. Lett. 2011, 8, 1150–1154. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Zha, Y.; Yang, J. Superresolution imaging for forward-looking scanning radar with generalized gaussian constraint. Prog. Electromagn. Res. 2016, 46, 1–10. [Google Scholar] [CrossRef]
- Chen, H.; Li, M.; Zhang, P.; Liu, G.; Jia, L.; Wu, Y. Resolution enhancement for doppler beam sharpening imaging. Iet Radar Sonar Navig. 2015, 9, 843–851. [Google Scholar] [CrossRef]
- Zhang, Y.; Wan, Q.; Huang, A.-M. Localization of narrow band sources in the presence of mutual coupling via sparse solution finding. Prog. Electromagn. Res. 2008, 86, 243–257. [Google Scholar] [CrossRef]
- Bai, F.; Franchois, A.; Pizurica, A. 3D microwave tomography with Huber regularization applied to realistic numerical breast phantoms. Prog. Electromagn. Res. 2016, 155, 75–91. [Google Scholar] [CrossRef]
- Chen, D.; Zhu, S.; Cao, X.; Zhao, F.; Liang, J. X-ray luminescence computed tomography imaging based on x-ray distribution model and adaptively split bregman method. Biomed. Opt. Express 2015, 6, 2649–2663. [Google Scholar] [CrossRef] [PubMed]
- Pu, T.; Tong, N.; Feng, W.; Wan, P.; Hu, X. Mimo radar sparse recovery imaging with wideband interference prediction. Remote Sens. 2022, 14, 3774. [Google Scholar] [CrossRef]
- Alonso, M.T.; López-Dekker, P.; Mallorquí, J.J. A novel strategy for radar imaging based on compressive sensing. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4285–4295. [Google Scholar] [CrossRef]
- Chen, H.; Li, Y.; Gao, W.; Zhang, W.; Sun, H.; Guo, L.; Yu, J. Bayesian forward-looking superresolution imaging using doppler deconvolution in expanded beam space for high-speed platform. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5105113. [Google Scholar] [CrossRef]
- Tuo, X.; Zhang, Y.; Huang, Y.; Yang, J. A fast sparse azimuth super-resolution imaging method of real aperture radar based on iterative reweighted least squares with linear sketching. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2928–2941. [Google Scholar] [CrossRef]
- Yardibi, T.; Li, J.; Stoica, P.; Xue, M.; Baggeroer, A.B. Source localization and sensing: A nonparametric iterative adaptive approach based on weighted least squares. IEEE Trans. Aerosp. Electron. Syst. 2010, 46, 425–443. [Google Scholar] [CrossRef]
- Mohimani, H.; Babaie-Zadeh, M.; Jutten, C. A fast approach for overcomplete sparse decomposition based on smoothed l0 norm. IEEE Trans. Signal Process. 2009, 57, 289–301. [Google Scholar] [CrossRef]
- Zhang, S.; Dong, G.; Kuang, G. Superresolution downward-looking linear array three-dimensional sar imaging based on two-dimensional compressive sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2184–2196. [Google Scholar] [CrossRef]
- Nazari, M.; Mehrpooya, A.; Bastani, M.H.; Nayebi, M.; Abbasi, Z. High-dimensional sparse recovery using modified generalised sl0 and its application in 3D isar imaging. IET Radar Sonar & Navig. 2020, 14, 1267–1278. [Google Scholar]
- Jun-Jie, F.; Zhang, G.; Fang-Qing, W. Mimo radar imaging based on smoothed l 0 norm. Math. Probl. Eng. 2015, 2015, 841986. [Google Scholar]
- Gambardella, A.; Migliaccio, M. On the superresolution of microwave scanning radiometer measurements. IEEE Geosci. Remote Sens. Lett. 2008, 5, 796–800. [Google Scholar] [CrossRef]
- Randazzo, A.; Ponti, C.; Fedeli, A.; Estatico, C.; D’Atanasio, P.; Pastorino, M.; Schettini, G. A through-the-wall imaging approach based on a tsvd/variable-exponent lebesgue-space method. Remote Sens. 2021, 13, 2028. [Google Scholar] [CrossRef]
- Palsson, F.; Sveinsson, J.R.; Ulfarsson, M.O.; Benediktsson, J.A. Mtf-based deblurring using a wiener filter for cs and mra pansharpening methods. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2255–2269. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Li, W.; Li, M.; Zuo, L.; Chen, H.; Wu, Y.; Zhuo, Z. A computationally efficient airborne forward-looking super-resolution imaging method based on sparse bayesian learning. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5102613. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Y.; Mao, D.; Huang, Y.; Yang, J. Sparse super-resolution method based on truncated singular value decomposition strategy for radar forward-looking imaging. J. Appl. Remote Sens. 2018, 12, 035021. [Google Scholar]
- Zhang, Y.; Zhang, Y.; Huang, Y.; Yang, J. A sparse bayesian approach for forward-looking superresolution radar imaging. Sensors 2017, 17, 1353. [Google Scholar] [CrossRef]
- Long, T.; Lu, Z.; Ding, Z.; Liu, L. A dbs doppler centroid estimation algorithm based on entropy minimization. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3703–3712. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Carrier frequency | 10 GHz |
LFM bandwidth | 75 MHz |
LFM timewidth | 2 s |
Antenna beamwidth | 3° |
Antenna scanning velocity | 30°/s |
Scanning scope in azimuth | −10° to 10° |
Pulse repetition frequency | 1000 Hz |
Method | SSIM | MSE | Computation Time(s) |
---|---|---|---|
Tikhonov regularization | 0.3400 | 0.096 | |
TSVD | 0.2102 | 0.093 | |
Wiener filter | 0.3141 | 0.062 | |
Sparse regularization | 0.8878 | 0.556 | |
IAA | 0.6658 | 0.873 | |
MSL0 method | 0.9623 | 0.114 |
Parameter | Value |
---|---|
Carrier frequency | 30.75 GHz |
LFM bandwidth | 200 MHz |
LFM timewidth | 1 s |
Antenna beamwidth | 4° |
Antenna scanning velocity | 60°/s |
Scanning scope in azimuth | to 35° |
Pulse repetition frequency | 4000 Hz |
Pitch angle |
Method | Entropy | Computation Time(s) |
---|---|---|
Tikhonov regularization | 6.4569 | 8.383 |
TSVD | 7.2049 | 8.199 |
Wiener filter | 6.2383 | 6.644 |
Sparse regularization | 5.1745 | 50.068 |
IAA | 6.0715 | 46.377 |
MSL0 method | 3.5295 | 11.819 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Zhao, Y.; Tuo, X.; Mao, D.; Zhang, Y.; Yang, J. Real Aperture Radar Angular Super-Resolution Imaging Using Modified Smoothed L0 Norm with a Regularization Strategy. Remote Sens. 2024, 16, 12. https://doi.org/10.3390/rs16010012
Yang S, Zhao Y, Tuo X, Mao D, Zhang Y, Yang J. Real Aperture Radar Angular Super-Resolution Imaging Using Modified Smoothed L0 Norm with a Regularization Strategy. Remote Sensing. 2024; 16(1):12. https://doi.org/10.3390/rs16010012
Chicago/Turabian StyleYang, Shuifeng, Yong Zhao, Xingyu Tuo, Deqing Mao, Yin Zhang, and Jianyu Yang. 2024. "Real Aperture Radar Angular Super-Resolution Imaging Using Modified Smoothed L0 Norm with a Regularization Strategy" Remote Sensing 16, no. 1: 12. https://doi.org/10.3390/rs16010012
APA StyleYang, S., Zhao, Y., Tuo, X., Mao, D., Zhang, Y., & Yang, J. (2024). Real Aperture Radar Angular Super-Resolution Imaging Using Modified Smoothed L0 Norm with a Regularization Strategy. Remote Sensing, 16(1), 12. https://doi.org/10.3390/rs16010012