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Abstract: Restricted by the ill-posed antenna measurement matrix, the conventional smoothed L0

norm algorithm (SL0) fails to enable direct real aperture radar angular super-resolution imaging.
This paper proposes a modified smoothed L0 norm (MSL0) algorithm to address this issue. First, as
the pseudo-inverse of the ill-posed antenna measurement matrix is required to set the initial values
and calculate the gradient projection, a regularization strategy is employed to relax the ill-posedness.
Based on the regularization strategy, the proposed MSL0 algorithm can avoid noise amplification
when faced with the ill-posed antenna measurement matrix of real aperture radar. Additionally,
to prevent local minima problems, we introduce a hard thresholding operator, based on which the
proposed MSL0 algorithm can accurately reconstruct sparse targets. Simulations and experimental
results verify the performance of the proposed MSL0 algorithm.

Keywords: modified smoothed L0; real aperture radar; angular super-resolution; regularization
strategy

1. Introduction

Radar has come to play an increasingly important role in several areas, including
autonomous navigation, driverless driving, and ground surveillance [1–11]. Real aperture
radar (RAR) can scan an observation area using an antenna to produce two-dimensional
range and cross-range imagery. RAR can be used for any imaging geometry, without
the need for coherent processing in the cross-range context [12]. Therefore, RAR is of
considerable interest for forward-looking imaging, where synthetic aperture radar (SAR)
and Doppler beam sharpening (DBS) techniques fail to work [13]. As the range resolu-
tion is related to the bandwidth of the transmitted signal and the angular resolution is
dependent on the aperture of the antenna, the range resolution typically far outweighs the
angular resolution in practical applications, and the problem of low angular resolution is a
limiting factor of RAR. Fortunately, echo data along the azimuthal direction can be mod-
eled as a convolution relationship between the target scatterings and the antenna pattern.
Deconvolution methods provide potential for improvement in the angular resolution.

Sparse recovery approaches comprise a popular class of deconvolution methods. The
sparse recovery problem is an underdetermined linear system, where the unknown vector
is assumed to be sparse, meaning that most of its elements are zero. Sparse recovery
approaches have been widely used in many fields, such as medical imaging, video pro-
cessing, source localization, and radar imaging [14–17]. In radar imaging, SAR, inverse
synthetic aperture radar (ISAR), multiple-input multiple-output (MIMO) radar, and ground-
penetrating radar have achieved high-resolution imaging with the help of sparse recovery
techniques.

For RAR imaging, the target of interest usually only has a few strong scatterers that
are sparsely distributed, such as foreign objects on an airport runway. Sparse recovery
approaches can be exploited in RAR imaging to enhance the angular resolution [18]. In [19],
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based on Bayesian theory, the authors assumed the target to have sparse characteristics
and employed the Laplace distribution to describe the sparse prior distribution, achieving
angular super-resolution imaging. In [20], the authors applied the L1 norm to express
the target sparse prior based on the regularization strategy and converted the angular
super-resolution problem into an optimization problem. Theoretically, the two types of
methods are essentially equivalent, and they aim to address the L1 norm minimization
problem. Furthermore, the iterative adaptive approach (IAA) from the sparse spectrum
estimation field was applied for angular super-resolution imaging in [21], obtaining similar
results to the two above-mentioned sparse approaches.

As mentioned, current sparse recovery algorithms mostly utilize the L1 norm to repre-
sent the sparsity of the target. Indeed, mathematically speaking, the L0 norm has stronger
sparsity compared to the L1 norm. However, directly solving the L0 norm minimization is
an NP-hard problem. Fortunately, in a recent study [22], the authors proposed a smoothed
L0 norm (SL0) algorithm, which utilizes a smooth Gaussian function to approximate the
L0 norm and then uses the steepest descent and gradient projection to minimize the ap-
proximate L0 norm. The SL0 algorithm has higher accuracy and faster convergence speed
compared to conventional L1 norm-based sparse recovery algorithms. In radar imaging,
we have successfully applied SL0 to SAR [23], ISAR [24], and MIMO radar [25], reducing
the computational complexity while improving the imaging quality.

However, little work on the use of the SL0 method for RAR imaging has been reported.
After an investigation, we found the existing SL0 algorithm to be unsuitable for RAR
imaging. The antenna measurement matrix is seriously ill-posed because of the low-pass
characteristic of the antenna in RAR imaging. The SL0 algorithm requires the calculation of
the pseudo-inverse of the ill-posed antenna measurement matrix to set the initial value and
calculate the gradient projection. For an ill-posed matrix, the error when calculating the
pseudo-inverse is too large; as a result, the SL0 algorithm cannot be utilized directly for
RAR imaging. Moreover, for the steepest descent, we can easily fall into local minima.

This paper proposes a modified SL0 (MSL0) algorithm. By replacing the ill-posed
antenna measurement matrix with the regularization matrix, we avoid the huge error
caused by calculating the pseudo-inverse, allowing for the realization of RAR angular
super-resolution imaging. In addition, a hard threshold operator is added to prevent local
minima and accelerate convergence. Compared with existing angular super-resolution
methods, such as the iterative adaptive approach (IAA) [21] and sparse regularization
method [20], the proposed method has advantages in terms of super-resolution performance
and computational efficiency.

The remainder of this paper is organized as follows. Section 2 introduces the signal
model for RAR. In Section 3, the schemes of the proposed MSL0 method are detailed.
Section 4 presents the simulation results and a performance comparison between existing
methods and the proposed MSL0 method, followed by a discussion in Section 5. In
Section 6, experimental data results are presented to further validate the proposed method.
Finally, Section 7 presents the conclusions.

2. Signal Model for Real Aperture Radar Imaging

As shown in Figure 1, the RAR acquires echo data through radar beam scanning. The
received echo data can achieve high resolution in the range dimension by transmitting
a linear frequency modulation (LFM) signal and pulse compression. For the azimuth
dimension, according to the sequential process of scanning imaging, the received echo data
along the azimuth dimension can be modeled using a one-dimensional convolution model:

y(θ) = x(θ)⊗ h(θ)+n(θ), (1)

where θ denotes the azimuth angle, y(θ) is the received azimuth echo, x(θ) is the target scat-
tering distribution, h(θ) is the antenna pattern, n(θ) is the noise, and ⊗ is the convolution
operation.

After discretization, Equation (1) can be transformed into the following matrix form:
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y = Hx + n, (2)

where y =
[
y(θ1)

, y(θ2)
, · · · , y(θN)

]T
is the received azimuth echo vector;

x =
[

x(θ1)
, x(θ2)

, · · · , x(θN)

]T
is the target scattering distribution vector;

n =
[
n(θ1)

, n(θ2)
, · · · , n(θN)

]T
is the noise vector; N represents the number of azimuthal sam-

pling points, which is determined based on the pulse repetition frequency (PRF), scanning
scope in the azimuth, and antenna scanning velocity; and H denotes the N × N antenna
measurement matrix composed of the antenna pattern samples shown in Equation (3):

H =



h(θ0)
· · · h(θ−l)

...
. . . . . .

h(θl)
. . . h(θ−l)

. . . . . .
...

h(θl)
· · · h(θ0)


N×N

, (3)

where
[

h(θ−l)
· · · h(θ0)

· · · h(θl)

]
are the samples of the antenna pattern, and the sampling

number is determined according to the PRF, antenna beamwidth, and antenna scanning
velocity. As the antenna pattern shown in Figure 2 has low-pass characteristics in the
frequency domain, the antenna measurement matrix H is a seriously ill-posed matrix.

radar beam 

1P 2P

radar

scanning area

azimuth dimension

range dimnsion

echo data

target distribution antenna pattern noise azimuth echo 

Figure 1. Echo acquisition procedure of a real aperture scanning radar.
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(a)
 

(b)

Figure 2. Comparison of an antenna pattern in different domains: (a) Antenna pattern in the
azimuthal time domain and (b) antenna pattern in the azimuthal frequency domain.

3. Proposed Modified Smoothed L0 Norm-Based Method

This section presents a modified smoothed L0 norm (SL0) approach to enhance the
angular resolution for sparse targets. Assuming that the target of interest has only a few
strong scatterers that are sparsely distributed, most elements in the target scattering vector
x are zero. The following optimization problem can be constructed:

x̂ = arg min
x
∥x∥0 subject to∥y−Hx∥ ≤ ε, (4)

where ∥x∥0 is the penalty term and ε is the noise (or error) energy.

3.1. Main Framework of L0 Norm Minimization

As the L0 norm minimization of a vector is discontinuous, direct minimization is
impeded. Therefore, SL0 is employed to approximate this discontinuous function using a
suitable continuous one, which can then be optimized with a minimization algorithm for
continuous functions. The approximation for the discontinuous function of the L0 norm
into a continuous one is as follows:

fσ(xi)
∆
= 1− exp(− xi

2

2σ2 ). (5)

The accuracy of this approximation is controlled by the parameter σ. When σ is large,
the approximation is poor, whereas when σ is very small, the approximation tends to be
accurate. A small σ leads to stronger sparsity compared to the L1 norm, as illustrated in
Figure 3. Therefore, we provide a better approximation to the L0 norm of the vector x as
follows:

N

∑
i=1

lim
σ→0

fσ(xi) = ∥x∥0, (6)

Fσ(x) =
N

∑
i=1

fσ(xi). (7)

To minimize the L0 norm, Fσ(x) should be minimized. However, a small σ value
results in a non-smooth approximation containing many local maxima. To avoid these local
maxima, a decreasing sequence for the value of σ is employed. Therefore, the L0 norm
optimization problem based on Fσ(x) function minimization can be described as

x̂ = lim
σ→0

arg min
x

Fσ(x) subject to∥y−Hx∥ ≤ ε. (8)
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Figure 3. Schematic diagram of approximate L0 norm function fσ(x) with three values of σ.

3.2. Traditional SL0 Algorithm

In this subsection, a brief review of the traditional SL0 algorithm is given, which
mainly includes two parts: the initialization of the traditional SL0 algorithm and the main
loop of the traditional SL0 algorithm.

3.2.1. Initialization of Traditional SL0 Algorithm

The core of initialization is to choose a proper initial value for the vector x. In the
conventional SL0 algorithm [22], a choice for this initial value x̂0 is given using the pseudo-
inverse of H: x̂0 = HT(HHT)−1y. In addition, a suitable decreasing sequence for σ
needs to be provided for the algorithm. In [22], the initial value for the σ sequence was
set as σ=2 max|x̂0|. Then, the value of σ decreased according to a decreasing coefficient
ρ (0 <ρ < 1).

3.2.2. Main Loop of Traditional SL0 Algorithm

For each value of σ, a fixed number of steps L in the steepest ascent approach is used
to minimize Fσ(x). In each steepest ascent iteration, the solution moves in the desired
direction, as follows:

x̂← x̂− uk∇Fσ(x), (9)

where uk = uσ2, and u represents a small positive that determines the step size of the
algorithm. Furthermore, ∇Fσ(x) can be expressed as follows:

∇Fσ(x) =
[
− x1

σ2 exp(− x1

2σ2 ), · · · ,− xN

σ2 exp(− xN

2σ2 )
]
. (10)

After the steepest ascent, the following is the projection of the solution into the feasible
region, which is performed as:

x̂← x̂− HT(HHT)−1(Hx̂− y). (11)

The main loop continues until a minimum value of σJ is reached. The SL0 algorithm is
summarized in Algorithm 1.

3.3. Proposed MSL0 Algorithm

In the conventional SL0 algorithm, the initial value, descending sequence initial value,
and gradient projection all involve the pseudo-inverse of the antenna measurement matrix
H. However, as H is a seriously ill-posed matrix, calculating its pseudo-inverse yields a
significant error, which has two consequences. Firstly, the final imaging result deviates from
the true value because of incorrect initial value setting and gradient projection. As a result,
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the SL0 method cannot be directly applied for RAR angular super-resolution. Secondly, the
descending sequence initial value may become abnormally large, increasing the number of
outer loops of the SL0 method and thereby adding to the computational burden.

Algorithm 1 Conventional SL0 algorithm
Initialization :
1. Set L > 0, u > 0, 0 < ρ < 1, σJ > 0
(e.g., L = 5, u = 2, ρ = 0.5, σJ = 0.01)
2. Set x̂0 = HT(HHT)−1y, σ0=2 max|x̂0|;,
Mainloop :
For j = 1, · · · , J

set x̂ = x̂j−1, σ = σj−1;
f or l = 1, 2, 3, · · · , L

x̂← x̂− uk∇Fσ(x);
x̂← x̂− HT(HHT)−1(Hx̂− y);

end
σj = ρσj−1, x̂j = x̂;
j = j + 1;

end
Output : x̂ = x̂J

3.3.1. Regularization Strategy for Antenna Measurement Matrix

To address the above problems, we introduce a regularization strategy to repair the
antenna measurement matrix. The singular value decomposition (SVD) transformation is
performed on the antenna measurement matrix as follows:

H = UDV =
N

∑
i=1

uidivi
T , (12)

where U = (u1, u2, ..., uN) and V=(v1, v2, ..., vN) are unitary matrices of size N × N, and
D= diag(d1, d2 · · · , dN), di is composed of the singular values of H, which satisfies d1 >
d2 > di > ... > dN .

The pseudo-inverse of the antenna measurement matrix can be expressed using the
singular value decomposition transformation:

H† = HT(HHT)−1y =
N

∑
i=1

vivi
Tx +

N

∑
i=1

viui
T n

di
. (13)

Because of the serious ill-posedness of H, inevitably, many small singular values are
close to zero. The inversion of small singular values causes noise to be amplified in n

di
, thus

introducing significant errors. To alleviate the influence of the inversion of small singular
values, a regularization strategy is adopted to repair the antenna measurement matrix. As
a result, the pseudo-inverse is replaced with the following equation:

H†
R = HT(HHT + λI)−1y =

N

∑
i=1

di
2

di
2 + λ

vivi
Tx +

N

∑
i=1

viui
T din

di
2 + λ

, (14)

where λ is the regularization parameter.
From the above equation, after the regularization process, we obtain din

di
2+λ

= n
di+

λ
di

.

With the addition of λ
di

in the denominator, the noise amplification caused by the inversion
of small singular values is avoided. By replacing H† with H†

R, we can avoid introducing
errors, thereby obtaining a stable azimuth super-resolution imaging result.
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3.3.2. Hard Threshold Operator in the Iterative Procedure

The next modification is to prevent falling into local minima. As the search path
assumes a sawtooth shape in the process of searching for the optimal value via steepest
descent, a hard threshold operation, which is an element-wise operator with low computa-
tional complexity, is utilized. The hard threshold operator is defined as

hard(w, δ)=

{
w, |w| ≥ δ
0, |w| < δ

, (15)

where w is the variable and δ is the threshold.
By employing the hard threshold operator, any element of x̂ that falls below the set

threshold δ is set to zero. By using a hard threshold operator, falling into local minima is
prevented. Furthermore, the problem-solving speed increases with each step. The threshold
δ is an important parameter, and a suggested way to select δ is to set it as 0.01max|x̂0|. The
MSL0 algorithm for RAR imaging is summarized in Algorithm 2.

Algorithm 2 The MSL0 algorithm
Initialization :
1. Set L > 0, u > 0, 0 < ρ < 1, σJ > 0, λ > 0
(e.g., L = 5, u = 2, ρ = 0.5, σJ = 0.01, λ = 2)
2. Set x̂0 = HT(HT H + λI)−1y, σ0=2 max|x̂0|,

δ = 0.01 max|x̂0|;
Mainloop :
For j = 1, · · · , J

set x̂ = x̂j−1, σ = σj−1;
f or l = 1, 2, 3, · · · , L

x̂← x̂− uk∇Fσ(x);
x̂← x̂− HT(HT H + λI)−1(Hx̂− y);
x̂← hard(x̂, δ);

end
σj = ρσj−1, x̂j = x̂;
j = j + 1;

end
Output : x̂ = x̂J

3.3.3. Complexity Analysis of the Proposed Algorithm

During initialization, we can calculate the matrix HT(HT H + λI)−1 and the target
scattering coefficient x̂0 = HT(HT H + λI)−1y and set the parameters in advance. There-
fore, we mainly analyze the complexity within the main loop. Suppose the number of outer
loops is J and the number of inner loops is L.

For inner loops, computing x̂← x̂− uk∇Fσ(x) involves an element-wise calculation,
the complexity of which is O(N); computing x̂ ← x̂ − HT(HT H + λI)−1(Hx̂ − y) is
O(2N2 + N); and computing x̂← hard(x̂, δ) also involves an element-wise calculation with
complexity O(N). For the outer loops, the complexity is almost negligible. Hence, for the
main loop, the total complexity is approximately JL ·O(2N2 + 3N).

As the proposed MSL0 algorithm adopts the steepest descent solver, its computational
complexity is only on the level of O(N2), which is lower than the O(N3)-level computa-
tional complexity of traditional super-resolution methods.

4. Simulation Results for Super-Resolution Algorithms

In this section, simulation results are given to verify the performance of the proposed
method. The proposed MSL0 method was compared with the Tikhonov regularization
method [26], truncated singular value decomposition (TSVD) method [27], Wiener filter
method [28], sparse regularization method [20], and IAA [21]. We compared the super-
resolution imaging performance and computational efficiency of the six methods through
point simulation.
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To quantify and compare the super-resolution performance of these six methods, we
applied the structure similarity index measure (SSIM) [29] and the mean square error
(MSE) [30].

The SSIM is defined as follows:

SSIM =
2ρ(x̂, x) · (2ux̂ · ux)

(ux̂2 + ux2)(σx̂2 + σx2)
, (16)

where ux, ux̂ and σx, σx̂ are the mean and standard deviation of the vectors x and x̂, respec-
tively, and ρ(x̂, x) represents the correlation coefficients corresponding to the vectors x and
x̂, respectively. The SSIM is a quantitative measure between the super-resolution imaging
result and the target true scene. The value of the SSIM ranges between −1 and 1, where 1
indicates that the super-resolution imaging result is identical to the target true scene. A
larger SSIM value indicates better super-resolution performance.

The MSE is used to measure the relative error between the super-resolution imaging
result and the target true distribution, which is defined as

MSE =
1

MN
∥x̂− x∥, (17)

where M and N denote the range cell and azimuth cell, respectively.
For the simulations, we adopted the ideal sin c antenna pattern and considered ad-

ditive white Gaussian noise. The main simulation parameters are listed in Table 1. Our
point targets, as shown in Figure 4a, were located at −0.6◦ and +0.6◦ with normalized
amplitudes of 1. As shown in Figure 4b, as the interval between the two targets was
narrower than the antenna beamwidth, the echoes of the targets were mixed in the azimuth
dimension. The results of the Tikhonov regularization, TSVD, and Wiener filtering methods
are presented in Figure 4c–e, which show limited resolution improvements. The sparse
regularization method and the IAA, as shown in Figure 4f,g, respectively, resolved the two
targets to a certain extent, but their super-resolution performance was weaker than that of
the MSL0 method, as shown in Figure 4h.

Table 1. Simulation parameters for the radar system.

Parameter Value

Carrier frequency 10 GHz
LFM bandwidth 75 MHz
LFM timewidth 2 µs

Antenna beamwidth 3◦

Antenna scanning velocity 30◦/s
Scanning scope in azimuth −10◦ to 10◦

Pulse repetition frequency 1000 Hz

Table 2 provides a comparison of the various imaging indices, where the computation
times are reported from tests using Matlab 2020a on an AMD Ryzen5 4500U with 16 GB of
RAM. From the simulation parameters in Table 1, the dimensions of the matrices involved
can be calculated: the echo matrix y has a size of 667× 1, whereas the antenna measurement
matrix H has a size of 667× 667. As shown in Table 2, the MSL0 method obtained the largest
SSIM and the smallest MSE, indicating that its super-resolution performance was superior
to that of the other methods. Furthermore, compared with the sparse regularization
method and the IAA, the proposed method exhibited a certain advantage in terms of
computation speed.



Remote Sens. 2024, 16, 12 9 of 16

-5 -4 -3 -2 -1 0 1 2 3 4 5

Azimuth angle(deg)

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 a
m

pl
itu

de

(a)

-5 -4 -3 -2 -1 0 1 2 3 4 5

Azimuth angle(deg)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 a
m

pl
itu

de

(b)

-5 -4 -3 -2 -1 0 1 2 3 4 5

Azimuth angle(deg)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 a
m

pl
itu

de

(c)

-5 -4 -3 -2 -1 0 1 2 3 4 5

Azimuth angle(deg)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 a
m

pl
itu

de

(d)

-5 -4 -3 -2 -1 0 1 2 3 4 5

Azimuth angle(deg)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 a
m

pl
itu

de

(e)

-5 -4 -3 -2 -1 0 1 2 3 4 5

Azimuth angle(deg)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 a
m

pl
itu

de

(f)

-5 -4 -3 -2 -1 0 1 2 3 4 5

Azimuth angle(deg)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 a
m

pl
itu

de

(g)

-5 -4 -3 -2 -1 0 1 2 3 4 5

Azimuth angle(deg)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 a
m

pl
itu

de

(h)

Figure 4. Point simulation results (SNR = 20 dB): (a) Target true scene; (b) Real beam echo;
(c) Tikhonov regularization method; (d) TSVD method; (e) Wiener filter method; (f) Sparse reg-
ularization method; (g) IAA; (h) MSL0 method.

Table 2. Comparison of various imaging indices.

Method SSIM MSE Computation Time(s)

Tikhonov regularization 0.3400 9.9× 10−3 0.096
TSVD 0.2102 10.3× 10−3 0.093

Wiener filter 0.3141 9.6× 10−3 0.062
Sparse regularization 0.8878 6.8× 10−3 0.556

IAA 0.6658 5.4× 10−3 0.873
MSL0 method 0.9623 3.8× 10−3 0.114

5. Influence of the SNR on the Imaging Results and Target Location Performance

This section discusses the influence of the SNR on the imaging results and target
location performance. Here, we only consider the Tikhonov regularization method, sparse
regularization method, and proposed method for comparison.

5.1. Influence of SNR on Imaging Results

To explore the influence of the SNR on the imaging results, we present the imaging
results under low SNR conditions (10 and 5 dB). The target true scene and simulation
parameter settings were the same as in the point simulation in the previous section. In
Figure 5, it can be seen that when the SNR was 10 dB, the sidelobes in the Tikhonov reg-
ularization method became strong. The sparse regularization method began to produce
significant sidelobes, whereas the proposed method maintained an extremely low sidelobe
amplitude. When the SNR was 5 dB, as shown in Figure 6, the sidelobe amplitude of the
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Tikhonov regularization method was further enhanced. Both the sparse regularization
method and MSL0 method produced obvious sidelobes, but those of the sparse regular-
ization method were higher. Therefore, as the SNR decreased, stronger sidelobes were
generated in the super-resolution result. Compared to the traditional methods, the SNR
had the least influence on the imaging result of the proposed MSL0 method.
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Figure 5. Point simulation results (SNR = 10 dB): (a) Real beam echo; (b) Tikhonov regularization
method; (c) Sparse regularization method; (d) MSL0 method.
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Figure 6. Point simulation results (SNR = 5 dB): (a) Real beam echo; (b) Tikhonov regularization
method; (c) Sparse regularization method; (d) MSL0 method.
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5.2. Influence of SNR on Target Location Performance

In this subsection, we discuss the effect of the SNR on the target location performance.
We first defined the target location error (TLE), as depicted in Figure 7a; that is, we selected
the peaks in the super-resolution result as the target localization result [31,32]. The TLE is
calculated as

TLE = abs(θ1+0.6) + abs(θ2 − 0.6), (18)

where θ1 and θ2 are the angles of the left and right peaks in the super-resolution imaging
results, respectively.
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Figure 7. Influence of SNR on target location performance: (a) Definition of target location error;
(b) Target location error curve.

To examine the influence of the SNR on target localization performance, we conducted
10 Monte Carlo simulations to reduce the influence of randomness and then calculated
the average of the 10 location errors. The TLE curves under different SNRs are shown in
Figure 7b; with an increase in the SNR, the TLE decreased. The error curve of the proposed
MSL0 method was always lower compared to that of the traditional methods; thus, MSL0
is superior to the traditional methods in terms of target location performance.

6. Experimental Data Results

Next, experimental data were applied to validate the super-resolution performance
of the six considered algorithms. The experiment was carried out at the University of
Electronic Science and Technology of China, Chengdu, China. In this experiment, the radar
was fixed on top of a building, as shown in Figure 8a, and the targets were the two corner
reflectors on the lawn in the radar forward-looking area shown in Figure 8b. The main
parameters of the radar system are listed in Table 3.

Table 3. Radar system parameters for experimental data collection.

Parameter Value

Carrier frequency 30.75 GHz
LFM bandwidth 200 MHz
LFM timewidth 1 µs

Antenna beamwidth 4◦

Antenna scanning velocity 60◦/s
Scanning scope in azimuth −35◦ to 35◦

Pulse repetition frequency 4000 Hz
Pitch angle 13◦
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imaging scope

radar beam

targetscanning mode
radar

(a) (b)

Figure 8. (a) Schematic diagram of the experimental scene; (b) The locations of the corner reflectors.

After collecting the echoes, we used different super-resolution methods to process the
echo data using the Matlab 2020a software. The echoes of the two corner reflectors and the
corresponding super-resolution processing results are marked with red ovals in Figure 9.
Figure 9a depicts the real beam echo after pulse compression, which exhibited coarse
resolution. The results for the Tikhonov regularization, TSVD, and Wiener filter methods
are shown in Figure 9b–d. Visually, their resolution improvement effects were restricted.
The results of the sparse regularization method and the IAA are presented in Figure 9e,f,
where the two corner reflectors can be distinguished; however, some shadows between
the two targets can be observed. Because of its superior super-resolution performance,
the proposed MSL0 method achieved better shade-free processing results, as shown in
Figure 9g.

The profile results in Figure 10 show that the Tikhonov regularization, TSVD, and
Wiener filtering methods exhibited limited resolution improvement effects. The two targets
were not completely separated by the sparse regularization method and the IAA, whereas
the proposed MSL0 method achieved complete separation of the two targets.

To further evaluate the experimental data processing results of the above methods, we
introduced image entropy, which is commonly utilized to evaluate the overall quality of
the radar imagery since entropy increases with an increase in the image blurring level [33].
From the perspective of image processing, angular super-resolution is the removal of an-
tenna pattern blurring, which is essentially an entropy reduction process. Therefore, lower
entropy indicates better super-resolution performance [19]. Image entropy is defined as

E = −
M

∑
m=1

N

∑
n=1

pm,n log(pm,n), (19)

where the probability distribution function is

pm,n =
|Im,n|

M
∑

m=1

N
∑

n=1
|Im,n|

, (20)

where Im,n is an element of the related image.
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Figure 9. Experimental data processing results: (a) Real beam echo after pulse compression;
(b) Tikhonov regularization method; (c) TSVD method; (d) Wiener filter method; (e) Sparse reg-
ularization method; (f) IAA; (g) MSL0 method.

The size of the echo matrix in this experiment was 201× 560. Table 4 compares the re-
sults of the image entropy and computational times for the various methods. The proposed
MSL0 method yielded the smallest entropy, indicating that it had the best super-resolution
performance in the considered practical application scenario. In terms of execution time,
the proposed MSL0 method exhibited certain advantages when compared with the sparse
regularization method and the IAA.
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Figure 10. Experimental data processing profiles: (a) Real beam echo; (b) Tikhonov regularization
method; (c) TSVD method; (d) Wiener filter method; (e) Sparse regularization method; (f) IAA;
(g) MSL0 method.

Table 4. Comparison of results of image entropy and computational times for experimental data.

Method Entropy Computation Time(s)

Tikhonov regularization 6.4569 8.383
TSVD 7.2049 8.199

Wiener filter 6.2383 6.644
Sparse regularization 5.1745 50.068

IAA 6.0715 46.377
MSL0 method 3.5295 11.819

7. Discussion

This paper presents a modified smoothed L0 norm (MSL0) algorithm to increase real
aperture radar angular resolution. Through simulations and experimental data verification,
it can be seen that the advantages of the MSL0 algorithm include fast running speed and
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better imaging performance for sparse targets. However, its disadvantage is that it is only
suitable for sparse targets and may fail for extended targets or dense, complex scenarios.

In future studies, we will consider combining the proposed method with another
super-resolution method, where the proposed method deals with sparse targets and the
other method deals with background scenes.

8. Conclusions

This paper presents our MSL0 algorithm for sparse targets. By applying the regu-
larization strategy, we re-designed the initial iteration value and the gradient projection
calculation and introduced the hard threshold operator to prevent falling into local minima.
Both simulations and experimental data show that for sparse targets, the proposed method
exhibits better super-resolution performance with a faster running speed compared to the
commonly used sparse regularization method and the IAA.
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