Sea Surface pCO2 Response to Typhoon “Wind Pump” and Kuroshio Intrusion in the Northeastern South China Sea
Abstract
:1. Introduction
2. Data and Methods
2.1. Typhoon Track Data
2.2. In Situ Data
2.2.1. The pCO2
2.2.2. SST and SSS
2.2.3. ADCP Current
2.2.4. Argo Floats
2.3. Satellite Data and Model Data
2.3.1. Satellite Data
2.3.2. HYCOM Data
2.4. Method
2.4.1. Calculation of Normalized pCO2
2.4.2. Calculation of Ekman Pumping Velocity
2.4.3. Calculation of Mixed Layer Depth
3. Results
3.1. In Situ Observation of pCO2 and Its Relative Parameters along Transect A
3.2. Regions Defined by Water Masses from In Situ T-S
3.3. Vertical Profile of Isotherm and Currents along Transect A
3.4. Ekman Pumping Velocity and SST before, during and after Typhoon
3.5. SLA before, during and after Typhoon
4. Discussion
4.1. Effects of Kuroshio Intrusion on pCO2-sw
4.2. Wind Pump Effects of Typhoon on pCO2-sw
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Takahashi, T.; Sutherland, S.C.; Wanninkhof, R.; Sweeney, C.; Feely, R.A.; Chipman, D.W.; Hales, B.; Friederich, G.; Chavez, F.; Sabine, C. Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Res. Part II Top. Stud. Oceanogr. 2009, 56, 554–577. [Google Scholar] [CrossRef]
- Takahashi, T.; Sutherland, S.C.; Sweeney, C.; Poisson, A.; Metzl, N.; Tilbrook, B.; Bates, N.; Wanninkhof, R.; Feely, R.A.; Sabine, C. Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep Sea Res. Part II Top. Stud. Oceanogr. 2002, 49, 1601–1622. [Google Scholar] [CrossRef]
- Lévy, M.; Lengaigne, M.; Bopp, L.; Vincent, E.M.; Madec, G.; Ethé, C.; Kumar, D.; Sarma, V.V.S.S. Contribution of tropical cyclones to the air-sea CO2 flux: A global view. Glob. Biogeochem. Cycles 2012, 26, GB2001. [Google Scholar] [CrossRef]
- Dai, M.H.; Meng, F.F. Carbon cycle in the South China Sea: Flux, controls and global implications. Sci. Technol. Rev. 2020, 38, 30–34. (In Chinese) [Google Scholar] [CrossRef]
- Zhai, W.; Dai, M.; Cai, W.-J.; Wang, Y.; Hong, H. The partial pressure of carbon dioxide and air–sea fluxes in the northern South China Sea in spring, summer and autumn. Mar. Chem. 2005, 96, 87–97. [Google Scholar] [CrossRef]
- Tseng, C.M.; Wong, G.T.F.; Chou, W.C.; Lee, B.S.; Sheu, D.D.; Liu, K.K. Temporal variations in the carbonate system in the upper layer at the SEATS station. Deep Sea Res. Part II Top. Stud. Oceanogr. 2007, 54, 1448–1468. [Google Scholar] [CrossRef]
- Dai, M.; Cao, Z.; Guo, X.; Zhai, W.; Liu, Z.; Yin, Z.; Xu, Y.; Gan, J.; Hu, J.; Du, C. Why are some marginal seas sources of atmospheric CO2? Geophys. Res. Lett. 2013, 40, 2154–2158. [Google Scholar] [CrossRef]
- Li, Q.; Guo, X.; Zhai, W.; Xu, Y.; Dai, M. Partial pressure of CO2 and air-sea CO2 fluxes in the South China Sea: Synthesis of an 18-year dataset. Prog. Oceanogr. 2020, 182, 102272. [Google Scholar] [CrossRef]
- Chern, C.-S.; Wang, J. A numerical study of the summertime flow around the Luzon Strait. J. Oceanogr. 1998, 54, 53–64. [Google Scholar] [CrossRef]
- Sui, Y.; Sheng, J.; Tang, D.; Xing, J. Study of storm-induced changes in circulation and temperature over the northern South China Sea during Typhoon Linfa. Cont. Shelf Res. 2022, 249, 104866. [Google Scholar] [CrossRef]
- Zhang, H.; He, H.; Zhang, W.-Z.; Tian, D. Upper ocean response to tropical cyclones: A review. Geosci. Lett. 2021, 8, 1. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, D.; Evgeny, M. Chlorophyll Concentration Response to the Typhoon Wind-Pump Induced Upper Ocean Processes Considering Air–Sea Heat Exchange. Remote Sens. 2019, 11, 1825. [Google Scholar] [CrossRef]
- Ye, H.; Tang, S.; Morozov, E. Variability in Sea Surface pCO2 and Controlling Factors in the Bay of Bengal Based on buoy Observations at 15°N, 90°E. J. Geophys. Res. Ocean. 2022, 127, e2022JC018477. [Google Scholar] [CrossRef]
- Ye, H.; Sheng, J.; Tang, D.; Morozov, E.; Kalhoro, M.A.; Wang, S.; Xu, H. Examining the Impact of Tropical Cyclones on Air-Sea CO2 Exchanges in the Bay of Bengal Based on Satellite Data and In Situ Observations. J. Geophys. Res. Ocean. 2019, 124, 555–576. [Google Scholar] [CrossRef]
- Sun, Q.; Lin, J.; Tang, D.; Pan, G.; Jiang, Z. Different mechanisms of air-sea CO2 exchange respond to “Wind Pump” effect of two tropical cyclones. Ecol. Sci. 2020, 39, 9–16. (In Chinese) [Google Scholar] [CrossRef]
- Sun, Q.; Tang, D.; Legendre, L.; Shi, P. Enhanced sea-air CO2 exchange influenced by a tropical depression in the South China Sea. J. Geophys. Res. Ocean. 2014, 119, 6792–6804. [Google Scholar] [CrossRef]
- Ye, H.; Sheng, J.; Tang, D.; Siswanto, E.; Ali Kalhoro, M.; Sui, Y. Storm-induced changes in pCO2 at the sea surface over the northern South China Sea during Typhoon Wutip. J. Geophys. Res. Ocean. 2017, 122, 4761–4778. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, D.; Tang, S.; Morozov, E.; Liang, W.; Sui, Y. A case study of Chlorophyll a response to tropical cyclone Wind Pump considering Kuroshio invasion and air-sea heat exchange. Sci. Total Environ. 2020, 741, 140290. [Google Scholar] [CrossRef]
- Lin, J.; Tang, D.; Alpers, W.; Wang, S. Response of dissolved oxygen and related marine ecological parameters to a tropical cyclone in the South China Sea. Adv. Space Res. 2014, 53, 1081–1091. [Google Scholar] [CrossRef]
- Nemoto, K.; Midorikawa, T.; Wada, A.; Ogawa, K.; Takatani, S.; Kimoto, H.; Ishii, M.; Inoue, H.Y. Continuous observations of atmospheric and oceanic CO2 using a moored buoy in the East China Sea: Variations during the passage of typhoons. Deep Sea Res. Part II Top. Stud. Oceanogr. 2009, 56, 542–553. [Google Scholar] [CrossRef]
- Yu, P.; Wang, Z.A.; Churchill, J.; Zheng, M.; Pan, J.; Bai, Y.; Liang, C. Effects of Typhoons on Surface Seawater pCO2 and Air-Sea CO2 Fluxes in the Northern South China Sea. J. Geophys. Res. Ocean. 2020, 125, e2020JC016258. [Google Scholar] [CrossRef]
- Kao, K.J.; Huang, W.J.; Chou, W.C.; Gong, G.C.; Weerathunga, V. Factors Controlling the Sea Surface Partial Pressure of Carbon Dioxide in Upwelling Regions: A Case Study of the Southern East China Sea Before and after Typhoon Maria. J. Geophys. Res. Ocean. 2023, 128, e2022JC019195. [Google Scholar] [CrossRef]
- Shih, Y.-Y.; Hung, C.-C.; Huang, S.-Y.; Muller, F.L.; Chen, Y.-H. Biogeochemical variability of the upper ocean response to typhoons and storms in the northern South China Sea. Front. Mar. Sci. 2020, 7, 151. [Google Scholar] [CrossRef]
- Ning, J.; Xu, Q.; Zhang, H.; Wang, T.; Fan, K. Impact of cyclonic ocean eddies on upper ocean thermodynamic response to typhoon Soudelor. Remote Sens. 2019, 11, 938. [Google Scholar] [CrossRef]
- Tsao, S.-E.; Shen, P.-Y.; Tseng, C.-M. Rapid increase of pCO2 and seawater acidification along Kuroshio at the east edge of the East China Sea. Mar. Pollut. Bull. 2023, 186, 114471. [Google Scholar] [CrossRef] [PubMed]
- Zhai, W. Sea Surface partial pressure of CO2 and its controls in the northern South China Sea in the non bloom period in spring. Haiyang Xuebao 2015, 37, 31–40. (In Chinese) [Google Scholar] [CrossRef]
- Chou, W.C.; Sheu, D.D.; Chen, C.A.; Wen, L.S.; Yang, Y.; Wei, C.L. Transport of the South China Sea subsurface water outflow and its influence on carbon chemistry of Kuroshio waters off southeastern Taiwan. J. Geophys. Res. Ocean. 2007, 112, C12008. [Google Scholar] [CrossRef]
- Li, C.; Zhai, W.; Qi, D. Unveiling controls of the latitudinal gradient of surface pCO2 in the Kuroshio Extension and its recirculation regions (northwestern North Pacific) in late spring. Acta Oceanol. Sin. 2022, 41, 110–123. [Google Scholar] [CrossRef]
- Fan, L.-F.; Chow, C.H.; Gong, G.-C.; Chou, W.-C. Surface Seawater pCO2 Variation after a Typhoon Passage in the Kuroshio off Eastern Taiwan. Water 2022, 14, 1326. [Google Scholar] [CrossRef]
- Zhai, W.D.; Dai, M.H.; Chen, B.S.; Guo, X.H.; Li, Q.; Shang, S.L.; Zhang, C.Y.; Cai, W.J.; Wang, D.X. Seasonal variations of sea–air CO2 fluxes in the largest tropical marginal sea (South China Sea) based on multiple-year underway measurements. Biogeosciences 2013, 10, 7775–7791. [Google Scholar] [CrossRef]
- Price, J.F. Upper ocean response to a hurricane. J. Phys. Oceanogr. 1981, 11, 153–175. [Google Scholar] [CrossRef]
- Obata, A.; Ishizaka, J.; Endoh, M. Global verification of critical depth theory for phytoplankton bloom with climatological in situ temperature and satellite ocean color data. J. Geophys. Res. Ocean. 1996, 101, 20657–20667. [Google Scholar] [CrossRef]
- Chen, C.T.A.; Huang, M.H. A mid-depth front separating the South China Sea water and the Philippine sea water. J. Oceanogr. 1996, 52, 17–25. [Google Scholar] [CrossRef]
- Xu, W.L.; Wang, G.F.; Zhou, W.; Xu, Z.T.; Cao, W.X. Vertical variability of chlorophyll a concentration and its responses to hydrodynamic processes in the northeastern South China Sea in summer. J. Trop. Oceanogr. 2018, 37, 62–73. (In Chinese) [Google Scholar] [CrossRef]
- Zhai, W.; Dai, M.; Cai, W.-J.; Wang, Y.; Wang, Z. High partial pressure of CO2 and its maintaining mechanism in a subtropical estuary: The Pearl River estuary, China. Mar. Chem. 2005, 93, 21–32. [Google Scholar] [CrossRef]
- Guo, L.; Xiu, P.; Chai, F.; Xue, H.; Wang, D.; Sun, J. Enhanced chlorophyll concentrations induced by Kuroshio intrusion fronts in the northern South China Sea. Geophys. Res. Lett. 2017, 44, 11565–11572. [Google Scholar] [CrossRef]
- Bates, N.R.; Knap, A.H.; Michaels, A.F. Contribution of hurricanes to local and global estimates of air–sea exchange of CO2. Nature 1998, 395, 58–61. [Google Scholar] [CrossRef]
- Huang, P.; Imberger, J. Variation of pCO2 in ocean surface water in response to the passage of a hurricane. J. Geophys. Res. Ocean. 2010, 115, C10024. [Google Scholar] [CrossRef]
- Ye, H.; Morozov, E.; Tang, D.; Wang, S.; Liu, Y.; Li, Y.; Tang, S. Variation of pCO2 concentrations induced by tropical cyclones “Wind-Pump” in the middle-latitude surface oceans: A comparative study. PLoS ONE 2020, 15, e0226189. [Google Scholar] [CrossRef]
Order Number | Data Type | Data Name | Information |
---|---|---|---|
1 | Typhoon track | Typhoon track | 6-hourly time series |
2 | In situ data | pCO2-sw | Vessel-mounted; 70 s/record, and averaged every 3 min |
3 | SOCAT pCO2 | Jan 2008 to April 2009 | |
4 | SST | Every in situ station; 5 s/record, and averaged every 3 min | |
5 | SSS | Every in situ station; 5 s/record, and averaged every 3 min | |
6 | ADCP current | Every in situ station; 16 m per interval | |
7 | Argo floats | 5–200 m depths | |
8 | Satellite and model data | Wind field | Spatial resolution: 25 km; daily |
9 | SST | Spatial resolution: 4 km × 4 km; Temporal resolution: 8 days | |
10 | SLA | Spatial resolution: 1/3° × 1/3°; Temporal resolution: 7 days | |
11 | Precipitation | Spatial resolution: 0.25° × 0.25°; Temporal resolution: 7 days | |
12 | HYCOM | 1/12° equatorial resolution |
Region | Data Collecting Time | Location (°N) | Sample Quantity | MLD (m) | SST (°C) | SSS (psu) | pCO2-sw (μatm) | NpCO2 (μatm) | pCO2-air (μatm) |
---|---|---|---|---|---|---|---|---|---|
W1 | 4 September 2011 | 19.49–20.36 | 161 | 19.7 | 29.5 ± 0.4 | 33.5 ± 0.1 | 378.7 ± 4.6 | 386.6 ± 11.0 | 387.5 |
W2 | 4 September 2011 | 20.37–20.82 | 136 | 11.0 | 28.9 ± 0.33 | 33.6 ± 0.3 | 371.2 ± 4.91 | 368.7 ± 8.3 | 387.5 |
W3 | 3 September 2011 | 20.83–21.20 | 58 | 7.4 | 28.43 ± 0.31 | 34.0 ± 0.1 | 374.3 ± 6.0 | 364.3 ± 10.3 | 387.5 |
Water Mass | ΔpCO2-sw | ΔEPV | ΔMLD | ΔSST | ΔRainfall | ΔSLA |
---|---|---|---|---|---|---|
W1 | 0.62 | 0.24 | 1 | −0.97 | 1 | −0.68 |
W2 | −1 | 0.74 | −0.24 | −0.99 | 0.63 | −1 |
W3 | −0.22 | 1 | −0.28 | −1 | 0.03 | −0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, J.; Sun, Q.; Liu, Y.; Ye, H.; Tang, D.; Zhang, X.; Gao, Y. Sea Surface pCO2 Response to Typhoon “Wind Pump” and Kuroshio Intrusion in the Northeastern South China Sea. Remote Sens. 2024, 16, 123. https://doi.org/10.3390/rs16010123
Lin J, Sun Q, Liu Y, Ye H, Tang D, Zhang X, Gao Y. Sea Surface pCO2 Response to Typhoon “Wind Pump” and Kuroshio Intrusion in the Northeastern South China Sea. Remote Sensing. 2024; 16(1):123. https://doi.org/10.3390/rs16010123
Chicago/Turabian StyleLin, Jingrou, Qingyang Sun, Yupeng Liu, Haijun Ye, Danling Tang, Xiaohao Zhang, and Yang Gao. 2024. "Sea Surface pCO2 Response to Typhoon “Wind Pump” and Kuroshio Intrusion in the Northeastern South China Sea" Remote Sensing 16, no. 1: 123. https://doi.org/10.3390/rs16010123
APA StyleLin, J., Sun, Q., Liu, Y., Ye, H., Tang, D., Zhang, X., & Gao, Y. (2024). Sea Surface pCO2 Response to Typhoon “Wind Pump” and Kuroshio Intrusion in the Northeastern South China Sea. Remote Sensing, 16(1), 123. https://doi.org/10.3390/rs16010123