An Improved Hybrid Beamforming Algorithm for Fast Target Tracking in Satellite and V2X Communication
Abstract
:1. Introduction
2. Background
2.1. The System Model
2.2. Constant Modulus Algorithm
2.3. Recursive Least Squares Algorithm
2.4. Sliding Window
3. Proposed Algorithm
Algorithm 1 Proposed Algorithm (SW-AFVF-CMARLS) | |
Initialize: | |
Input: u, d, I, N, Z. | |
Output: w. | |
1: | for i = 1 to I do |
//updating weights | |
2: | |
3: | |
4: | |
5: | |
6: | |
7: | |
8: | |
//updating forgetting factor | |
9: | |
10: | |
11: | |
//apply ADAM algorithm | |
12: | |
13: | |
14: | |
//downdating weights | |
15: | |
16: | |
17: | |
18: | |
19: | |
20: | |
21: | |
//update regularization factor | |
22: | |
23: | |
//final weights | |
24: | |
25: | end for |
4. Results and Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Reis, N.; da Silva, J.M.; Correia, M.V. An Introduction to the Evaluation of Perception Algorithms and LiDAR Point Clouds Using a Copula-Based Outlier Detector. Remote Sens. 2023, 15, 4570. [Google Scholar] [CrossRef]
- Montero, L.; Ballesteros, C.; de Marco, C.; Jofre, L. Beam management for vehicle-to-vehicle (V2V) communications in millimeter wave 5G. Veh. Commun. 2022, 34, 100424. [Google Scholar] [CrossRef]
- Gouran, P.; Nadimi-Shahraki, M.H.; Rahmani, A.M.; Mirjalili, S. An Effective Imputation Method Using Data Enrichment for Missing Data of Loop Detectors in Intelligent Traffic Control Systems. Remote Sens. 2023, 15, 3374. [Google Scholar] [CrossRef]
- Noor, N.M.; Abdullah, A.; Hashim, M. Remote sensing UAV/drones and its applications for urban areas: A review. IOP Conf. Ser. Earth Environ. Sci. 2018, 169, 012003. [Google Scholar] [CrossRef]
- Caus, M.; Perez-Neira, A.; Mendez, E. Smart Beamforming for Direct LEO Satellite Access of Future IoT. Sensors 2021, 21, 4877. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Kumar, N.; Dubey, S. Investigation of Adaptive Beam-forming Algorithms for Smart Antennas System. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1033, 012015. [Google Scholar] [CrossRef]
- Varade, S.W.; Kulat, K.D. Robust Algorithms for DOA Estimation and Adaptive Beamforming for Smart Antenna Application. In Proceedings of the 2009 Second International Conference on Emerging Trends in Engineering & Technology, Nagpur, India, 16–18 December 2009; pp. 1195–1200. [Google Scholar] [CrossRef]
- Jeripotula, P.R.; Naik, B.R.; Mudavath, R. A Novel Hybrid Weighted Method-Based Beamforming for Sidelobe Level Reduction in Radar Applications. Arab. J. Sci. Eng. 2022, 47, 14133–14145. [Google Scholar] [CrossRef]
- Raj, P.; Kumar, A.; Mudavath, R.; Naik, B. A Novel Algorithm Design for Adaptive Beamforming in Uniform Linear Array Antenna. J. Mech. Continua Math. Sci. 2020, 15, 102–113. [Google Scholar] [CrossRef]
- Salas-Natera, M.; Martínez, R.; De Haro, L.; Perez, M.S. Novel Reception and Transmission Calibration Technique for Active Antenna Array Based on Phase Center Estimation. IEEE Trans. Antennas Propag. 2017, 65, 5511–5522. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, L.; Liu, B.; Zhang, Q.; Wang, Y.; Tian, Q.; Yin, X.; Xin, X. MIMO signal processing for mode division multiplexing with RLSCMA algorithm. In Proceedings of the 2014 13th International Conference on Optical Communications and Networks (ICOCN), Suzhou, China, 9–10 November 2014; pp. 1–3. [Google Scholar] [CrossRef]
- Shan, L.; Chen, H.; Luan, J.; Li, J. Application of adaptive forgetting factor RLS algorithm in target tracking. In Proceedings of the 2017 Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017; pp. 1838–1843. [Google Scholar] [CrossRef]
- Liu, H.; He, Z. A sliding-exponential window RLS adaptive filtering algorithm: Properties and applications. Signal Process. 1995, 45, 357–368. [Google Scholar] [CrossRef]
- Chern, S.-J.; Sun, C.-H.; Chang, C.-C. Blind Adaptive DS-CDMA Receivers with Sliding Window Constant Modulus GSC-RLS Algorithm. In Proceedings of the 2006 International Symposium on Intelligent Signal Processing and Communications, Yonago, Japan, 12–15 December 2006; pp. 979–982. [Google Scholar] [CrossRef]
- Mahadi, M.; Ballal, T.; Moinuddin, M.; Al-Naffouri, T.Y.; Al-Saggaf, U. Low-Complexity Robust Beamforming for a Moving Source. In Proceedings of the 2020 28th European Signal Processing Conference (EUSIPCO), Amsterdam, The Netherlands, 18–21 January 2021; pp. 1846–1850. [Google Scholar] [CrossRef]
- Belge, M.; Miller, E.L. A sliding window RLS-like adaptive algorithm for filtering alpha-stable noise. IEEE Signal Process. Lett. 2000, 7, 86–89. [Google Scholar] [CrossRef]
- Mahadi, M.; Ballal, T.; Moinuddin, M.; Al-Saggaf, U. A Recursive Least-Squares with a Time-Varying Regularization Parameter. Appl. Sci. 2022, 12, 2077. [Google Scholar] [CrossRef]
- Xiao, Y.; Sun, J. RLS CMA blind equalization with adaptive forgetting factor controlled by energy steady state. In Proceedings of the 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Datong, China, 15–17 October 2016; pp. 935–939. [Google Scholar] [CrossRef]
- Fei, Z.; Wu, Z.; Xiao, Y.; Ma, J.; He, W. A new short-arc fitting method with high precision using Adam optimization algorithm. Optik 2020, 212, 164788. [Google Scholar] [CrossRef]
- Lee, S.; Lim, J.; Sung, K.-M. A low-complexity AFF-RLS algorithm using a normalization technique. IEICE Electron. Express 2009, 6, 1774–1780. [Google Scholar] [CrossRef]
- Song, S.; Lim, J.-S.; Baek, S.; Sung, K.-M. Gauss Newton variable forgetting factor recursive least squares for time varying parameter tracking. Electron. Lett. 2000, 36, 988–990. [Google Scholar] [CrossRef]
- Chen, Y.; Le-Ngoc, T.; Champagne, B.; Changjiang, X. Recursive Least Squares Constant Modulus Algorithm for Blind Adaptive Array. IEEE Trans. Signal Process. 2004, 52, 1452–1456. [Google Scholar] [CrossRef]
- Krim, H.; Viberg, M. Two decades of array signal processing research: The parametric approach. IEEE Signal Process. Mag. 1996, 13, 67–94. [Google Scholar] [CrossRef]
- Jalal, B.; Elnahas, O.; Quan, Z. Efficient DOA Estimation Under Partially Impaired Antenna Array Elements. IEEE Trans. Veh. Technol. 2022, 71, 7991–7996. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
, | 0.9, 0.99 |
Initial λ, | 0.97, 0.5 |
Initial | 0, 0 |
Parameters | Value |
---|---|
Satellite height | 600 km. |
Minimum elevation angle | 40 deg. |
Field of view | 44 deg. |
No. of Rx antennas, x-dim. | 4 |
No. of Rx antennas, y-dim. | 4 |
Simulation time | 15 min. |
Displacement of satellite | 2.9 deg./min. |
Samples per minute | 400 |
Parameters | Value |
---|---|
V2I Euclidean distance (initial) | 100 m. |
Infrastructure to road distance | 70.71 m. |
Vehicle velocity | 60 km/h (16.6 m/s) |
Minimum elevation angle | 30 deg. |
Field of view | 60 deg. |
No. of Rx antennas, x-dim. | 4 |
No. of Rx antennas, y-dim. | 4 |
Simulation time | 12 s |
Displacement of vehicle | 5 deg./s |
Samples per second | 500 |
Parameters | Value |
---|---|
No. of Rx antennas, x-dim. | 4 |
No. of Rx antennas, y-dim. | 4 |
Simulation time | 5 s |
Displacement of target | deg./s (, deg./s ( |
Samples per second | 1000 |
Algorithm | Complex Multiplications |
---|---|
SW-RLS | |
SW-CMARLS | |
SW-VRF-CMARLS | |
SW-AFF-CMARLS | |
MUSIC | |
Wiener-Optimal |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zorkun, A.E.; Salas-Natera, M.A.; Rodríguez-Osorio, R.M. An Improved Hybrid Beamforming Algorithm for Fast Target Tracking in Satellite and V2X Communication. Remote Sens. 2024, 16, 13. https://doi.org/10.3390/rs16010013
Zorkun AE, Salas-Natera MA, Rodríguez-Osorio RM. An Improved Hybrid Beamforming Algorithm for Fast Target Tracking in Satellite and V2X Communication. Remote Sensing. 2024; 16(1):13. https://doi.org/10.3390/rs16010013
Chicago/Turabian StyleZorkun, Aral Ertug, Miguel A. Salas-Natera, and Ramón Martínez Rodríguez-Osorio. 2024. "An Improved Hybrid Beamforming Algorithm for Fast Target Tracking in Satellite and V2X Communication" Remote Sensing 16, no. 1: 13. https://doi.org/10.3390/rs16010013
APA StyleZorkun, A. E., Salas-Natera, M. A., & Rodríguez-Osorio, R. M. (2024). An Improved Hybrid Beamforming Algorithm for Fast Target Tracking in Satellite and V2X Communication. Remote Sensing, 16(1), 13. https://doi.org/10.3390/rs16010013