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Abstract: Defoliation and accelerating ripening are important measures for cotton mechanization, and
judging the time of defoliation and accelerating the ripening and harvest of cotton relies heavily on the
boll opening rate, making it a crucial factor to consider. The traditional methods of cotton opening rate
determination are time-consuming, labor-intensive, destructive, and not suitable for a wide range of
applications. In this study, the relationship between the change rate of the vegetation index obtained
by the unmanned aerial vehicle multi-spectrum and the ground boll opening rate was established to
realize rapid non-destructive testing of the boll opening rate. The normalized difference vegetation
index (NDVI) and green normalized difference vegetation index (GNDVI) had good prediction ability
for the boll opening rate. NDVI in the training set had an R2 of 0.912 and rRMSE of 15.387%, and
the validation set performance had an R2 of 0.929 and rRMSE of 13.414%. GNDVI in the training
set had an R2 of 0.901 and rRMSE of 16.318%, and the validation set performance had an R2 of
0.909 and rRMSE of 15.225%. The accuracies of the models based on GNDVI and NDVI were within
the acceptable range. In terms of predictive models, random forests achieve the highest accuracy
in predictions. Accurately predicting the cotton boll opening rate can support decision-making for
harvest and harvest aid spray timing, as well as provide technical support for crop growth monitoring
and precision agriculture.

Keywords: unmanned aerial vehicle; boll opening rate; vegetation index

1. Introduction

Cotton is a valuable cash crop and strategic material used in a variety of products. It
has a significant correlation with the economies and livelihoods of numerous countries
globally. Cotton harvest needs much labor input. In the context of the growing shortage
of agricultural labor, mechanization of harvest has become an inevitable trend. Chemical
defoliation and ripening are the basis of mechanized cotton harvest. In agricultural practice,
the method of spraying the harvest aid is usually adopted to improve the leaf shedding
of cotton plants as soon as possible to improve the operation efficiency of mechanical
harvesting, reduce the impurity rate of seed cotton, and promote the cracking of bolls [1].
It is very crucial to choose the appropriate time to use the harvest aid in practice, which is
difficult to determine [2,3]. Only timely defoliation and ripening can guarantee the effect of
defoliation and promote the transfer of the assimilates from the “source” to the “reservoir”
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to improve cotton yield [4,5]. The accurate monitoring of the boll opening rate enables
accurate judgment regarding the time of defoliation and ripening. The most commonly
used method to measure the boll opening rate is the five-point sampling method, which
means manually measuring or selecting representative plants with uniform growth at
different points. However, the results obtained by this method are unrepresentative, non-
dynamic, and destructive to in-field cotton plants, which is not conducive to the accurate
estimation of the overall boll rate of the cotton field. With the development of agricultural
modernization, the traditional methods used to judge the boll opening rate cannot fulfill
the requirements of cotton mechanization.

Remote sensing can provide advanced and efficient technical means for the monitor-
ing and diagnosis of crop growth indices and physiological parameters [6,7]. There are
three types of remote sensing data available for monitoring the boll opening rate, namely,
satellite data, UAV remote sensing, and hand-held spectrometer data. (1) Satellite remote
sensing data have been used based on the boll opening rate index, which acquires the most
accurate estimation results in both the prediction (R2 = 0.675, RMSE = 7.96%) and validation
(R2 = 0.616, RMSE = 2.79%) sets on a regional scale [8]. But interestingly, Zhao et al. showed
that the temporal changes in NDVI could explain the differences in agricultural ecosystem
cropping systems. This may provide insights for studying the temporal changes in vegeta-
tion cover and canopy [9]. (2) Most research on UAV remote sensing focused on predicting
the yield after extracting open cotton bolls, and few of them are related to predicting the
boll opening rate [10]. (3) Using a handheld Greenseeker red/near-infrared sensor, Owen
et al. collected a weekly NDVI of the canopy following mid-bloom. Linear relationships
were established between the NDVI of canopy and crop maturity to predict the boll opening
rate. The crop maturity was measured as degree-days after planting (DDAP) when the
boll opens at the nodes above the white flower (NAWF) = 5 fruiting site [11]. Harris et al.
used a GER1500® spectral radiometer to obtain the vegetation reflectance information in
the cotton maturity measurement test and built regression models of the NDVI, visible
atmospherically resistant index (VARI), and green vegetation index (GVI) on NAWF and
the boll opening rate [12]. These studies pointed out that the spectral index had a potential
correlation with the crop maturity factor (the boll production rate and NAWF), and aerial
images would be of great significance to develop the practical application.

There is also research on extracting cotton bolls from high-resolution images using
machine vision to identify the ideal conditions for cotton boll opening [13,14]. Through
machine vision, only cotton bolls can be identified, but the information on the boll opening
rate cannot be directly obtained. In Ren et al.’s study, the boll opening rate ranged from 0 to
60%. The range of the boll opening rate was not too wide, and the relationship between
the boll opening rate and vegetation index was not taken into account after spraying the
defoliation ripening agent [8].

While satellite remote sensing data has significant value due to its expansive coverage,
the limited spatial resolution poses a challenge in some precision agriculture applications.
Forecasting models often cannot provide precise crop yield predictions beyond the county
level and fail to capture intricate yield variations at an individual field scale [15,16]. Further-
more, due to the possibility of cloud cover obstructing satellite imagery and its inflexible
revisit schedule, timely and comprehensive information on the entire crop growth cycle
cannot always be obtained using satellite remote sensing [17]. The hand-held spectrom-
eter method to measure spectral data is time-consuming and laborious. Thus, there is
an urgent need for a measurement method that is both effective and relatively accurate.
Due to their flexibility and capability of low-altitude flight with centimeter resolution,
remote sensing conducted by unmanned aerial vehicles (UAVs) is considered an ideal
method for identifying crop phenotypes [18–20]. Different types of payloads of unmanned
aerial vehicles (UAVs) are based on varying requirements. These types include LiDAR,
hyperspectral, multispectral, and RGB cameras. Considering factors such as cost and
demand, multispectral and RGB cameras are more widely utilized in practical agricul-
tural applications [21]. Despite the substantial differences in spectral resolution between
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hyperspectral and multispectral sensors, multispectral cameras equipped with red-edge
and near-infrared bands can effectively address a significant portion of crop phenotyping
monitoring needs [22]. This includes applications like pest and disease monitoring [23],
estimation of crop growth dynamics and yield [24], and inversion of physiological and
biochemical traits such as leaf area index and chlorophyll content [25]. Wang et al. achieved
favorable results in identifying cotton wilt disease using multispectral UAVs [26], while
Chen et al. predicted cotton leaf stripping rates and generated prescription maps based on
remote sensing imagery [27].

The existing studies have used the vegetation index to correlate directly with the
index to be measured. As we know, the boll opening rate is the ratio of the number of
opening bolls to the total number of bolls at a specific time and is an indirect indicator.
Therefore, it seems inappropriate to use the vegetation index to directly characterize the
cotton boll opening rate. It seems more appropriate to use the opening boll area as a feature
to screen the vegetation index, and then characterize the boll opening rate with the rate
of change of the vegetation index. Therefore, the target of this study is to establish the
relationship between the change rate of vegetation index and the ground boll opening rate
in order to realize rapid non-destructive testing of the boll opening rate. To achieve the
main target, there are three steps: (1) using a threshold algorithm to extract opening bolls
from other components based on an appropriate threshold value, (2) selecting the most
relevant vegetation index based on the correlation analysis, and (3) using the change rate
of VI to predict boll opening rate and determine the best model.

2. Study Area and Data
2.1. Study Area and Design of the Experiment

The experiment was conducted in 2021 at the Xi Jiu Ji site, which is located in He
Jian (38◦23′N, 116◦08′E), Hebei Province, China (Figure 1). The site is located in the cotton
planting region of the Yellow River basin.
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Figure 1. (a) Location of the study area and (b) overview of the experiment site. The five letters in
(b), T0 to T4, represent the control group and four defoliating agent treatment groups, which were
0 mL Xinsaili ha−1 (T0), 1500 mL Xinsaili ha−1 (T1), 1500 mL + 1500 mL (i.e., application of a second
spray one week after the first application) Xinsaili ha−1 (T2), 3000 mL Xinsaili ha−1 (T3), and 7500 mL
Xinsaili ha−1 (T4).

This study adopted a split-plot experiment design. The GuoXin26 variety of cotton
was selected in this study, whose planting area was the largest in China. Guoxin 26 is a
variety with a growth period of approximately 125 days. It has a columnar plant type with
medium-sized leaves. The bolls are elliptical in shape. The plant height is around 98 cm,
and the first fruit branch node is located at approximately the 7.2nd node. On average, each
plant has about 13.0 fruit branches and produces about 17.2 bolls per plant. It was sowed
in April 2021 and harvested in October 2021 with a row spacing of 100 cm and a density
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of 3.68 × 104 ha−1. The defoliating ripening agent was sprayed on 29 September 2021.
The defoliating ripening agent Xinsaili was used to defoliate and ripen the cotton. Xinsaili
is the abbreviation for a 50% suspension concentrate of Thiabenzuron and Ethephon
(10% Thiabenzuron + 40% Ethephon), with an effective ingredient ratio of 1:4. Before
treatment, the growth conditions among the different plots were similar, with an average
plant height of 118 cm and a number of fruiting branches of 18. The control group and
four defoliating agent treatment groups were established, namely, 0 mL Xinsaili ha−1 (T0),
1500 mL Xinsaili ha−1 (T1), 1500 mL + 1500 mL (i.e., application of a second spray one
week after the first application) Xinsaili ha−1 (T2), 3000 mL Xinsaili ha−1 (T3), and 7500 mL
Xinsaili ha−1 (T4). Each treatment was replicated five times. Each area of the plot was
63 m2 (9 m × 7 m). The guard row was set as 1 m. For all treatments, the remaining field
managements were identical. The utilization of distinct defoliation treatments is primarily
intended to shape divergent population conditions during the later growth stage, thereby
augmenting the sample dataset and bolstering the model’s robustness.

Hejian’s climate conditions are suitable for cotton cultivation. Daily temperature and
precipitation data were recorded by a standard weather station (SPECTRUM WatchDog
2000) located within the field site. From 1 September to 23 October, the average temperature
was 17.14 ◦C; the maximum temperature was 26.64 ◦C; the minimum temperature was
6.18 ◦C; and the highest daily rainfall was 36.1 mm.

2.2. Data Collection and Processing
2.2.1. Field Data Collection

The boll opening rate of the cotton plants in the plot was investigated on different
dates. Fifteen representative plants were chosen with uniform and consistent growth from
five rows in the middle of each plot to investigate the number of opening bolls and total
bolls, and opening bolls with a diameter larger than 2 cm were counted. The mean value
of 15 plants was taken to represent the boll opening rate of the plot. Refer to Figure 2 for
schematic diagrams of the cotton population and individual cotton plants.
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Figure 2. Ground survey of cotton boll opening rate. (a) Image of the cotton group during the harvest
season in the year 2021. (b) Diagram of an individual cotton plant in the year 2022.

The boll opening rate was computed using the following formula:

RBO =
NOB
NTB

× 100% (1)

RBO refers to the boll opening rate; NOB represents the number of open bolls; and NTB
is the total number of bolls on the marked cotton plants within the plot.
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2.2.2. Acquisition and Pre-Processing of the UAV Remote Sensing Data

At the same time as the ground sampling, the UAV data was collected synchronously
between 11:00 am to 2:00 pm. The DJI (Shenzhen, Guangdong, China) was employed as
the UAV platform in this study. It is fitted with a GPS/GNSS satellite positioning system
and is capable of bearing up to 1.388 kg of weight and flying for up to 27 min at a time.
The payload of the UAV consisted of six 1/2.9-inch CMOS sensors. This set includes
one RGB sensor, which captures visible light images, and five monochromatic sensors
designed for specific wavelengths: blue (450 nm ± 16 nm), green (560 nm ± 16 nm), red
(650 nm ± 16 nm), red edge (730 nm ± 16 nm), and NIR (840 nm ± 26 nm) wavelengths
for multi-spectral imaging. Each sensor had an effective pixel count of 2.08 million (see
Table 1 for further details). The drone’s flight path was designed using the DJI GsPro
2.0.16 software (DJI, Shenzhen, Guangdong, China), which enabled easy mission planning
through various methods such as setting aerial waypoints or importing predefined files.
The images were captured at a height of 50 m with 90% overlap and 80% side overlap.
The average ground sampling distance is 2.64 cm/pixel. The UAV flew at a speed of
5 m/s. Since the whiteboard was not used for radiometric correction in 2021, the correction
coefficient was solved during the same time period in 2022 for radiometric correction of
UAV photos in 2021. As shown in Figure 3, the HandHeld2 ground object spectrometer
was used to collect hyperspectral curves in six time periods, and the whiteboard photos
were taken by UAV at the same time during each collection. The spectral data obtained
from the HandHeld2 spectrometer was used for radiometric calibration conducted through
the fixed coefficient method. ENVI 5.3 software was used to select each reflection panel
image, in turn, to extract the pixel mean value of each calibration panel region in the
relative reflectance image. Finally, linear regression between the mean pixel value and the
real reflectance was carried out to obtain the radiometric scaling equation. The correction
coefficients of the blue band, green band, red band, red edge band, and near-infrared band
were, respectively, 4.2309, 2.8996, 2.8994, 2.7181, and 3.1443.

Remote Sens. 2024, 16, x FOR PEER REVIEW 5 of 18 
 

 

2.2.2. Acquisition and Pre-Processing of the UAV Remote Sensing Data 
At the same time as the ground sampling, the UAV data was collected synchronously 

between 11:00 am to 2:00 pm. The DJI (Shenzhen, Guangdong, China) was employed as 
the UAV platform in this study. It is fitted with a GPS/GNSS satellite positioning system 
and is capable of bearing up to 1.388 kg of weight and flying for up to 27 min at a time. 
The payload of the UAV consisted of six 1/2.9-inch CMOS sensors. This set includes one 
RGB sensor, which captures visible light images, and five monochromatic sensors de-
signed for specific wavelengths: blue (450 nm ± 16 nm), green (560 nm ± 16 nm), red (650 
nm ± 16 nm), red edge (730 nm ± 16 nm), and NIR (840 nm ± 26 nm) wavelengths for multi-
spectral imaging. Each sensor had an effective pixel count of 2.08 million (see Table 1 for 
further details). The drone’s flight path was designed using the DJI GsPro 2.0.16 software 
(DJI, Shenzhen, Guangdong, China), which enabled easy mission planning through vari-
ous methods such as setting aerial waypoints or importing predefined files. The images 
were captured at a height of 50 m with 90% overlap and 80% side overlap. The average 
ground sampling distance is 2.64 cm/pixel. The UAV flew at a speed of 5 m/s. Since the 
whiteboard was not used for radiometric correction in 2021, the correction coefficient was 
solved during the same time period in 2022 for radiometric correction of UAV photos in 
2021. As shown in Figure 3, the HandHeld2 ground object spectrometer was used to col-
lect hyperspectral curves in six time periods, and the whiteboard photos were taken by 
UAV at the same time during each collection. The spectral data obtained from the 
HandHeld2 spectrometer was used for radiometric calibration conducted through the 
fixed coefficient method. ENVI 5.3 software was used to select each reflection panel image, 
in turn, to extract the pixel mean value of each calibration panel region in the relative 
reflectance image. Finally, linear regression between the mean pixel value and the real 
reflectance was carried out to obtain the radiometric scaling equation. The correction co-
efficients of the blue band, green band, red band, red edge band, and near-infrared band 
were, respectively, 4.2309, 2.8996, 2.8994, 2.7181, and 3.1443. 

 
Figure 3. Remote sensing data collection. (a) An empirical line method was employed for each band 
(blue, green, red, red edge, and NIR), utilizing three reference reflectance panels (25%, 50%, and 
75%). (b) Multispectral data were collected using a DJI P4M. 

After radiometric calibration, the Pix4D software (Pix4D SA, Lausanne, Switzerland) 
was used to generate the orthomosaic. The multi-spectral Ag was selected as the template 
for our model with manually punctured points. By using initialization processing, point 
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Figure 3. Remote sensing data collection. (a) An empirical line method was employed for each band
(blue, green, red, red edge, and NIR), utilizing three reference reflectance panels (25%, 50%, and 75%).
(b) Multispectral data were collected using a DJI P4M.

After radiometric calibration, the Pix4D software (Pix4D SA, Lausanne, Switzerland)
was used to generate the orthomosaic. The multi-spectral Ag was selected as the template
for our model with manually punctured points. By using initialization processing, point
cloud, and texture generation, five single-band orthophotos were ultimately generated for
each observational stage.
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Table 1. Some parameters related to the UAV and sensors.

Aircraft Parameters Camera Parameters

Takeoff weight 1487 g FOV 62.7◦

Diagonal distance 350 mm Focal length 5.74 mm
Maximum flying altitude 6000 m Aperture f/2.2

Max ascent speed 6 m/s RGB sensor ISO 200–800
Max descent speed 3 m/s Monochrome sensor gain 1–8×

Max speed 50 km/h Max image size 1600 × 1300
Max flight time 27 min Photo format JPEG/TIFF

Operating temperature 0 ◦C to 40 ◦C Supported file systems FAT32(32 GB);
exFAT(>32 GB)

Operating frequency 5.72 to 5.85 GHz Operating temperature 0 ◦C to 40 ◦C

3. Methods

After the acquisition and pre-processing of the UAV data, threshold segmentation was
utilized to extract the opening cotton bolls. Afterwards, correlation analysis was conducted
to assess the extracted results and twelve selected vegetation indices (VIs) in order to
identify the most relevant VIs. The rate of change in the vegetation index was used as
the independent variable for predicting cotton boll opening rate. Then, the models were
established and evaluated. The method was divided into three parts: (1) opening boll area
extraction, (2) selection of vegetation index, and (3) modeling and accuracy evaluation
(Figure 4).

Remote Sens. 2024, 16, x FOR PEER REVIEW 6 of 18 
 

 

Table 1. Some parameters related to the UAV and sensors. 

Aircraft Parameters  Camera Parameters  
Takeoff weight 1487 g FOV 62.7° 

Diagonal distance  350 mm Focal length 5.74 mm 
Maximum flying altitude 6000 m Aperture f/2.2 

Max ascent speed 6 m/s RGB sensor ISO 200–800 
Max descent speed 3 m/s Monochrome sensor 

gain 
1–8× 

Max speed 50 km/h Max image size 1600 × 1300 
Max flight time 27 min Photo format JPEG/TIFF 

Operating temperature 0 °C to 40 °C Supported file systems FAT32(32 GB); 
exFAT(>32 GB) 

Operating frequency 5.72 to 5.85 GHz Operating temperature 0 °C to 40 °C 

3. Methods 
After the acquisition and pre-processing of the UAV data, threshold segmentation 

was utilized to extract the opening cotton bolls. Afterwards, correlation analysis was con-
ducted to assess the extracted results and twelve selected vegetation indices (VIs) in order 
to identify the most relevant VIs. The rate of change in the vegetation index was used as 
the independent variable for predicting cotton boll opening rate. Then, the models were 
established and evaluated. The method was divided into three parts: (1) opening boll area 
extraction, (2) selection of vegetation index, and (3) modeling and accuracy evaluation 
(Figure 4). 

 
Figure 4. Overall workflow of the study. 

3.1. Opening Boll Area Extraction 
In ENVI5.3, we select the bolls and non-bolls regions in the RGB image of the cotton 

field by the tool of ROI (region of interest) and count the range of digital numbers (DNs) 
on each band of opening bolls and others as shown in Figure 5. The DN refers to the 
brightness value of a remote-sensing image pixel, recording the dimensionless parameter 
of the grayscale value of features. In the blue and green bands, the DN values of cotton 
and other features intersect at different dates, which can cause errors in cotton boll recog-
nition. However, during the growth and development of cotton bolls, in the red band, the 
minimum value of cotton and the maximum value of others have a minimum difference 
of 0 and a maximum difference of 17, with no intersection. Therefore, the red band was 
selected as the threshold segmentation band. 

Figure 4. Overall workflow of the study.

3.1. Opening Boll Area Extraction

In ENVI5.3, we select the bolls and non-bolls regions in the RGB image of the cotton
field by the tool of ROI (region of interest) and count the range of digital numbers (DNs)
on each band of opening bolls and others as shown in Figure 5. The DN refers to the
brightness value of a remote-sensing image pixel, recording the dimensionless parameter
of the grayscale value of features. In the blue and green bands, the DN values of cotton
and other features intersect at different dates, which can cause errors in cotton boll recogni-
tion. However, during the growth and development of cotton bolls, in the red band, the
minimum value of cotton and the maximum value of others have a minimum difference
of 0 and a maximum difference of 17, with no intersection. Therefore, the red band was
selected as the threshold segmentation band.
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Figure 5. The range of DN values for opening bolls and others in RGB images. (B, G and R) represent
the three drone spectral bands mentioned previously: blue (450 nm ± 16 nm), green (560 nm ± 16 nm),
and red (650 nm ± 16 nm), respectively. The sub-images represent the range of values for opening
bolls and others on September 7th (A), 13th (B), 23rd (C), and 29th (D) and October 2nd (E), 12th (F),
16th (G), and 23rd (H), respectively.

3.2. Selection of VIs

According to the above, the value of the open boll and the background in the red band
is quite different, so we selected eight vegetation indices containing the red band from
previous related studies and common vegetation indices. Cameras with NIR bands became
common, so we selected four additional vegetation indices containing NIR bands to find
out whether NIR bands have remarkable performance in cotton boll extraction. The twelve
VIs are shown in Table 2. The original multispectral images (Figure 6) were utilized to
calculate all VIs, and band math was performed using the open-source software QGIS 3.16.
After importing the orthophotos obtained from Pix4D Software into a new QGIS project,
the raster calculator function was employed to carry out the band math and produce the
initial vegetation index maps. Subsequently, the QGIS 3.22.10 software was used to extract
the vegetation index of the region of interest.
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Figure 6. The original multispectral images of all time stages. The sub-images represent the original
multispectral images on August 26th (A), September 7th (B), 13th (C), 23rd (D), and 29th (E), and
October 2nd (F), 12th (G), 16th (H), and 23rd (I), respectively. Image A marks the date when the first
boll on the first fruiting branch of the cotton field began to open, signifying that the cotton entered
the boll opening period.
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Table 2. The calculation formula of the spectral index.

Vegetation Index Formula References

Normalized Difference Vegetation
Index (NDVI) (NIR − R)/(NIR + R) [28]

Normalized Difference Red Edge
(NDRE) (NIR-RE)/(NIR + RE) [29]

Visible-band Difference Vegetation
Index (VDVI) (2 × G − R − B)/(2 × G + R + B) [30]

Green Normalized Difference
Vegetation Index (GNDVI) (NIR − G)/(NIR + G) [31]

Simple Ratio Index (SR) NIR/R [32]
Green Ratio Vegetation Index (GRVI) NIR/G [33]

Red Green Ratio Index (RGRI) R/G [34]
Difference Vegetation Index (DVI) NIR − R [35]

Excess Green Vegetation Index (EXG) 2 × G − R − B [36]
Excess Red Vegetation Index (EXR) 1.4 × R − G [37]
Red Edge Soil-Adjusted Vegetation

Index (RESAVI) 1.5 × (NIR − RE)/(NIR + RE + 0.5) [38]

Enhanced Vegetation Index (EVI) 2.5 × (NIR − R)/(NIR + 6 × R − 7.5
× B + 1) [39]

Note: B, G, R, RE, and NIR are the reflectance at the wavelengths of 450, 560, 650, 730, and 840 nm, respectively.

3.3. Modeling and Algorithm Accuracy Evaluation
3.3.1. Calculating the Rate of the Vegetation Index Change

In this experiment, we used the rate of change in the vegetation index as the inde-
pendent variable for predicting the cotton boll opening rate. The rate of change of the
vegetation index was computed using the following formula:

VIC =
VIo − VIs

VIo
(2)

VIC is the rate of change of the vegetation index; VIo is the vegetation index at the first
opening boll of cotton in the plot; and VIS is the vegetation index at different time points
under different boll opening rates.

3.3.2. Linear Regression

Linear regression is a kind of regression analysis. Its core idea is to solve the equation
between a set of dependent variables and independent variables to obtain the regression
function. The error term is usually calculated by the least squares method.

y = β0 + β1x + ε (3)

y represents the dependent variable, x represents the independent variables, β1 stands for
partial regression coefficients, and β0 denotes the constant term, while ε is representative
of the error term.

3.3.3. Partial Least Squares Regression

PLSR is a classical regression prediction model. It is widely used in spectral regression
prediction [28–30,40]. The use of PLSR can offer solutions to several problems that are
not amenable to ordinary multiple regression. For example, in ordinary multiple linear
regression, the multiple correlation of variables can be detrimental to the model. The PLSR
approach is effective; in this approach, the data are decomposed and screened in the system
to extract the dependent variables, with the greatest power of explanation being chosen
as the comprehensive variables to distinguish between the information and noise in the
system and better overcome the adverse effects of multiple correlation variables in system
modeling. In short, PLSR is a combination of three basic algorithms, namely, PCA, CCA,
and multiple linear regression.
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3.3.4. Random Forest

Ensemble learning forms the basis of the supervised machine learning algorithm
known as RF. The RF model is widely used in remote sensing model prediction [41–43].
An RF model comprises multiple decision trees and is considered to be an essential model.
The prediction result is obtained by averaging the predictions of all decision trees. This
technique reduces variance by training each tree on a subset of data and combining multiple
decision trees to determine the final output. In regression problems, the final output is
determined by the average of the outputs from all decision trees. Among the popular
machine learning algorithms, RF regression is more adept at handling regression problems.
Furthermore, this technique is unaffected by the noise present in the training set and
produces a robust model.

3.3.5. Evaluation of Model Accuracy

To ensure sufficient training samples and effective validation, the algorithm was
trained using a randomly selected 80% of the observed sample data from the field, and
the remaining 20% was reserved for validation purposes. To assess the performance of
the various models, the coefficient of determination (R2) and relative root mean square
error (rRMSE) were employed. Calculation of R2 and rRMSE involved the use of the
following equations:

R2 = 1 − ∑n
1 (yi − ŷi)

2

∑n
1 (yi − yi)

2 (4)

rRMSE =

√
1
n ∑n

1 (yi − ŷi)
2

yi
(5)

The number of samples can be denoted by n; ŷi is the predicted value; yi is the actual
value; and yi is the mean of the actual value.

4. Results
4.1. Variations of the Boll Opening Rate

The information about the date of the survey can be seen in Figure 7, which also shows
the descriptive statistics of the boll opening rate by each growth stage and the dynamic of
the boll opening rate change with time. Based on Figure 6, it can be observed that there
is no obvious difference in boll opening percentage among different defoliant treatments
at any time period. However, the trend of boll opening percentage over time was quite
interesting. It can be seen that before 12 October, the boll opening percentage showed a slow
increase over time. But during the short period of 4 days, from 12 October to 16 October,
there was a shocking increase, reaching nearly 80% or more. Through the analysis of
meteorological factors, we found that it was likely that the slow increase in the boll opening
percentage before 12 October was due to insufficient light and heat conditions caused by
cloudy and rainy weather, which delayed the cotton boll opening process. During the
period from October 12th to 16th, abundant sunlight accelerated the boll opening process,
and previously accumulated unopened cotton bolls were able to open fully, resulting in a
rapid increase in the boll opening percentage. Continuous cloudy and rainy weather after
defoliation may also be an important reason for the lack of obvious difference in the boll
opening percentage among the treatments in the experiment. Across all growth stages, the
boll opening rate varied from 5.887 to 97.904%.
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Figure 7. Changes in the boll opening rate over time. September 7th, 13th, 23rd, and 29th and
October 2nd, 12th, 16th, and 23rd represent 134, 140, 150, 156, 159, 169, 173, and 180 days after sowing,
respectively.

4.2. Extract the Opening Bolls Area Based on the Threshold

The opening bolls’ area is determined by the threshold segmentation method for the
red band in the visible image. From Figure 8, we can see the opening bolls’ extraction results
in different time periods in a certain cell. The opening boll areas determined by threshold
value were compared with the results of visual interpretation. And the accuracy evaluation
results are shown in Table 3. The findings indicate that an exceptional level of accuracy
was achieved, consistently exceeding 99% across all eight selected days. Additionally, the
kappa coefficients surpassed 0.94. That is, the extraction of open cotton bolls demonstrated
excellent performance through threshold segmentation.
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Table 3. Accuracy evaluation results of opening boll extraction.

Date Overall Accuracy Kappa Coefficient

7 September 99.82% 0.945
13 September 99.86% 0.958
23 September 99.16% 0.966
29 September 99.83% 0.991

2 October 99.93% 0.997
12 October 99.98% 0.999
16 October 99.82% 0.994
23 October 99.64% 0.988

4.3. Correlation between Vegetation Indices and the Opening Bolls’ Area

Table 4 shows the correlation between the vegetation indices and the opening bolls’
area. The five vegetation indices with the highest correlation coefficient between vegetation
indices and the opening bolls’ area were EVI, GNDVI, GRVI, NDVI, and SR and reached a
significant level (p < 0.001). All the five vegetation indices included NIR bands, indicating
that some plant characteristics reflected by an NIR band, such as canopy photosynthetic
capacity and other characteristics, may be related to the change of the boll opening rate. It
is worth mentioning that the Spearman correlation analysis was employed in this study, so
there is no strict requirement for the normal distribution of data.

Table 4. Correlation between vegetation indices and opening bolls’ area.

Vegetation Index r

DVI −0.654 ***
EVI −0.835 ***
EXG −0.815 ***
EXR 0.814 ***

GNDVI −0.835 ***
GRVI −0.838 ***
NDRE −0.750 ***
NDVI −0.835 ***

RESAVI −0.810 ***
RGRI 0.777 ***

SR −0.838 ***
VDVI −0.794 ***

*** Indicates a strong correlation with a high level of significance, p < 0.001.

4.4. Regression Equations of the Opening Bolls’ Area Estimation Model Based on Each of the
Vegetation Indices

We select the five vegetation indices with the strongest correlation in Table 4 for further
analysis and calculate the rate of change of these five vegetation indices. Table 5 shows the
regression equations of the boll opening rate estimation model based on each of the rate
changes of the vegetation indices. The two vegetation indices, namely, NDVI and GNDVI,
both showed an R2 greater than 0.900 and an rRMSE smaller than the other indices in both
training and validation sets. The linear regression equation of NDVI was y = 101.316x
+ 15.372. Its training set performance was an R2 of 0.912 and rRMSE of 15.387%, and its
validation set performance was an R2 of 0.929 and rRMSE of 13.414%. The linear regression
equation of GNDVI was y = 53.333x + 24.562. Its training set performance was an R2 of
0.901 and rRMSE of 16.318%, and its validation set performance was an R2 of 0.909 and
rRMSE of 15.225%. NDVI showed the best prediction of the boll opening rate in the training
set and validation set.
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Table 5. Results of the training set and the validation set based on the regression equations.

Vegetation Index Model
Training Set Validation Set

R2 rRMSE (%) R2 rRMSE (%)

EVI y = 88.580x + 2.305 0.811 22.496 0.839 20.165
GNDVI y = 53.333x + 24.562 0.901 16.318 0.909 15.225
GRVI y = 97.183x + 3.581 0.825 21.666 0.841 19.968
NDVI y = 101.316x + 15.372 0.912 15.387 0.929 13.414

SR y = 81.510x − 1.543 0.724 27.222 0.74 25.421

4.5. Boll Opening Rate Model Based on PLSR

The five vegetation indices with the highest correlation coefficient were selected as
the independent variables of the model. For the PLSR model, the number of components
was selected according to the variance explanation rate. As shown in Table 6, when the
component number was three, the variance explanation rate of x was 99.84% and the
variance explanation rate of y was 94.12%. In this model, the number of components
selected was three.

Table 6. Fitting results of boll opening percentage trained by PLSR with varying numbers of components.

Data 1 Comps 2 Comps 3 Comps 4 Comps 5 Comps

X dimension 98.56 99.24 99.84 100.98 100.00
Y dimension 89.78 93.50 94.12 94.17 94.26

Figure 9 displays the results of the training set and the validation set based on PLSR.
The PLSR model utilizing three components achieved an R2 of above 0.94 and an rRMSE
below 13% in both the training and validation sets. Interestingly, the performance on the
validation set surpassed that of the training set, indicating the model’s robust generalization
ability. Moreover, from Figure 8, it can be observed that the PLSR method exhibited
moderate fitting for boll opening rates below 40% in both the training and validation sets.
This may be attributed to the complex canopy structure and the model’s limited capacity to
fully capture the canopy’s state when boll opening rates are low.
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4.6. Boll Opening Rate Model Based on RF

Figure 10 shows the performance of the training and validation sets using RF. In the
random forest model, we used rRMSE as an indicator to filter ntree and mtry, and when
rRMSE was the smallest, we obtained the values of ntree and mtry. Ntree was 41, and mtry
was 5. The RF model performed admirably in predicting the boll opening rate, with R2

values exceeding 0.95 for both the training and validation sets, with a remarkable R2 of
0.992 achieved on the training set. Additionally, the model exhibited rRMSE values below
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11% for both datasets. In comparison to the PLSR model, the RF model demonstrated
robust predictive capabilities across the entire range of boll opening rates.
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5. Discussion
5.1. The Rate of Change of the Vegetation Index Is a More Appropriate Method for the Cotton Boll
Opening Rate

Crop spectral properties are influenced by the changes in their light absorption, trans-
mission, and reflection resulting from their physiological characteristics, which reflect the
growth status of the crop [44]. The vegetation index is based on this relationship between
reflectivity and growth state or characteristics and is calculated by operating on the band.
Most vegetation indices are designed for assessing the photosynthetic capacity of plants,
which is widely used to describe vegetation dynamics and physiological and biochemical
parameters [45,46]. The boll opening rate is the ratio of the number of opening bolls to the
total number of bolls at a specific time, which is obviously inconsistent with the original
design intent of these vegetation indices. Therefore, it seems inappropriate to use the
vegetation index to directly characterize the cotton boll opening rate. However, along
with the cotton boll opening, the leaves gradually senesce and the photosynthetic capacity
gradually declines. This is because during the boll opening process, the vegetative growth
of cotton slows down or even stops and photosynthates are diverted from the leaves to the
cotton bolls. As a result, the leaves undergo continual aging, leading to a gradual decline
in photosynthetic capacity. This is precisely the rationale behind our intention to employ
the change rate of VIs as a means of inferring the boll opening rate.

5.2. The Vegetation Index with a Good Prediction Capability for the Boll Opening Rate

Table 3 shows the relationship between each vegetation index and the opening bolls’
area in the training set and validation set. Then, we select five vegetation indices with
strong correlations for further analysis. GNDVI and NDVI showed a good prediction of
the boll opening rate in the training set and validation set. Gitelson et al. believe that
over a large range of chlorophyll changes (the color of the leaf changed from completely
yellow to dark green), GNDVI can accurately estimate pigment concentration [34]. Wang
et al. suggested that GNDVI has a wider range of sensitivity to LAI than the red and blue
bands [47]. A recent study by Singh et al. showed that GNDVI has a strong correlation with
the amount of radiation absorbed for photosynthesis and has a linear relationship with LAI
and crop biomass, with the green band being more strongly correlated than the red band.
This index is also highly sensitive to plant chlorophyll contents [48]. GNDVI has better
sensitivity to the leaf area index and chlorophyll content. As the growth process advances,
the leaves undergo aging, change color, and eventually fall off. Fewer leaves mean more
cotton bolls have the opportunity to be exposed, and, additionally, the number of opening
cotton bolls also increases continuously. Therefore, GNDVI can effectively predict the boll
opening rate.
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Retrieving the biophysical properties of vegetation canopies with vegetation indices is
most commonly achieved using NDVI [49–51]. However, if ground biomass is high, NDVI
can saturate rapidly. The characteristics of the cotton opening period, which is the period
of this study, can effectively avoid this issue. This is because after the cotton enters the
boll opening stage, the vegetative growth gradually stops; the cotton gradually enters the
complete reproductive growth stage; the leaf color gradually turns yellow from bottom
to top; and the leaf area index decreases. Another reason why this experiment was not
affected by the saturation effect is the low planting density. Even at the peak growth period
of the cotton, the leaf area index remained at only four.

5.3. The Method with Unique Advantages for Predicting the Boll Opening Rate

Among the three methods that we tested, namely, LR, PLSR, and RF, RF had the best
predictive ability. The rRMSE of random forest in the training set was 4.660%, and in the
validation set it was 10.256%. The RF method, which had the best training performance,
was better than the GNDVI in the linear model and the partial least squares methods. RF
appears to have unique advantages in predicting crop phenotypes using spectral indices,
and previous studies have confirmed this [52].

Although its accuracy was lower than the PLSR and RF methods, the linear model
has its own unique characteristics. LR is simple and easy to understand. It can be mod-
eled quickly, especially for data where the relationship to be modeled is not particularly
complex and the amount of data is small. The models based on GNDVI and NDVI both
demonstrated acceptable levels of accuracy.

Ma et al. utilized correlation coefficients and random forest to screen important
variables for lint percentage prediction, including vegetation indices, texture features, and
color features. They applied different machine learning algorithms for prediction and
obtained a random forest prediction set (R2 = 0.73, RMSE = 19.11%, rRMSE = 46.40%) [53].
Yeom et al. employed high-resolution images captured by unmanned aerial vehicles,
extracted random seed points, applied the region growing algorithm and Otsu method to
determine the threshold for distinguishing cotton bolls from non-cotton bolls in the images,
and established a model to predict yield based on the resultant lint cotton boll area [10]. Ma
et al. on the other hand, predicted lint percentage using features such as vegetation indices
and color spaces extracted from RGB images, but the prediction accuracy was not high.
Moreover, their approach differed from the one proposed in this paper. Yeom’s approach,
starting from an “image perspective”, effectively monitored the area of lint cotton bolls, but
could not predict the lint percentage. The highlight of this study is the creative utilization
of the spatiotemporal variation of lint percentage, inferred by the change rate of vegetation
indices, to achieve higher recognition accuracy.

5.4. Limitations of This Study and Suggestions for the Future Boll Opening Rate Estimation

The used method can directly construct the relationship between the vegetation index
obtained by UAV and the boll opening rate at a much finer scale and achieve relatively
accurate and rapid identification of the boll opening rate. This study only focused on the
relationship between the boll opening rate and the change rate of the vegetation index at
one density for only one species. The main factors that shape the overall canopy spectral
response pattern when evaluating vegetation canopy reflectance are the optical properties
of its constituent elements, namely, leaves, stems, and fruits. Under different row spacing,
different irrigation volumes, and different density configurations, the distribution of cotton
bolls in physical space is distinct. In addition, in the later growth stage, cotton may have
three states, namely, normal aging, early maturation, and greedy late maturation, due to the
influence of soil, fertilization, or environmental factors. These factors should all be taken
into account in future studies. The bolls’ opening follows the order from bottom to top and
inside to outside. In the early stage, due to the occlusion of the upper leaves, it is difficult
to detect the cotton bolls in the lower layer, and the senescence of the leaves and the overall
canopy state of the cotton boll opening rate are not too “coordinated”. Therefore, in the
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remote sensing image, the vegetation information reflected in the whole canopy due to
the change of the boll opening rate in the lower layer is not fully displayed. There may
be a segmented linear regression relationship between the change rate of the vegetation
index and the boll opening rate, which also needs to be studied in the next step. Yeom et al.
employed boll area as a predictive factor for estimating cotton field yield. They observed
that an increase in boll area is associated with a corresponding increase in cotton field
yield [11]. Additionally, the augmentation of the boll area generally results in an increase in
the boll opening rate. Accurately predicting the boll opening rate could serve as a valuable
reference for yield forecasting and harvesting decisions. These findings will be further
validated in future research endeavors.

6. Conclusions

In this study, we developed a new model for monitoring the boll opening rate of
cotton. Based on the correlation results between vegetation indices and the cotton opening
boll area, five vegetation indices (EVI, GNDVI, GRVI, NDVI, and SR) with the highest cor-
relation coefficient were selected for further analysis. NDVI exhibited the highest accuracy
(R2 = 0.912 and rRMSE = 15.387% in the training set; R2 = 0.929 and rRMSE = 13.414%
in the validation set) in predicting the cotton boll opening rate among the change rate of
evaluated vegetation indices. The prediction accuracy of GNDVI and NDVI were within
the acceptable range. In terms of predictive models, RF achieves the highest accuracy in
predictions, with an R2 of 0.992 and rRMSE of 4.660% in the training datasets and an R2 of
0.959 and rRMSE of 10.256% in the validation dataset. We realized rapid non-destructive
testing of the boll opening rate by using RF to establish the relationship between the cotton
boll opening rate and the change of VIs. The research results demonstrate that the rapid
and non-destructive monitoring of the cotton boll opening rate in cotton fields has been
achieved by establishing the relationship between the cotton boll opening rate and vegeta-
tion index changes using the RF method. Furthermore, the saturation effect of NDVI does
not influence the experimental results significantly, due to the gradual leaf senescence in
the later growth stage. However, the applicability of this method to cotton populations
with significant morphological variations still requires further exploration. Overall, the
research findings provide decision support for predicting harvest time and determining
the timing of harvest aids application, while also offering technical support for precise
agriculture and cotton growth monitoring.
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