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Abstract: The extraction of the micro-Doppler (m-D) feature based on time-frequency distribution
(TFD) is of great significance for target detection and identification. To improve the feature extraction
performance, numerous TFDs have been developed, with the majority falling under Cohen’s class.
Nevertheless, these TFDs basically face a trade-off between artifact suppression and energy concentra-
tion. The main reason is that each Cohen’s class TFD is constructed by applying the two-dimensional
Fourier transform to a kerneled ambiguity function directly, while existing kernels generally atten-
uate artifacts at the expense of losing valuable information. In this paper, a TFD reconstruction
method employing an adaptive short-time kernel (ASTK) is developed in the framework of sparse
representation (SR) theory to overcome this trade-off and enhance the m-D feature. Firstly, the task of
the optimal kernel is explained from the viewpoint of the instantaneous auto-correlation function
(IAF). Secondly, based on the quasi-linear frequency modulation feature of most m-D signals during
short-time periods, the distribution rule of the short-time IAF (STIAF) in the ambiguity plane is
concluded. Guided by this rule, an ASTK that can effectively remove unwanted artifacts with the
least information loss is designed. Finally, an SR-based reconstruction procedure is conducted on the
kerneled STIAF to generate an artifact-free TFD with high energy concentration, which can effectively
enhance the m-D feature. Experiments using both simulated and real-world m-D signals demonstrate
the effectiveness of the proposed method.

Keywords: micro-Doppler; feature enhancement; time-frequency distribution; ambiguity function;
artifact suppression; kernel design; sparse representation

1. Introduction

Micro-motions refer to the small-amplitude movements of radar targets or structures
on the targets, in addition to the bulk motion. Micro-motions are commonly observed in
the real world, such as the vibrations of a vehicle engine, the rotation of helicopter rotor
blades, or the tumbling of a spacecraft in space [1]. From the perspective of radar, these
micro-motions can cause unique frequency modulations in the radar echo, resulting in the
generation of sidebands around the target’s Doppler frequency shift. This phenomenon is
known as the micro-Doppler (m-D) effect.

In recent years, the value of the m-D feature as one of the most significant target sig-
natures has been confirmed. On the one hand, the m-D feature enables the differentiation
between targets and backgrounds, which can effectively aid target detection [2,3]. On
the other hand, the m-D modulation parameters such as repetition period and maximum
amplitude indicate the motion or physical properties of the target, which provides valuable
additional information for precise target detection and identification [3–5]. Numerous
algorithms have been developed to analyze and extract the m-D feature from radar mea-
surements, among which the time-frequency distribution (TFD) has garnered significant
attention [6]. The TFD is capable of visualizing the frequency content of an m-D signal over
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time, thus enabling a clear display of intricate time-varying m-D modulation information
of the target. In [7], the Short-Time Fourier Transform (STFT) was utilized to reveal the m-D
feature of rotationally symmetric ballistic targets with precession. In [8], radar measure-
ments of diverse targets including humans, vehicles, dogs, and sheep were processed and
compared using STFT. Marple proposed time-frequency sharpening techniques to extract
the m-D characteristics of helicopter echo signals, which further supported the accurate
classification of four-blade and two-blade helicopters [9,10]. In the analysis of human gait
echoes, researchers pointed out that extracting the m-D feature from the low-resolution TFD
generated by STFT is technically challenging since m-D modulation curves corresponding
to different parts of the body overlap with each other. However, using the high-resolution
TFD obtained by the reassignment method allows for a clear distinction of the m-D from
nine different parts of the human body [11,12]. Therefore, it is crucial to employ a TFD
with high energy concentration for the precise extraction of a target’s m-D feature.

At first glance, the Wigner-Ville distribution (WVD) may stand out as one of the
most appealing options in m-D feature extraction because it is well-known that WVD has
excellent TF concentration, particularly for mono-component linear frequency modulation
(LFM) signals. However, as a quadratic TFD, WVD produces desired auto-terms (ATs) and
unwanted artifacts simultaneously. To be more specific, the artifacts comprise inner and
outer artifacts (commonly referred to as cross-terms), which are induced by the nonlinear
frequency modulation (FM) characteristic and the multi-component nature of the signal,
respectively [13,14]. Generally, the complex micro-motions of targets cause time-varying
frequency modulations in the radar echo, and the observation scene rarely consists of a
single target. As a result, the presence of artifacts in WVD is almost inevitable. These
artifacts significantly obscure the target’s m-D information, thereby reducing the readability
and practicality of WVD in m-D analysis [15,16].

Quantities of modified versions of WVD have been proposed to remove or at least
attenuate artifacts, most of which can be categorized under Cohen’s class [17]. Based on the
fact that ATs mainly cluster near the origin in the ambiguity plane, while artifacts tend to
lie farther away from it [18,19], each member of Cohen’s class involves applying a low-pass
kernel to the signal’s ambiguity function (AF) and then obtaining an artifact-suppressed
TFD by taking the two-dimensional (2-D) Fourier transform (FT) of the weighted AF.
Obviously, the performance of such a TFD relies heavily on the choice of the kernel.

So far, various kernels have been proposed according to the aforementioned distri-
bution pattern of the AF [20–25,25]. However, existing kernels, including the well-known
adaptive optimal kernel (AOK) [23], face a trade-off between AT preservation and artifact
excision. The cause of this issue is that the words “near” and “farther” used to differentiate
ATs and artifacts are inherently vague, and thus cannot provide precise guidance for kernel
design. Moreover, applying a crude Fourier inversion to the kerneled AF without any
constraint tends to reduce the energy concentration [26]. Consequently, the performance of
Cohen’s class TFDs is fundamentally limited.

Inspired by the local quasi-LFM feature of most real-life signals [27–29], this paper
proposes an effective TFD reconstruction approach to generate high-performance TFDs
of radar echoes to enhance the target’s m-D characteristic. The main contributions are
as follows.

1. An explicit distribution rule of the signal’s short-time AF (STAF) is derived, providing
a clear explanation of a phenomenon that was vaguely described in previous literature.

2. The task of the optimal kernel is analyzed and clearly illustrated. Moreover, an adap-
tive short-time kernel (ASTK) is developed according to the concluded distribution rule,
which achieves excellent artifact removal and accurate AT preservation simultaneously.

3. A sparse representation (SR)-based reconstruction method for the instantaneous
spectrum is proposed, which further facilitates the construction of an artifact-free TFD
with high energy concentration to enhance the m-D characteristic.

This paper is organized as follows. In Section 2, the task of the optimal kernel is
analyzed and the ASTK is derived based on the ambiguity domain distribution pattern
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of the m-D signal’s STIAF. Following this, the reconstruction process of the proposed
high-performance TFD is detailed. Section 3 compares the proposed TFD with four other
methods using simulated and real m-D signals to demonstrate its superiority. Finally,
Section 4 presents conclusions and outlines future research directions.

2. Proposed M-D Feature Enhancement Method
2.1. Task of Optimal Kernel

In general, an m-D signal and its idealized TFD can be respectively represented as [30]

s(t) =
K

∑
k=1

sk(t) =
K

∑
k=1

ak(t)ejφk(t), (1)

Pideal(t, ω) =
K

∑
k=1

a2
k(t)δ

(
ω− φ′k(t)

)
, (2)

where K is the number of signal components, sk(t) denotes the k-th component with time-
varying amplitude ak(t), phase φk(t), δ(·) represents the Dirac delta function, and φ′k(t)
stands for the first order derivative of φk(t). Conceptually, TFDs in Cohen’s class are
generated. All integrals run from −∞ to ∞ unless otherwise noted.

P(t, ω) =
1

4π2

∫∫
A(θ, τ)Φ(θ, τ)e−jθt−jτωdθdτ, (3)

where A(θ, τ) is the AF of s(t), Φ(θ, τ) denotes the TFD kernel, θ and τ signify the Doppler
frequency and the correlation lag, respectively. More specifically, A(θ, τ) is given by

A(θ, τ) =
∫

R(t, τ)ejθtdt, (4)

where R(t, τ) stands for the instantaneous auto-correlation function (IAF) of s(t), which is
expressed as

R(t, τ) = s(t +
τ

2
)s∗(t− τ

2
), (5)

(·)∗ represents the conjugate operator.
By comparing (2) and (3), it can be observed that if A(θ, τ)Φ(θ, τ) can be replaced by

2π
∫

∑K
k=1 a2

k(t1)ejφ′k(t1)τejθt1 dt1, we have

P(t, ω) =
1

4π2

∫∫
A(θ, τ)Φ(θ, τ)e−jθt−jτωdθdτ

=
1

4π2

∫∫ (
2π
∫ K

∑
k=1

a2
k(t1)ejφ′k(t1)τejθt1 dt1

)
e−jθt−jτωdθdτ

=
∫ (∫ ( 1

2π

∫ K

∑
k=1

a2
k(t1)ejφ′k(t1)τejθt1 dt1

)
e−jθtdθ

)
e−jτωdτ

=
∫ K

∑
k=1

a2
k(t)e

jφ′k(t)τe−jτωdτ

=
K

∑
k=1

a2
k(t)δ

(
ω− φ′k(t)

)

(6)

That is to say, Cohen’s class TFD can be transformed into the idealized TFD under the
condition of (6). Therefore, the optimal kernel is supposed to be

Φopt(θ, τ) =

∫
∑K

k=1 a2
k(t)e

jφ′k(t)τejθtdt∫
R(t, τ)ejθtdt

, (7)

where the amplitude of the kernel is neglected.
Expanding φk(t + τ

2 ) and φk(t− τ
2 ) into Taylor series at t, we have
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φk(t +
τ

2
) = φk(t) + φk

′(t) · τ

2
+

φk
′′(t)
2!

· (τ

2
)2 + · · · (8)

φk(t−
τ

2
) = φk(t) + φk

′(t) · (−τ

2
) +

φk
′′(t)
2!

· (−τ

2
)2 + · · · (9)

where φ′′k (t) stands for the second order derivative of φk(t).
Substituting (1) as well as (8) and (9) into (5), R(t, τ) can be expanded as

R(t, τ) =
K

∑
k=1

Rkk(t, τ) +
K

∑
k=1

K

∑
l=1,l ̸=k

Rkl(t, τ) (10)

where Rkk(t, τ) represents the IAF of sk(t) and Rkl(t, τ) represents the instantaneous cross-
correlation function (ICF) between sk(t) and sl(t) as the l-th component of the m-D signal.
Rkk(t, τ) and Rkl(t, τ) are respectively given by

Rkk(t, τ) = sk(t +
τ

2
)s∗k (t−

τ

2
) = a2

k(t)e
j[φk(t+

τ
2 )−φk(t−

τ
2 )]

≈ a2
k(t)e

j

φk
′(t)τ+

∞

∑
m=1

φk
(2m+1)(t)

(2m+1)!·22m τ(2m+1)

︸ ︷︷ ︸
high-order-derivative terms


(11)

Rkl(t, τ) = sk(t +
τ

2
)s∗l (t−

τ

2
) = ak(t)al(t)e

j[φk(t+
τ
2 )−φl(t−

τ
2 )] (12)

In (11) and (12), the amplitude of each component is assumed to vary slowly, and thus
ak(t± τ

2 ) = ak(t). φ
(2m+1)
k (t) stands for the (2m + 1) order derivatives of φk(t).

Referring to (7)–(12), the task of the optimal kernel can be more precisely interpreted.
In essence, Φopt(θ, τ) aims to eliminate the Rkl(t, τ) as well as the high-order-derivative
terms within each Rkk(t, τ) in the ambiguity domain. This is because the former introduces
outer artifacts while the latter contributes to the inner artifacts. However, designing such a
kernel poses a technical challenge because it is still unclear how to accurately differentiate
the terms that should be captured from the others that need to be excluded. The remainder
of this section presents a practical scheme.

2.2. Distribution Rule of STIAF in Ambiguity Domain

In fact, a more explicit distribution rule for each term in R(t, τ) can be derived with
the idea of local signal processing. A t0-centered short-time m-D signal is represented as

st0(t) = s(t)w(t− t0), (13)

where w(t) is a symmetrical window function with length L, i.e., w(t) ̸= 0 only for
t ∈ [− L

2 , L
2 ]. In this paper, w(t) is set to be a rectangular window.

With a proper value of L, st0(t) can be precisely approximated as the superposition of K
LFM components, which is exactly the local quasi-LFM feature commonly observed in real-
life signals [27–29]. In this case, if we expand each phase function into the corresponding
Taylor series at t0, all terms higher than the second can be omitted. That is,

st0(t) ≈
K

∑
k=1

ak(t) ej(xkt2+ykt+zk)︸ ︷︷ ︸
LFM signal

, t ∈ [t0 − L
2 , t0 +

L
2 ], (14)

where xk = φ′′k (t0)/2, yk = (φ′k(t0)− φ′′k (t0)t0), zk = φk(t0)− φ′k(t0)t0 +
φ′′k (t0)

2 t2
0. Similarly,

for the l-th component of st0(t), xl = φ′′l (t0)/2, yl = (φ′l(t0) − φ′′l (t0)t0), zl = φl(t0) −
φ′l(t0)t0 +

φ′′l (t0)
2 t2

0.
The AF of st0(t), i.e., the short-time AF (STAF) of s(t), is defined as



Remote Sens. 2024, 16, 146 5 of 14

At0(θ, τ) =
∫

Rt0(t, τ)ejθtdt, (15)

where Rt0(t, τ) stands for s(t)’s short-time IAF (STIAF) and is expressed as

Rt0(t, τ) = st0(t +
τ

2
)s∗t0

(t− τ

2
)

=
K

∑
k=1

Rt0,kk(t, τ) +
K

∑
k=1

K

∑
l=1,l ̸=k

Rt0,kl(t, τ),
(16)

Rt0,kk(t, τ) and Rt0,kl(t, τ) represent the time-localized version of Rkk(t, τ) and Rkl(t, τ),
respectively. The range of t is [t0 − L

2 , t0 +
L
2 ], while τ is limited in [−L, L].

Using (14), Rt0,kk(t, τ) and Rt0,kl(t, τ) can be obtained as

Rt0,kk(t, τ) ≈ a2
k(t)e

j(2xkt+yk)τ = ej(φ′k(t0)+φ′′k (t0)(t−t0))τ (17)

Rt0,kl(t, τ) ≈ ak(t)al(t)ej(xkl t2+ykl t+zkl) (18)

where xkl = xk − xl , ykl = (xk + xl)τ + yk + yl , zkl = (xk − xl)
τ2

4 + (yk − yl)
τ
2 + zk − zl .

For variable t, Rt0,kk(t, τ) in (17) is a narrow-band single-frequency signal with constant
frequency 2xkτ and initial phase ykτ, but Rt0,kl(t, τ) in (18) is a wide-band LFM signal with
chirp rate 2xkl , initial frequency ykl , and initial phase zkl . Since STAF is exactly the inverse
FT of STIAF with respect to t, for each value of τ, the energy of Rt0,kk(t, τ) is highly
concentrated in the ambiguity domain, whereas the energy of Rt0,kl(t, τ) disperses across its
instantaneous bandwidth. Considering all values of τ, a more explicit distribution pattern
in the ambiguity plane can be derived.

If the signal’s frequency exhibits approximately linear variation, the energy of auto-
terms is distributed along lines passing through the origin, while the energy of artifacts is
dispersed within a diamond-shaped region.

To illustrate the above conclusion, Figure 1 shows the STAF of a two-component LFM
signal and the corresponding cross-section at τ = 0.5 s. The LFM signal is expressed as

s1(t) = ej(−100πt+200πt2) + ej(100πt−200πt2). (19)

(a) (b)

Figure 1. Distribution pattern of (a) s1(t)’s STAF and (b) its cross-section at τ = 0.5 s. The duration of
the short-time signal is [0, 1].

Through an inspection of the results shown in Figure 1, the correctness of the concluded
distribution rule can be verified. It is worth noting that the prerequisite for applying this
rule is the quasi-LFM feature of the short-time signal. Hence, the analysis window is
supposed to break down the original m-D signal into a series of short-time segments with
linearly varying frequencies. To achieve this, the adaptive window proposed in [27] is
employed, which is generated through the minimization of the bandwidth of each short-
time signal. The reason is that the more stationary the short-time signal, the slower its
frequency varies, leading to a smaller bandwidth of the short-time signal. Therefore, it
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is reasonable to consider the bandwidth of each short-time signal as an indicator of LFM
approximation precision. A smaller bandwidth indicates higher approximate precision.

2.3. ASTK Design

By comparing (11) and (17), it is apparent that the high-order-derivative terms within
each Rkk(t, τ) are absent in its time-localized counterpart Rt0,kk(t, τ). Therefore, the primary
objective of the short-time kernel for st0(t) shifts toward the suppression of Rt0,kl(t, τ).
Based on the STIAF’s distribution rule concluded in Section 2.2, if we accumulate the
energy of the STAF through lines passing through the origin as

E(α) =
∫ ∞

0
At0(ρ cos α, ρ sin α)dρ, α ∈ [0, 2π), (20)

energy peaks can be obtained in the directions that each Rt0,kk(t, τ) is distributed along,
while the energy of each Rt0,kl(t, τ) cannot be effectively accumulated from any angle.
In (20), E(α) denotes the accumulated energy along a line passing through the origin
with an inclination angle of α, and ρ represents the polar radius. Prior to the energy
accumulation, an interpolation of the STAF from the rectangular grid to the polar grid is
necessary. A detailed description of the interpolation process can be found in [24].

Finally, the ASTK can be derived by assigning the value of 1 to directions that cor-
respond to the energy peaks while maintaining 0 for all other locations. As a result, the
shape of the kernel is dynamically determined through the energy accumulation procedure,
allowing it to adaptively adjust to match various short-time signals. For example, an
X-shaped kernel will be derived for the STAF shown in Figure 1. Using this kernel, each
Rt0,kl(t, τ) can be effectively removed while each Rt0,kk(t, τ) is precisely preserved. As a
result, we have

rt0(t, τ) = F
θ→t
{At0(θ, τ)Φt0(θ, τ)} ≈

K

∑
k=1

Rt0,kk(t, τ)

≈
K

∑
k=1

a2
k(t)e

j(φ′k(t0)+φ′′k (t0)(t−t0))τ

(21)

where rt0(t, τ) stands for the kerneled STIAF, t is limited in [t0 − L
2 , t0 +

L
2 ], Fθ→t

denotes the

FT from Doppler frequency θ to time t.

2.4. SR-Based TFD Reconstruction

Traditionally, once rt0(t, τ) is determined, the instantaneous spectrum at time instant
t0 can be computed as [24]

P(t0, ω) = F
τ→ω
{rt0(t0, τ)} = F

τ→ω

{
K

∑
k=1

a2
k(t0)ejφ′k(t0)τ

}
. (22)

where F
τ→ω

denotes the FT from correlation lag τ to frequency ω.
By continuously sliding the analysis window and computing the spectrum for each

time instant, an artifact-suppressed TFD (called ASTK-FT TFD hereafter) can be generated
by arranging the obtained spectrums chronologically. However, since the range of τ for
each rt0(t, τ) is limited by the length of the short-time signal, the concentration of each
instantaneous spectrum is usually unsatisfactory due to the uncertainty principle [22].
Hence, ASTK-FT TFD still inherits poor energy concentration.

Since K is usually a small number in practice, the signal’s inherent sparsity can
be utilized to generate “sharper” spectrums [31,32]. By employing a l0 norm sparsity
constraint, the sparse spectrum at time instant t0 can be computed as
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P̂(t0, ω) =arg min
P(t0,ω)

∥P(t0, ω)∥0

s.t. F
τ←ω

−1{P(t0, ω)} = rt0(t0, τ)
(23)

where ∥·∥0 signifies the l0 norm, and F
τ←ω

−1 stands for the inverse FT from frequency ω to
correlation lag τ.

It is well-known that sparse representation problems based on the l0 norm are NP-
hard. In this paper, an effective sparse decomposition algorithm named SL0 is utilized
to solve (23). The SL0 algorithm uses the smoothed l0 norm to find sparse solutions and
has been verified to perform even faster than l1-norm-based algorithms [33]. The SL0
algorithm has been successfully used in time-frequency analysis and behaves well. Readers
can refer to [34] for more details about the process of the SL0 algorithm for instantaneous
spectrum reconstruction.

By combining the effective ASTK and SR-based spectrum reconstruction procedure,
the desired high-performance TFD (named ASTK-SR TFD) can be derived. The proposed
TFD differs from AOK TFD in three aspects. First, ASTK-SR TFD employs an adaptive
window to decompose the signal into short-time segments, whereas the AOK TFD uses a
fixed window. Secondly, ASTK-SR TFD devises an adaptive kernel to weigh the signal’s
STAF, while the AOK TFD utilizes low-pass kernels with Gaussian radial cross sections.
Lastly, ASTK-SR TFD utilizes SR techniques to construct the spectrum, whereas the AOK
TFD relies on the Fourier transform. To conclude, the complete signal processing process of
the proposed method is illustrated in Figure 2 and summarized as follows.

Sparse

spectrum
STAF

Kerneled

STIAF

T
im

e

Short-time signals with 

different lengths

...
...

ASTK-SR TFD

o

ASTK-SR TFD

o

M-D Signal

Segmentation using 

adaptive window



t

SRASTK&FT

Figure 2. Flowchart of the reconstruction process of ASTK-SR TFD.

1. Break the m-D signal to be analyzed into a series of short-time segments with the
adaptive window.

2. Compute the STAF of each short-time signal in both rectangular and polar coordinates.
3. Accumulate the STAF energy along lines passing through the origin with different

slopes to determine the shape of the ASTK.
4. Apply the ASTK to the STAF to suppress unwanted artifacts.
5. Take inverse FT to the kerneled STAF to obtain the artifact-free STIAF.
6. Reconstruct the instantaneous spectrum by utilizing the sparsity of the STIAF slice in

the corresponding Fourier dictionary.
7. Obtain the high-performance TFD by arranging the spectrums of all time instants

chronologically.

3. Experimental Results and Analysis

In this section, synthetic and real-life m-D signals are employed to demonstrate the
superiority of the proposed ASTK-SR TFD in m-D feature enhancement. To provide a
comprehensive comparison, WVD, which is one of the most well-known methods with
excellent energy concentration, and RSPWVD, which is known to usually behave best in
practical applications, are chosen as benchmarks in all comparisons. Moreover, since AOK
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TFD shares similar ideas and signal processing procedures with the proposed method, it is
also included in the following experiments. Finally, the results of ASTK-FT TFD are also
provided to demonstrate the benefit introduced by the SR technique.

3.1. Simulation

Tumbling refers to a type of complex micro-motion that consists of rotation, translation,
and acceleration. Using the theoretical model deduced in [1], the radar return of a tumbling
target composed of three ideal scatterers is computed. The simulation parameters are listed
in Table 1.

Table 1. Simulation Parameters.

Parameter Value

Carrier frequency 10 GHz
Pulse repetition frequency (PRF) 3000 Hz
Target location (1000 m, 5000 m, 5000 m)
Initial Euler angles (20◦, 20◦, 20◦)
Angular velocity 4π rad/s
Initial velocity 5 m/s

Scatterer position (target local coordinate)
P1 (0 m, 0 m, 0 m)
P2 (−0.5 m, 0.3 m, 0.4 m)
P3 (0.5 m, −0.3 m, −0.4 m)

The theoretical m-D feature of the simulated radar echo and five considered TFDs
computed with a 0 dB signal-to-noise ratio (SNR) are depicted in Figure 3 for a visual
comparison of their energy concentration and artifact suppression ability. For a more com-
prehensive comparison, the cross-sections of these TFDs at time = 0.5 s are also depicted in
Figure 4. As the performance of AOK TFD relies on the kernel volume parameter [23] and
RSPWVD is dependent on the choice of window lengths [30], experiments have been con-
ducted with various parameters. The TFDs reported in Figure 3 have all been individually
optimized to be the most visually appealing outcome for a fair and unbiased comparison.

(a) (b) (c)

(d) (e) (f)

Figure 3. TFDs of the simulated m-D signal obtained at an SNR of 0 dB. (a) Theoretical TFD, (b) WVD,
(c) AOK TFD, (d) RSPWVD, (e) ASTK-FT TFD, (f) ASTK-SR TFD.
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(a) (b) (c)

(d) (e) (f)

Figure 4. Cross-sections of the TFDs depicted in Figure 3 at time = 0.5 s. (a) Theoretical TFD, (b) WVD,
(c) AOK TFD, (d) RSPWVD, (e) ASTK-FT TFD, (f) ASTK-SR TFD.

As shown in Figure 3, WVD is seriously contaminated by artifacts and noise due to
the lack of interference suppression ability, while the others significantly reduce artifacts.
However, AOK TFD fails to provide a clear TF image due to the limited artifact suppression
ability provided by the radially Gaussian kernel. Furthermore, the TF trajectories are
heavily expanded as numerous AF data related to ATs have been deserted. By assigning
the dispersed TF energy back to the center of gravity at each time instant, RSPWVD
truly improves the energy concentration. On the other hand, it still encounters the same
issue of residual artifacts as AOK TFD does. Moreover, RSPWVD is very sensitive to
noise, and thus the obtained TF trajectories are slightly twisted. Due to the advanced
capabilities of the proposed ASTK in attenuating artifacts and noise while accurately
preserving ATs’ information, ASTK-FT TFD is able to distinctly reveal the target’s m-D
characteristic. However, as evidenced by Figure 4, the TF trajectories are still widened due
to the employment of the 2-D FT. By combining the strengths of SR and ASTK, the proposed
ASTK-SR TFD effectively suppresses artifacts and maintains high TF concentration, which
closely resembles the theoretical TFD and thus achieves the most accurate m-D feature
expression among the methods under consideration.

To quantitatively measure the performance of different TFDs, the Pearson correlation
coefficients between them and the theoretical TFD are computed as

Pcor =
vec(P̂)Tvec(Pideal)

∥vec(P̂)∥2∥vec(Pideal)∥2
(24)

where P̂ stands for the TFD generated by a certain method, vec(P̂) represents the vector
form of P̂ with the mean value subtracted, (·)T denotes the vector transpose operation,
and ∥ · ∥2 is the l2 norm. The Pearson correlation can measure the similarity in shape
between the computed TFDs and the theoretical TFD and a higher value means better
shape similarity [32]. Conceptually, a value of 1 indicates an excellent match with the
signal’s time-frequency feature, in other words, the most precise extraction of the target’s
m-D feature.

The Pearson correlations between the results and the standard distribution are com-
puted in Table 2. From a closer inspection of the data, it is evident that the correlation
coefficients for WVD, AOK TFD, and RSPWVD are all below 0.5. In contrast, notably
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higher values can be observed for ASTK-FT TFD and ASTK-SR TFD, which confirms
the effectiveness of the ASTK and highlights the superiority of ASTK-SR TFD over the
other methods.

Table 2. Quantitative Quality Evaluation of Different TFDs.

TFD WVD AOK RSPWVD ASTK-FT ASTK-SR

Pcor 0.1872 0.3209 0.3710 0.5191 0.6063

Moreover, to explore the performance of these TFDs in noise tolerance, white Gaussian
noise is added to the synthetic m-D signal to simulate different SNRs varying from −5 dB
to 10 dB. At each SNR, 100 Monte-Carlo trials are conducted to obtain the average Pearson
correlation coefficients of different methods. As shown in Figure 5, one can see that all
TFDs experience a performance deterioration as the SNR decreases. However, the proposed
ASTK-SR TFD and ASTK-FT TFD always have much higher correlation coefficients with the
theoretical TFD. The two ASTK-based methods show better noise robustness because the
noise is randomly distributed in the ambiguity domain, and thus can be effectively filtered
by the well-designed ASTK. Taken together, the overall assessment is that the proposed
ASTK-SR TFD behaves better in energy concentration, artifact suppression, precision, and
noise robustness among all the considered TFDs.

Figure 5. The Pearson correlation coefficients between the theoretical TFD and TFDs generated by
different methods versus SNR.

3.2. Computational Complexity

In this subsection, the five considered TFDs are compared from a computational viewpoint.
Assume an N-point sampled m-D signal whose TFD is supposed to be computed over

N frequency bins. As previously mentioned, the reconstruction of the proposed ASTK-SR
TFD can be summarized into seven steps. From a computational perspective, the cost of
steps one and seven can be omitted. For step two, assuming the average length of the
short-time window is L̄, the dimension of each STAF in rectangular coordinate is L̄× L̄ and
can be obtained by L̄ FFT procedures of size L̄. Therefore, the computation of N STAFs
in rectangular coordinates requires O(NL̄2logL̄) operations. Bilinear interpolation is an
effective method for calculating the STAF in polar coordinates. The proposed method sets
the dimension of the STAF in polar coordinates to be 2L̄× 2L̄, which means that it takes
O(L̄2) operations to generate it from a rectangularly sampled STAF. Therefore, the cost of
computing N STAFs in polar coordinates is O(NL̄2). To sum up, the total computational
cost of step two is O(NL̄2logL̄). For step three, the energy accumulation in each direction
is simply achieved by 2L̄ additions. Consequently, the cost of energy accumulation in
2L̄ angles is O(L̄2), which means the complexity of the determination of N adaptive
kernels is O(NL̄2). For step four, each rectangularly sampled STAF is multiplied by the
corresponding adaptive kernel, requiring O(NL̄2) operations in total. The transformation
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from each STAF to STIAF involves L̄ FFT procedures of size L̄. Therefore, the computational
cost of step five is O(NL̄2logL̄). It has been derived that the computational cost of the SL0
algorithm is O

(
U2N

)
for a U × N dictionary matrix [34]. As a result, the generation of N

instantaneous spectrums in step six needs O(N2 L̄2) operations since the average size of
the adaptive Fourier dictionaries is L̄× N. To be more intuitive, the computational cost of
the main steps of the proposed method is listed in Table 3.

Table 3. Computational Costs of the Main Steps of the Proposed Method.

Step 2 3 4 5 6

Computational cost O(NL̄2logL̄) O(NL̄2) O(NL̄2) O(NL̄2logL̄) O(N2 L̄2)

Summing all data in Table 3, the computational complexity of the reconstruction of
ASTK-SR TFD can be derived as O(N2 L̄2). Since the ASTK-FT TFD differs from ASTK-SR
TFD only by using FFT to construct the spectrum in step six and the N FFT procedures
require O(N2logN) operations, the computational cost of ASTK-FT TFD can be obtained
as O(NL̄2logL̄).

After consulting relevant literature [23,30,34], the computational complexities of the five
methods are listed in Table 4. Furthermore, the execution time of each method for computing
the TFD of the simulated m-D signal is also provided for verification. All computations are
performed in a computer equipped with an AMD Ryzen 7 5800H CPU and 32 GB RAM.

Table 4. Computational Performance of Different Methods.

Method WVD AOK RSPWVD ASTK-FT ASTK-SR

Computational cost O(N2logN) O(NL̄2) O(N2logN) O(NL̄2logL̄) O(N2 L̄2)
Execution time 0.025 s 14.343 s 0.507 s 18.422 s 37.516 s

From the data in Table 4, it is clear that the proposed ASTK-SR TFD requires a little
more computational cost due to the numerous complex iterations required for solving the
SR problem. In the future, we will conduct more in-depth studies of the SR theory and
explore adjustments to existing sparse decomposition algorithms to enhance the efficiency
of our method.

3.3. Real Data Test

The real micro-Doppler (m-D) signal of two turntable-driven rotating four-sided corner
reflectors collected in an anechoic chamber is utilized to illustrate the potential of ASTK-SR
TFD in practical applications. As shown in Figure 6, a radar with 220-GHz carrier frequency
and 1000 Hz pulse repetition frequency is employed. Two corner reflectors are rotating
with a speed of 11 r/min, and the rotation radii are set to be 0.24 m and 0.16 m, respectively.

Radar System

Rotating Targets

Turntable

Figure 6. The anechoic chamber experiment scenario.

The waveform of the m-D signal is displayed in Figure 7, where five kinds of TFDs are
also presented. In Figure 8, the cross-sections of these TFDs at time = 3 s are displayed for
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comparison. It can be observed that WVD still suffers from serious interference, posing
a significant challenge to the m-D feature extraction. Similar to the result of the previous
simulation, AOK TFD effectively enhances the m-D characteristic but shows some residual
artifacts and unsatisfactory energy concentration. As shown in Figure 8d, ASTK-FT TFD
attenuates interference more thoroughly than AOK TFD due to the use of the ASTK. By
further improving the energy concentration of ASTK-FT TFD with SR techniques, the
ASTK-SR TFD realizes excellent energy concentration and artifact suppression, even as
compared to that of RSPWVD, which is known to behave best in practice. In summary,
the proposed method can yield a TF image of the highest quality, which is beneficial to
accurate micro-motion parameter estimation and target identification.

(a) (b) (c)

(d) (e) (f)

Figure 7. Waveform and five computed TFDs of the real m-D signal. (a) Waveform, (b) WVD, (c) AOK
TFD, (d) RSPWVD, (e) ASTK-FT TFD, (f) ASTK-SR TFD.

(a) (b)

(c) (d) (e)

Figure 8. Cross-sections of the TFDs depicted in Figure 7 at time = 3 s. (a) WVD, (b) AOK TFD,
(c) RSPWVD, (d) ASTK-FT TFD, (e) ASTK-SR TFD.
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It is worth noting that ASTK-SR TFD may also exhibit a loss of TF information when
dealing with signals that contain components with varying energy levels. This occurs
because the energy of certain weak components might be fainter than artifacts, thus being
incorrectly omitted when designing the ASTK. Research to address this issue will be
conducted in the near future.

4. Conclusions

In this paper, an effective TFD reconstruction method has been proposed to enhance
the m-D feature of targets with micro-motions. Benefiting from the well-designed ASTK,
unwanted artifacts and noise can be effectively suppressed. Then, a high-performance TFD
is produced by utilizing SR techniques. Simulations demonstrate the superior performance
and robustness of the proposed TFD when compared to four other TFDs, including the
well-known AOK TFD and RSPWVD. Moreover, a real m-D signal processing application
verifies the practicability of the proposed method. Our future work will focus on exploring
more effective criteria for extracting weak components in the ambiguity domain and
improving the computational efficiency of the proposed method.
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