Fast Thick Cloud Removal for Multi-Temporal Remote Sensing Imagery via Representation Coefficient Total Variation
Abstract
:1. Introduction
- This paper demonstrates that the representative coefficients obtained via matrix factorization have sparse gradient maps, thus proposing a novel regularization, representation coefficient total variation (RCTV).
- This paper formulates a novel model, RCTVCR, for multi-temporal imagery by combining RCTV and low-rank matrix factorization.
- RCTVCR with performance improvement is faster than state-of-the-art methods. For example, RCTVCR only takes 6 s to process imagery with a size of , while TNN and FTNN take 126 s and 1155 s, respectively.
2. Method
2.1. Preliminaries and Motivations
2.2. Representation Coefficient Total Variation
2.3. RCTV-Regularized Cloud Removal
Algorithm 1 RCTVCR. |
Require: Ensure:X Initialize U and V via truncated SVD. Set multipliers , and M to zero tensors/matrices. Set and . for do Update . Update . Update . Carry out SVD on , i.e., . Update . Update . Update multipliers by Update . if then BREAK end if end for |
3. Experiments
3.1. Experiment on Synthetic Datasets
3.2. Experiments on Real-World Datasets
4. Discussions
4.1. Influence of the Temporal Number
4.2. Parameter Sensitivity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q.; Yuan, Q.; Li, J.; Li, Z.; Shen, H.; Zhang, L. Thick cloud and cloud shadow removal in multitemporal imagery using progressively spatio-temporal patch group deep learning. ISPRS J. Photogramm. Remote Sens. 2020, 162, 148–160. [Google Scholar] [CrossRef]
- Cao, R.; Chen, Y.; Chen, J.; Zhu, X.; Shen, M. Thick cloud removal in Landsat images based on autoregression of Landsat time-series data. Remote Sens. Environ. 2020, 249, 112001. [Google Scholar] [CrossRef]
- Xu, S.; Cao, X.; Peng, J.; Ke, Q.; Ma, C.; Meng, D. Hyperspectral Image Denoising by Asymmetric Noise Modeling. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Li, J.; Hu, Q.; Ai, M. Haze and thin cloud removal via sphere model improved dark channel prior. IEEE Geosci. Remote Sens. Lett. 2018, 16, 472–476. [Google Scholar] [CrossRef]
- Zhu, X.; Gao, F.; Liu, D.; Chen, J. A modified neighborhood similar pixel interpolator approach for removing thick clouds in Landsat images. IEEE Geosci. Remote Sens. Lett. 2011, 9, 521–525. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Sheng, Q.; Wu, Z.; Wang, B.; Hu, Z.; Shen, G.; Schmitt, M.; Molinier, M. Thin Cloud Removal Fusing Full Spectral and Spatial Features for Sentinel-2 Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 8759–8775. [Google Scholar] [CrossRef]
- Li, W.; Li, Y.; Chan, J.C.W. Thick cloud removal with optical and SAR imagery via convolutional-mapping-deconvolutional network. IEEE Trans. Geosci. Remote Sens. 2019, 58, 2865–2879. [Google Scholar] [CrossRef]
- Tao, C.; Fu, S.; Qi, J.; Li, H. Thick cloud removal in optical remote sensing images using a texture complexity guided self-paced learning method. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Xu, M.; Jia, X.; Pickering, M.; Plaza, A.J. Cloud removal based on sparse representation via multitemporal dictionary learning. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2998–3006. [Google Scholar] [CrossRef]
- Zhu, X.; Kang, Y.; Liu, J. Estimation of the number of endmembers via thresholding ridge ratio criterion. IEEE Trans. Geosci. Remote Sens. 2019, 58, 637–649. [Google Scholar] [CrossRef]
- Lin, C.H.; Tsai, P.H.; Lai, K.H.; Chen, J.Y. Cloud removal from multitemporal satellite images using information cloning. IEEE Trans. Geosci. Remote Sens. 2012, 51, 232–241. [Google Scholar] [CrossRef]
- Lin, C.H.; Lai, K.H.; Chen, Z.B.; Chen, J.Y. Patch-based information reconstruction of cloud-contaminated multitemporal images. IEEE Trans. Geosci. Remote Sens. 2013, 52, 163–174. [Google Scholar] [CrossRef]
- Cheng, Q.; Shen, H.; Zhang, L.; Yuan, Q.; Zeng, C. Cloud removal for remotely sensed images by similar pixel replacement guided with a spatio-temporal MRF model. ISPRS J. Photogramm. Remote Sens. 2014, 92, 54–68. [Google Scholar] [CrossRef]
- Chen, B.; Huang, B.; Chen, L.; Xu, B. Spatially and temporally weighted regression: A novel method to produce continuous cloud-free Landsat imagery. IEEE Trans. Geosci. Remote Sens. 2016, 55, 27–37. [Google Scholar] [CrossRef]
- Shi, J. Active Microwave Remote Sensing Systems and Applications to Snow Monitoring. In Advances in Land Remote Sensing: System, Modeling, Inversion and Application; Liang, S., Ed.; Springer: Dordrecht, The Netherlands, 2008; pp. 19–49. [Google Scholar]
- Liu, J.; Musialski, P.; Wonka, P.; Ye, J. Tensor completion for estimating missing values in visual data. In Proceedings of the IEEE 12th International Conference on Computer Vision, ICCV 2009, Kyoto, Japan, 27 September–4 October 2009; pp. 2114–2121. [Google Scholar]
- Liu, J.; Musialski, P.; Wonka, P.; Ye, J. Tensor Completion for Estimating Missing Values in Visual Data. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 208–220. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Feng, J.; Chen, Y.; Liu, W.; Lin, Z.; Yan, S. Tensor Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Tensors via Convex Optimization. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016; pp. 5249–5257. [Google Scholar]
- Lu, C.; Feng, J.; Lin, Z.; Yan, S. Exact Low Tubal Rank Tensor Recovery from Gaussian Measurements. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, Stockholm, Sweden, 13–19 July 2018; Lang, J., Ed.; pp. 2504–2510. [Google Scholar]
- Lu, C.; Feng, J.; Chen, Y.; Liu, W.; Lin, Z.; Yan, S. Tensor Robust Principal Component Analysis with a New Tensor Nuclear Norm. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 925–938. [Google Scholar] [CrossRef]
- Cai, J.F.; Chan, R.H.; Shen, Z. A framelet-based image inpainting algorithm. Appl. Comput. Harmon. Anal. 2008, 24, 131–149. [Google Scholar] [CrossRef]
- Jiang, T.X.; Huang, T.Z.; Zhao, X.L.; Ji, T.Y.; Deng, L.J. Matrix factorization for low-rank tensor completion using framelet prior. Inf. Sci. 2018, 436, 403–417. [Google Scholar] [CrossRef]
- Jiang, T.; Ng, M.K.; Zhao, X.; Huang, T. Framelet Representation of Tensor Nuclear Norm for Third-Order Tensor Completion. IEEE Trans. Image Process. 2020, 29, 7233–7244. [Google Scholar] [CrossRef]
- Ji, T.; Yokoya, N.; Zhu, X.X.; Huang, T. Nonlocal Tensor Completion for Multitemporal Remotely Sensed Images’ Inpainting. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3047–3061. [Google Scholar] [CrossRef]
- Chen, Y.; He, W.; Yokoya, N.; Huang, T.Z. Blind cloud and cloud shadow removal of multitemporal images based on total variation regularized low-rank sparsity decomposition. ISPRS J. Photogramm. Remote Sens. 2019, 157, 93–107. [Google Scholar] [CrossRef]
- Duan, C.; Pan, J.; Li, R. Thick cloud removal of remote sensing images using temporal smoothness and sparsity regularized tensor optimization. Remote Sens. 2020, 12, 3446. [Google Scholar] [CrossRef]
- Dao, M.; Kwan, C.; Ayhan, B.; Tran, T.D. Burn scar detection using cloudy MODIS images via low-rank and sparsity-based models. In Proceedings of the 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Washington, DC, USA, 7–9 December 2016; pp. 177–181. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, L.; Cichocki, A. Bayesian CP factorization of incomplete tensors with automatic rank determination. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1751–1763. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Han, Z.; Chen, X.; Wang, Y.; Meng, D.; Liang, D.; Tang, Y. Tensor rpca by bayesian cp factorization with complex noise. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 5019–5028. [Google Scholar]
- Mørup, M. Applications of tensor (multiway array) factorizations and decompositions in data mining. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2011, 1, 24–40. [Google Scholar] [CrossRef]
- He, W.; Yokoya, N.; Yuan, L.; Zhao, Q. Remote Sensing Image Reconstruction Using Tensor Ring Completion and Total Variation. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8998–9009. [Google Scholar] [CrossRef]
- Lin, J.; Huang, T.Z.; Zhao, X.L.; Chen, Y.; Zhang, Q.; Yuan, Q. Robust thick cloud removal for multitemporal remote sensing images using coupled tensor factorization. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Zheng, Y.B.; Huang, T.Z.; Zhao, X.L.; Zhao, Q.; Jiang, T.X. Fully-connected tensor network decomposition and its application to higher-order tensor completion. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021; Volume 35, pp. 11071–11078. [Google Scholar]
- Zheng, W.J.; Zhao, X.L.; Zheng, Y.B.; Lin, J.; Zhuang, L.; Huang, T.Z. Spatial-spectral-temporal connective tensor network decomposition for thick cloud removal. ISPRS J. Photogramm. Remote Sens. 2023, 199, 182–194. [Google Scholar] [CrossRef]
- Mazza, A.; Ciotola, M.; Poggi, G.; Scarpa, G. Synergic Use of SAR and Optical Data for Feature Extraction. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023, Pasadena, CA, USA, 16–21 July 2023; pp. 2061–2064. [Google Scholar]
- Scarpa, G.; Gargiulo, M.; Mazza, A.; Gaetano, R. A CNN-Based Fusion Method for Feature Extraction from Sentinel Data. Remote Sens. 2018, 10, 236. [Google Scholar] [CrossRef]
- Singh, P.; Komodakis, N. Cloud-Gan: Cloud Removal for Sentinel-2 Imagery Using a Cyclic Consistent Generative Adversarial Networks. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 1772–1775. [Google Scholar] [CrossRef]
- Ebel, P.; Meraner, A.; Schmitt, M.; Zhu, X.X. Multisensor Data Fusion for Cloud Removal in Global and All-Season Sentinel-2 Imagery. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5866–5878. [Google Scholar] [CrossRef]
- Zhang, Q.; Yuan, Q.; Li, Z.; Sun, F.; Zhang, L. Combined deep prior with low-rank tensor SVD for thick cloud removal in multitemporal images. ISPRS J. Photogramm. Remote Sens. 2021, 177, 161–173. [Google Scholar] [CrossRef]
- Liu, J.; Yuan, S.; Zhu, X.; Huang, Y.; Zhao, Q. Nonnegative matrix factorization with entropy regularization for hyperspectral unmixing. Int. J. Remote Sens. 2021, 42, 6359–6390. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.M.; Plaza, A.; Dobigeon, N.; Parente, M.; Du, Q.; Gader, P.D.; Chanussot, J. Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 354–379. [Google Scholar] [CrossRef]
- Peng, J.; Wang, H.; Cao, X.; Liu, X.; Rui, X.; Meng, D. Fast noise removal in hyperspectral images via representative coefficient total variation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, J.; Zhang, C. Hyperspectral image denoising by low-rank models with hyper-Laplacian total variation prior. Signal Process. 2022, 201, 108733. [Google Scholar] [CrossRef]
- Krishnan, D.; Fergus, R. Fast image deconvolution using hyper-Laplacian priors. Adv. Neural Inf. Process. Syst. 2009, 22, 1033–1041. [Google Scholar]
- Peng, J.; Xie, Q.; Zhao, Q.; Wang, Y.; Yee, L.; Meng, D. Enhanced 3DTV regularization and its applications on HSI denoising and compressed sensing. IEEE Trans. Image Process. 2020, 29, 7889–7903. [Google Scholar] [CrossRef]
- Li, X.; Ye, Y.; Xu, X. Low-Rank Tensor Completion with Total Variation for Visual Data Inpainting. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Singh, S., Markovitch, S., Eds.; AAAI Press: Washington, DC, USA, 2017; pp. 2210–2216. [Google Scholar]
- Yokota, T.; Zhao, Q.; Cichocki, A. Smooth PARAFAC Decomposition for Tensor Completion. IEEE Trans. Signal Process. 2016, 64, 5423–5436. [Google Scholar] [CrossRef]
Methods | Metrics | Cloud Mask Size | ||
---|---|---|---|---|
Small | Middle | Large | ||
HaLRTC | PSNR | 33.1799 | 26.4554 | 23.6913 |
SSIM | 0.9755 | 0.9239 | 0.8185 | |
SAM | 5.4343 | 11.7666 | 16.2627 | |
Time | 4.1 | 4.0 | 3.7 | |
SNNTV | PSNR | 33.3659 | 26.2081 | 23.3815 |
SSIM | 0.9774 | 0.9193 | 0.8085 | |
SAM | 5.3136 | 12.1021 | 16.8094 | |
Time | 760.2 | 143.5 | 27.0 | |
SPCTV | PSNR | 33.4580 | 27.7655 | 25.2620 |
SSIM | 0.9740 | 0.9311 | 0.8476 | |
SAM | 5.2660 | 10.1559 | 13.6358 | |
Time | 179.6 | 197.5 | 190.7 | |
TNN | PSNR | 33.4580 | 27.7655 | 25.2620 |
SSIM | 0.9740 | 0.9311 | 0.8476 | |
SAM | 5.1176 | 10.1765 | 14.5647 | |
Time | 40.7 | 63.9 | 36.5 | |
FTNN | PSNR | 33.9305 | 27.6700 | 25.0094 |
SSIM | 0.9772 | 0.9358 | 0.8511 | |
SAM | 4.9867 | 10.2560 | 14.0021 | |
Time | 70.2 | 73.2 | 56.1 | |
RCTVCR | PSNR | 35.2147 | 29.7859 | 26.0145 |
SSIM | 0.9813 | 0.9464 | 0.8421 | |
SAM | 4.2999 | 8.0531 | 12.4669 | |
Time | 3.1 | 1.8 | 2.8 |
Methods | Metrics | Cloud Mask Size | ||
---|---|---|---|---|
Small | Middle | Large | ||
HaLRTC | PSNR | 28.9792 | 24.0026 | 20.1812 |
SSIM | 0.9676 | 0.9016 | 0.7823 | |
SAM | 3.6685 | 6.4909 | 9.9442 | |
Time | 11.9 | 11.5 | 10.9 | |
SNNTV | PSNR | 28.7947 | 24.2380 | 20.1697 |
SSIM | 0.9660 | 0.8974 | 0.7715 | |
SAM | 3.7487 | 6.3302 | 10.0781 | |
Time | 284.7 | 73.5 | 71.6 | |
SPCTV | PSNR | 29.7337 | 25.3617 | 21.7819 |
SSIM | 0.9727 | 0.9227 | 0.8329 | |
SAM | 3.3656 | 5.5701 | 8.4311 | |
Time | 397.2 | 405.1 | 394.3 | |
TNN | PSNR | 29.9085 | 25.6699 | 21.6909 |
SSIM | 0.9744 | 0.9304 | 0.8435 | |
SAM | 3.2923 | 5.3444 | 8.3784 | |
Time | 150.6 | 161.3 | 176.3 | |
FTNN | PSNR | 28.2817 | 22.2274 | 17.7159 |
SSIM | 0.9638 | 0.8832 | 0.7415 | |
SAM | 3.9632 | 7.8457 | 12.8345 | |
Time | 503.9 | 504 | 199.3 | |
RCTVCR | PSNR | 31.0067 | 26.1892 | 22.1330 |
SSIM | 0.9813 | 0.9425 | 0.8593 | |
SAM | 2.9064 | 5.0601 | 8.0695 | |
Time | 10.6 | 1.8 | 0.2 |
Temporal Number | 2 | 3 | 4 |
---|---|---|---|
PSNR | 27.0408 | 28.8687 | 29.7859 |
SSIM | 0.9370 | 0.9438 | 0.9464 |
SAM | 10.9359 | 8.9475 | 8.0511 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Wang, J.; Wang, J. Fast Thick Cloud Removal for Multi-Temporal Remote Sensing Imagery via Representation Coefficient Total Variation. Remote Sens. 2024, 16, 152. https://doi.org/10.3390/rs16010152
Xu S, Wang J, Wang J. Fast Thick Cloud Removal for Multi-Temporal Remote Sensing Imagery via Representation Coefficient Total Variation. Remote Sensing. 2024; 16(1):152. https://doi.org/10.3390/rs16010152
Chicago/Turabian StyleXu, Shuang, Jilong Wang, and Jialin Wang. 2024. "Fast Thick Cloud Removal for Multi-Temporal Remote Sensing Imagery via Representation Coefficient Total Variation" Remote Sensing 16, no. 1: 152. https://doi.org/10.3390/rs16010152
APA StyleXu, S., Wang, J., & Wang, J. (2024). Fast Thick Cloud Removal for Multi-Temporal Remote Sensing Imagery via Representation Coefficient Total Variation. Remote Sensing, 16(1), 152. https://doi.org/10.3390/rs16010152