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Abstract: Although thick cloud removal is a complex task, the past decades have witnessed the
remarkable development of tensor-completion-based techniques. Nonetheless, they require sub-
stantial computational resources and may suffer from checkboard artifacts. This study presents
a novel technique to address this challenging task using representation coefficient total variation
(RCTV), which imposes a total variation regularizer on decomposed data. The proposed approach
enhances cloud removal performance while effectively preserving the textures with high speed. The
experimental results confirm the efficiency of our method in restoring image textures, demonstrating
its superior performance compared to state-of-the-art techniques.

Keywords: thick cloud removal; representation coefficient total variation; low-rank models

1. Introduction

Thick cloud removal [1], a prevalent challenge in remote sensing imagery, severely
affects the quality and accuracy of information extraction [2,3]; while thin cloud removal
can be addressed through image dehazing [4], interpolation [5] or machine learning [6]
algorithms, thick clouds pose a more complex problem, rendering these algorithms inad-
equate [7]. Remote sensing images captured at different timestamps for the same scene
potentially offer complementary information for reconstructing pixels obscured by thick
clouds. Consequently, the effective removal of thick clouds from multi-temporal remote
sensing images is a significant research endeavor in remote sensing image processing [8–10].

The elimination of thick clouds from multi-temporal remote sensing images is a
daunting task that has seen various approaches in recent years. One promising technique
is framing this issue as a data completion problem. In the context of multi-temporal
thick cloud removal, given the c-channel image of h × w pixels, Y ∈ Rh×w×c×t, captured
with t timestamps, Y is considered partially observed data, with pixels obscured by thick
clouds being missing. Consequently, the index set Ω collects the indices of observed pixels
(i.e., pixels not covered by clouds). The objective of thick cloud removal is to estimate the
underlying signal by filling in the missing values caused by the clouds.

Some early methods (including information cloning [11,12], similar pixel replacement [13]
and spatial–temporal weighted regression [14]) have made remarkable developments.
Research on gap filling, e.g., multi-temporal single-polarization techniques, multi-frequency
and multi-polarization techniques and repeat-pass interferometric techniques, also provides
insightful ideas for cloud removal (please refer to [15] for more details). Recently, a
prevalent method exploits the low-rank structure inherent in remote sensing imagery
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time series, which can be effectively leveraged via tensor completion techniques. For
instance, Liu et al. [16,17] introduced the sum of the nuclear norm (SNN) for general tensor
completion problems, which later gained widespread adoption in multi-temporal imagery
thick cloud removal. SNN involves computing the weighted sum of the nuclear norms
imposed on matrices obtained by unfolding the original tensor along each mode. This
approach yields a convex optimization problem that can be efficiently solved using the
ADMM algorithm. In numerous studies, this algorithm is referred to as high-accuracy
low-rank tensor completion (HaLRTC). The experimental results indicate the efficacy of
HaLRTC in removing thick clouds; yet, it might not excel in reconstructing crucial details.

Following SNN, the tensor nuclear norm (TNN) [18–20] is one of the typical variants.
Different from the SNN, the TNN is formulated based on tensor singular value decom-
position (tSVD), resulting in an exact recovery theory for the tensor completion problem.
Note that tSVD requires an invertible transform, which has often been set as a Fourier
transform or discrete cosine transform in earlier studies. This transform often plays a
vital role in tensor completion. Recently, research has shown that a tight wavelet frame
(a.k.a. framelet) [21,22] could better highlight the low-rank property, and the deduced
framelet TNN (FTNN) is more promising in various visual data completion tasks [23].

Besides better modeling low-rank priors, combining other prior knowledge is another
way to boost performance. Ji et al. [24] sought to enhance HaLRTC by incorporating nonlo-
cal correlations in the spatial domain. This was achieved by searching and grouping similar
image patches within a large search window, thereby promoting the low rankness of the
constructed higher-order tensor. This potentially facilitates the reconstruction of underlying
patterns. Extensive experiments have shown that the nonlocal prior would significantly
improve the performance on synthetic and real-world time-series data. Chen et al. [25]
framed cloud removal as a robust principal component analysis problem, wherein the
clean time series of remote sensing images represent the low-rank component, and thick
clouds/shadows are considered sparse noise. Observing the spatial–spectral local smooth-
ness of thick clouds/shadows, they introduced a spatial–spectral total variation regularizer.
In a similar vein, Duan et al. [26] proposed temporal smoothness and sparsity regularized
tensor optimization. They leveraged the sparsity of cloud and cloud shadow pixels to
enhance the overall sparsity of the tensor while ensuring smoothness in different directions
using unidirectional total variation regularizers. Similarly, Dao et al. used a similar idea to
model a cloud as sparse noise and successfully applied the burn scar detection algorithms
for cloudy images [27].

The aforementioned methods are rooted in the tensor nuclear norm and its variants.
Some researchers have also employed tensor factorization techniques to model low rank-
ness. The classic models include CP factorization [28,29] and Tucker factorization [30]. For
instance, He et al. [31] proposed tensor ring decomposition for time series remote sensing
images, harnessing the low-rank property from diverse dimensions. Their model incorpo-
rated total variation to enhance spatial smoothness. Lin et al. [32] factored remote sensing
images at each time node into an abundance tensor and a semiorthogonal basis, imposing
the nuclear norm on the time series of abundance tensors. This separately models the low-
rank property along channel and temporal dimensions. Inspired by [33], Zheng et al. [34]
introduced a novel factorization framework, termed spatial–spectral–temporal (SST) con-
nective tensor network decomposition, effectively exploring the rich SST relationships
in multi-temporal images. This framework essentially performs subspace representation
along the spectral mode of the image at each time node and introduces tensor network
decomposition to characterize the intrinsic relationship of the fourth-order tensor.

Except for the matrix/tensor completion methods, machine learning and deep learn-
ing [35,36] are also typical ways to remove clouds. For example, Singh and Komodakis
propose a cloud removal generative adversarial network (GAN) to learn the mapping
between cloudy images and cloud-free images [37]. Ebel et al. follow the architecture
of cycle-consistent GAN to remove clouds for optical images with the aid of synthetic
aperture radar images [38]. These methods are time-consuming in the training phase, thus
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preventing fast exploration for practitioners. In what follows, we focus on matrix/tensor
completion methods.

A concise review of recent advancements reveals that the majority of existing meth-
ods necessitate the inclusion of additional regularizations [39] or the construction of
more intricate factorization models [34]. These approaches inevitably introduce consid-
erable computational overhead and foster an increase in hyperparameters. However,
although tensor-completion-based methods are able to achieve good metrics, it has been
observed that they may suffer from checkerboard artifacts. Consequently, the develop-
ment of efficient cloud removal algorithms that maintain a high performance emerges as
a fascinating challenge.

Toward this goal, this paper presents a representation coefficient total variation method
for cloud removal (RCTVCR). The core concept involves unfolding tensor data into a matrix
format and performing matrix factorization to obtain subspace representation. Here, the
representation coefficient effectively captures the visual context of the original tensor
data. To enhance detail reconstruction, total variation is employed for the representation
coefficient. This method is applied to synthetic data, yielding rapid processing and slightly
superior performance compared to state-of-the-art approaches. The experimental results
on real-world data demonstrate that RCTVCR effectively recovers desirable textures.

The highlights of this paper can be briefly summarized as follows:

1. This paper demonstrates that the representative coefficients obtained via matrix
factorization have sparse gradient maps, thus proposing a novel regularization, repre-
sentation coefficient total variation (RCTV).

2. This paper formulates a novel model, RCTVCR, for multi-temporal imagery by com-
bining RCTV and low-rank matrix factorization.

3. RCTVCR with performance improvement is faster than state-of-the-art methods. For
example, RCTVCR only takes 6 s to process imagery with a size of 512 × 512 × 3 × 7,
while TNN and FTNN take 126 s and 1155 s, respectively.

The remainder of this article is structured as follows: Section 2 presents RCTVCR.
Section 3 reports the outcomes of the numerical experiments. Finally, Section 4 summarizes
the findings of this study. The code is available at https://github.com/shuangxu96/
RCTVCR, accessed on 16 December 2023.

2. Method
2.1. Preliminaries and Motivations

To start with, the low-rank matrix-factorization-based thick cloud removal problem is
introduced, and it also presents the motivation for representation coefficient total variation.

As previously discussed, multi-temporal remote sensing imagery is represented by a
tensor Y ∈ Rh×w×c×t, where c denotes the number of channels, t represents the number of
time nodes and h and w correspond to the height and width, respectively. We reshape the
original tensor into a matrix Y ∈ Rhw×ct. Although each column in Y represents the scene
of different bands at various time nodes, they essentially share similar visual contexts and
textures. This observation suggests that Y is theoretically a low-rank matrix.

Figure 1a–d visualize typical multi-temporal remote sensing imagery with three
channels and four time nodes, named Munich. Then, the cloudy images are simulated
by manually applying different cloud masks, as shown in Figure 1e–h. According to the
theory of linear algebra, it is known that a matrix tends to be a low rank if the singular
values quickly approach zero. The singular value curves for cloud-free and cloudy imagery
are given in Figure 1i, where cloud-free imagery exhibits a rapid decay in singular values
and cloudy imagery exhibits the opposite results. This implies that cloud-free imagery
should be a low-rank matrix.

https://github.com/shuangxu96/RCTVCR
https://github.com/shuangxu96/RCTVCR
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Figure 1. (a–d) The images in cloud-free Munich dataset of 4 time nodes. (e–h) The simulated cloudy
Munich dataset with different cloud masks. (i) The singular value curves for the cloud-free and
cloudy imagery. Note that for time nodes 1 to 4, the exact timestamps are 201501, 201503, 201504 and
201508, where “XXXXYY” means the image is taken in YY-th month of XXXX-th year.

Therefore, the thick cloud removal task can be typically formulated as a low-rank
matrix/tensor completion problem, where the pixels covered by clouds are regarded as
missing pixels. The existing algorithms (e.g., TNN) exhibit remarkable performance on
low-rank tensor completion problems. However, they are computationally intensive. To
develop a faster algorithm, this paper focuses on the matrix format. The most classical ap-
proach to exploring low-rank properties of matrix data is the low-rank matrix factorization
technique. Given a predefined integer r, the recovered cloud-free data can be expressed as
X = UV⊤ [40], where U ∈ Rhw×r represents the representation coefficients and V ∈ Rct×r

denotes the basis of the subspace. Note that it is often assumed that r << min(hw, ct) so
that the rank of UV⊤ is r, leading to low-rank matrix factorization. This mathematical
expression may be unreadable for readers who do not excel at low-rank data analysis. Ac-
tually, the formula X = UV⊤ can be regarded as spectral unmixing [41], where U denotes
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the abundance matrix, V denotes the endmember matrix and r represents the number
of endmembers.

Since the cloud-free image is inaccessible, X is an unknown variable that needs esti-
mation. To this end, the cloud removal task can be formulated as:

min
U,V,X

∥X − UV⊤∥2
F, s.t. PΩ(X) = PΩ(Y). (1)

where Ω is an index set collecting all the pixels that are not covered by clouds. Note that
PΩ(·) is an orthogonal projection operator. In other words, if a pixel (i, j) is not covered
by cloud ((i, j) ∈ Ω), the projection will return its value; otherwise, the projection will
return zero.

In Equation (1), the loss function ∥X − UV⊤∥2
F encourages the recovered image X

to be low rank, and the constraint PΩ(X) = PΩ(Y) forces the recovered and observed
imagesto exhibit the same pixel values for regions not covered by clouds. This optimization
is typically solved via the ADMM algorithm, where the key step involves implementing
singular value decomposition (SVD) with the computational complexity of O(hwc2t2).

The model in Equation (1) is typically fast but insufficient for recovering complex tex-
tures. To enhance texture quality, a common strategy is to incorporate the local smoothness
prior (i.e., neighbor pixels tend to have similar values). In other words, the total variation
is imposed on X, resulting in the following problem:

min
U,V,X

∥X − UV⊤∥2
F + λ∥X∥TV, s.t. PΩ(X) = PΩ(Y), (2)

Here, λ is a hyperparameter, and the total variation is defined as:

∥X∥TV = ∥DhX∥1 + ∥DwX∥1, (3)

where X ∈ Rh×w×c×t represents the tensor version of X, and Dh and Dw denote the
horizontal and vertical gradient operators, respectively. In other words, DhX and DwX rep-
resent the difference between two neighbor pixels along horizontal and vertical directions.
Minimizing the TV regularizer facilitates neighbor pixels to have similar values, potentially
leading to better image quality. It is well known that the total variation minimization
problem is often solved by using the fast Fourier transform (FFT) with a computational
complexity of O(hwct log(hw)) [42]. However, despite the significant improvement in total
variation, the high computational complexity is undesirable. This urges researchers to
explore fast and high-performance algorithms.

2.2. Representation Coefficient Total Variation

To reduce computational complexity, this paper presents an investigation into a novel
regularizer. We first demonstrate that the representation coefficient U (abundance matrix)
is visually akin to images. This assertion is substantiated by the first row of Figure 2, where
the Munich dataset is decomposed with r = 5, yielding five coefficients. It is evident that
each coefficient conveys a similar context in the original images depicted in Figure 2. Next,
we pose an intriguing question: do these coefficients exhibit local smoothness? To address
this, we visualize the gradient intensity map in the second row of Figure 2. The gradient
intensity of pixel (i, j) is defined as:

gij =
√
(DhX )2

ij + (DwX )2
ij, (4)

and its histogram is presented in the third row of Figure 2. The analysis reveals that the
gradient intensities of most pixels approach zero, indicating that the coefficients U are
locally smooth.
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(a) U (:, :, 1) (b) U (:, :, 2) (c) U (:, :, 3) (d) U (:, :, 4) (e) U (:, :, 5)

(f) Gradient Map 1 (g) Gradient Map 2 (h) Gradient Map 3 (i) Gradient Map 4 (j) Gradient Map 5

(k) Histogram 1 (l) Histogram 2 (m) Histogram 3 (n) Histogram 4 (o) Histogram 5

Figure 2. (a–e) The visualization for 5 representation coefficients. (f–j) The gradient map of each
representation coefficient. For easier inspection, the value of the gradient map is amplified 2 times.
(k–o) The histogram of each representation coefficient.

Building upon this discovery, this paper introduces a novel regularizer, representation
coefficient total variation (RCTV), characterized by the following definition:

∥X∥RCTV = ∥DhU∥1 + ∥DwU∥1, (5)

where U ∈ Rh×w×r represents the tensor counterpart of U. In contrast to Equation (3),
RCTV applies the ℓ1-norm to the gradients of the coefficients U rather than X. Although
the difference between TV and RCTV seems to appear minimal, it should be emphasized
that this variant is not trivial:

Firstly, the RCTV minimization problem is addressed by FFT, accompanied by a
relatively lower computational complexity of O(hwr log(hw)). This is attributed to the
assumption that r << min(hw, ct). This advantage becomes particularly significant when
the number of channels or time nodes is substantial. More significantly, when generating
cloud-free data under the constraint PΩ(X) = PΩ(Y), the algorithm essentially only
estimates the pixels obscured by clouds, directly copying their values if they are cloud-
free. As TV is applied to the entire dataset [31,43], it consumes computational resources
excessively for cloud-free pixels. However, RCTV mitigates this issue to a certain extent
since it is imposed on representation coefficients.

Secondly, the resulting data are ultimately reconstructed through the product of U and
VT, which potentially maintains gradient map consistency across different channels and
time nodes. That is to say, different channels and time nodes will exhibit similar texture
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and structure, so RCTV can more efficiently exploit information from other channels and
time nodes. However, TV solely employs local smoothness within a single channel at each
time node. In this regard, RCTV appears more promising in extracting additional texture
information from different channels and time nodes.

2.3. RCTV-Regularized Cloud Removal

Subsequently, the RCTV-regularized cloud removal (RCTVCR) model is formulated as:
min

U,V,X
τ ∑

i∈{h,w}
∥DiU∥1,

s.t.X = UVT,PΩ(X) = PΩ(Y), VTV = I.
(6)

Compared with Equation (2), the above equation minimizes RCTV instead of TV, and
it inserts a constraint VTV = I for stability.

To solve this problem, two auxiliary variables Gh and Gw are introduced to decouple
the ℓ1-norm and DiU (i ∈ {h, w}), resulting in the following problem:

min
U,V,X,Gi

τ ∑
i∈{h,w}

∥Gi∥1,

s.t.Gi = DiU , X = UVT,PΩ(X) = PΩ(Y), VTV = I.
(7)

The ADMM algorithm is employed to solve this problem, aiming to minimize the
augmented Lagrangian function of the above problem. That is,

min
U,V,X,Gi ,M,Mi

τ ∑
i∈{h,w}

∥Gi∥1 +
µ

2
∥DiU − Gi +

Mi
µ

∥2
F +

µ

2
∥X − UVT +

M
µ
∥2

F,

s.t.PΩ(X) = PΩ(Y), VTV = I.

(8)

Note that Mi and M are Lagrangian multipliers, and µ is the penalty parameter. We
then update each variable alternatively.

Update Gi: by fixing other variables, we focus on optimizing Gi. The corresponding
optimization problem is as follows:

min
Gi

τ∥Gi∥1 +
µ

2
∥DiU − Gi +

Mi
2

∥2
F. (9)

The solution is given by:

Gi = Sτ/µ

(
DiU +

Mi
2

)
, (10)

where the soft-thresholding function Sγ(x) = sign(x)max(| x | −γ, 0).
Update U: this leads to the following optimization problem:

min
U

µ

2
∥DiU − Gi +

Mi
µ

∥2
F +

µ

2
∥X − UVT +

M
µ
∥2

F. (11)

Setting the derivative of this objective function to zero yields the optimal solution equation:

unfold(µDT
i (DiU − Gi +

Mi
µ

)) + µ(UVT − X − M
µ
)V = 0, (12)
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where DT
i denotes the transposed operator of Di. After simplification, the equation becomes:

unfold(DT
i DiU ) + U = unfold(DT

i (Gi −
Mi
µ

)) + (X +
M
µ
)V, (13)

where unfold(·) represents the unfolding operation. For clarity, the right-hand side of this
equation is denoted by R. By applying the FFT on both sides and the convolution theorem,
the closed-form solution can be derived as [44]:

R = unfold(DT
i (Gi −

Mi
µ

)) + (X +
M
µ
)V,

U = F−1
(

F (R)
1 + |F (Dh)|2 + |F (Dw)|2

)
.

(14)

Here, F () represents the FFT, and | · |2 denotes the element-wise square operation.
Update V: the optimization problem concerning V is formulated as:

min
V

∥X − UV⊤ +
M
µ
∥2

F, s.t.V⊤V = I. (15)

After straightforward calculation, the problem can be rewritten as:

min
V

〈
(X +

M
µ
)⊤U, V

〉
, s.t.V⊤V = I. (16)

Drawing upon reference [45], the solution can be derived as:
[B, D, C] = svd((X +

M
µ
)⊤U),

V = BC⊤.
(17)

Update X: the problem is a constrained least-squares task:

min
X

∥X − UV⊤ +
M
µ
∥2

F, s.t.PΩ(X) = PΩ(Y). (18)

The solution can be straightforwardly obtained as:

X = PΩ(Y) + PΩ⊥(UV⊤ − M/µ). (19)

Update multipliers: based on the general ADMM principle, the multipliers are further
updated using the following equations:{

Mi = Mi + µ(DiU − Gi),

M = M + µ(X − UVT).
(20)

Finally, Algorithm 1 summarizes the workflow.
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Algorithm 1 RCTVCR.

Require: Y, Ω
Ensure: X

Initialize U and V via truncated SVD.
Set multipliers Mh, Mw and M to zero tensors/matrices.
Set ρ = 1.1 and ϵ = 3 × 10−2.
for k = 1, 2, . . . , K do

Update Gi = Sτ/µ

(
DiU + Mi

2

)
.

Update R = unfold(DT
i (Gi − Mi

µ )) + (X + M
µ )V.

Update U = F−1
(

F (R)
1+|F (Dh)|2+|F (Dw)|2

)
.

Carry out SVD on (X + M
µ )TU, i.e., [B, D, C] = svd((X + M

µ )TU).

Update V = BCT.
Update X = PΩ(Y) + PΩ⊥(UVT − M/µ).
Update multipliers by {

Mi = Mi + µ(DiU − Gi),

M = M + µ(X − UVT).

Update µ = ρµ.
if ∥X − UVT∥2

F ≤ ϵ then
BREAK

end if
end for

3. Experiments

To assess the performance of the RCTVCR algorithm, experiments are conducted
on both synthetic and real-world datasets. Peak signal-to-noise ratio (PSNR), structure
similarity (SSIM) and spectral angle mapper (SAM) are employed for evaluation purposes.
Higher PSNR and SSIM and lower SAM mean that the image has better quality. The
compared methods include HaLRTC [16,17], SNNTV [46], SPCTV [47], TNN [18,19] and
FTNN [23]. All experiments are conducted on a desktop running Windows 10, equipped
with an Intel Core i7-12700F CPU at 2.10 GHz and 32 GB of memory.

3.1. Experiment on Synthetic Datasets

In this subsection, a comprehensive series of synthetic experiments are performed
to assess the effectiveness of RCTVCR. The synthetic datasets consist of Munich with
three channels and four time nodes, and Farmland with eight channels and four time
nodes. Figure 3 illustrates the images from the Farmland dataset. These datasets comprise
256 × 256 pixels and were captured via Landsat-8. To enhance realism, three real cloud
masks with varying cloud amounts are chosen from the WHU cloud dataset, as presented
in Figure 4.

Table 1 summarizes the performance comparison of all competing methods in terms
of performance metrics (PSNR, SSIM and processing time) on the Munich dataset. As
the cloud mask size increases from small to large, the PSNR and SSIM values for all
methods generally decrease. Based on the results presented in the table, it can be inferred
that RCTVCR emerges as the optimal method due to its consistent achievement of the
highest PSNR and SSIM values across all cloud mask sizes, accompanied by the shortest
processing time.
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(a) Time node 1 (b) Time node 2 (c) Time node 3 (d) Time node 4

Figure 3. The false-color images in Farmland dataset. Note that for time nodes 1 to 4, the exact
timestamps are 20130715, 20130901, 20131003 and 20131019, where “XXXXYYZZ” means the image is
taken in ZZ-th day of YY-th month of XXXX-th year.

(a) Small (b) Middle (c) Large

Figure 4. The three cloud masks with different-sized clouds. The white pixels denote clouds.

Table 1. Metrics on Munich dataset. The best values are marked in bold.

Methods Metrics
Cloud Mask Size

Small Middle Large

HaLRTC

PSNR 33.1799 26.4554 23.6913
SSIM 0.9755 0.9239 0.8185
SAM 5.4343 11.7666 16.2627
Time 4.1 4.0 3.7

SNNTV

PSNR 33.3659 26.2081 23.3815
SSIM 0.9774 0.9193 0.8085
SAM 5.3136 12.1021 16.8094
Time 760.2 143.5 27.0

SPCTV

PSNR 33.4580 27.7655 25.2620
SSIM 0.9740 0.9311 0.8476
SAM 5.2660 10.1559 13.6358
Time 179.6 197.5 190.7

TNN

PSNR 33.4580 27.7655 25.2620
SSIM 0.9740 0.9311 0.8476
SAM 5.1176 10.1765 14.5647
Time 40.7 63.9 36.5

FTNN

PSNR 33.9305 27.6700 25.0094
SSIM 0.9772 0.9358 0.8511
SAM 4.9867 10.2560 14.0021
Time 70.2 73.2 56.1

RCTVCR

PSNR 35.2147 29.7859 26.0145
SSIM 0.9813 0.9464 0.8421
SAM 4.2999 8.0531 12.4669
Time 3.1 1.8 2.8



Remote Sens. 2024, 16, 152 11 of 18

Table 2 displays a comparative analysis of various methods in terms of their perfor-
mance metrics on the Farmland dataset. Similar to the Munich dataset, a consistent pattern
is observed: as the cloud mask size escalates from small to large, the PSNR and SSIM values
for all methods generally decrease. When comparing RCTVCR with SPCTV and TNN, it is
noticeable that RCTVCR exhibits a higher PSNR value by 0.35 and 0.44, respectively, on the
large cloud mask size. Moreover, RCTVCR boasts the shortest processing time. Only 0.2 s
is required to process the Farmland dataset with a large mask, whereas SPCTV and TNN
necessitate 394.3 s and 176.3 s, respectively. Based on these results, it can be concluded that
RCTVCR emerges as the optimal method, consistently achieving the highest PSNR and
SSIM values.

Table 2. Metrics on Farmland dataset. The best values are marked in bold.

Methods Metrics
Cloud Mask Size

Small Middle Large

HaLRTC

PSNR 28.9792 24.0026 20.1812
SSIM 0.9676 0.9016 0.7823
SAM 3.6685 6.4909 9.9442
Time 11.9 11.5 10.9

SNNTV

PSNR 28.7947 24.2380 20.1697
SSIM 0.9660 0.8974 0.7715
SAM 3.7487 6.3302 10.0781
Time 284.7 73.5 71.6

SPCTV

PSNR 29.7337 25.3617 21.7819
SSIM 0.9727 0.9227 0.8329
SAM 3.3656 5.5701 8.4311
Time 397.2 405.1 394.3

TNN

PSNR 29.9085 25.6699 21.6909
SSIM 0.9744 0.9304 0.8435
SAM 3.2923 5.3444 8.3784
Time 150.6 161.3 176.3

FTNN

PSNR 28.2817 22.2274 17.7159
SSIM 0.9638 0.8832 0.7415
SAM 3.9632 7.8457 12.8345
Time 503.9 504 199.3

RCTVCR

PSNR 31.0067 26.1892 22.1330
SSIM 0.9813 0.9425 0.8593
SAM 2.9064 5.0601 8.0695
Time 10.6 1.8 0.2

To further emphasize the superiority of our method, we present the declouded images
of Munich and Farmland in Figures 5 and 6. Our method effectively preserves intricate
details and yields more visually appealing outcomes, whereas competing methods often
result in blurred or artificial-looking artifacts. It should be noted that compared methods
that are based on tensor factorization or tensor nuclear norms exhibit varying degrees of
checkerboard artifacts. RCTVCR, however, exhibits no such disadvantage.

To better illustrate the efficiency of RCTVCR, a scatter plot is visualized in Figure 7 for
the Farmland dataset with a middle cloud mask. It is shown that RCTVCR achieves the
highest PSNR with the fastest speed. TNN and SPCTV obtain improvements over HaLRTC
at the cost of a very long processing time. FTNN is the most computationally intensive, but
it has an unsatisfactory PSNR value. The reason may be that FTNN is more suitable for
random missing completion tasks. Nonetheless, the clouds correspond to continuous area
missing completion tasks, which is more challenging.

In conclusion, the superior visual performance of our method relative to existing
techniques is clearly demonstrated through experimental outcomes. By effectively tack-
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ling cloud removal, structural preservation and overall image quality enhancement, our
proposed approach represents an advancement in the field.

Figure 5. The false-color decloud images of all compared methods using Munich dataset with a
middle cloud mask.

Figure 6. The false-color decloud images of all compared methods on Farmland dataset with a large
cloud mask.
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Figure 7. The scatter plot of PSNR and time for the Farmland dataset with a middle cloud mask.

3.2. Experiments on Real-World Datasets

Here, we apply competing methods to a real-world dataset, which was released in [39].
It was captured via Sentinel-2 over Mechelen, Belgium. The original data size is very large,
and thus, a patch with a size of 512 × 512 is cropped. There are three channels and seven
time nodes, and cloudy images and corresponding masks are displayed in Figure 8. It is
revealed that time nodes 2, 5 and 7 are polluted by severe clouds and shadows, which would
be a very difficult task. Former investigations often select partial time nodes with fewer
clouds to verify algorithm performance. In our study, all time nodes are simultaneously
employed to test algorithm robustness to the amount of cloud coverage.

Decloud images are displayed in Figure 9. It is observed that HaLRTC and SNNTV
output very blurry contexts. FTNN could recover a few more details, but it cannot accu-
rately remove clouds and shadows. SPCTV and TNN exhibit heavy checkerboard effects
and color distortion. Only our method faithfully recovers plenty of details and preserves
color consistency. Additionally, the barplot shown in Figure 10 reveals that RCTVCR with a
processing time of 6 s is significantly faster than other methods, which often take hundreds
of seconds.

(a) Time node 1 (b) Time node 2 (c) Time node 3 (d) Time node 4 (e) Time node 5 (f) Time node 6 (g) Time node 7

(h) Mask 1 (i) Mask 2 (j) Mask 3 (k) Mask 4 (l) Mask 5 (m) Mask 6 (n) Mask 7

Figure 8. The false-color images and their masks in the real-world dataset. Note that for time
nodes 1 to 7, the exact timestamps are 20180816, 20180831, 20180905, 20180915, 20180925, 20181015
and 20181020, where “XXXXYYZZ” means the image is taken on ZZ-th day of YY-th month of
XXXX-th year.
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Figure 9. The false-color decloud images of all compared methods on the real-world dataset. From
top to bottom, they correspond to time nodes 2, 5 and 7, respectively.

RCTVCR HaLRTC TNN SNNTV SPCTV FTNN
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Figure 10. The processing time on real-world data with a size of 512 × 512 × 3 × 7.

4. Discussions
4.1. Influence of the Temporal Number

To assess the impact of the temporal number on the reconstruction effectiveness of
our method, we conducted the following experiment. We maintain the cloudy image of
the Munich dataset with a middle mask and gradually add reference images to vary the
temporal number. Table 3 presents three metrics of the decloud images using reference
images with varying temporal numbers. The data indicate that as the temporal number
grows, the image quality also increases. However, from Table 1, it is shown that RCTVCR
with a smaller temporal number is still better than some existing methods with four time
nodes, validating the effectiveness of RCTVCR.
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Table 3. Metrics on Munich dataset of RCTVCR with varying temporal number.

Temporal Number 2 3 4

PSNR 27.0408 28.8687 29.7859
SSIM 0.9370 0.9438 0.9464
SAM 10.9359 8.9475 8.0511

4.2. Parameter Sensitivity

In RCTVCR, two parameters, r and τ, require tuning. To examine the impact of
these parameters, we implemented RCTVCR with various parameter configurations on the
Farmland dataset with a middle cloud mask.

Initially, we fixed τ at 4 × 10−4 and varied r from 12 to 22. As depicted in Figure 11a,
the PSNR curve rapidly increased before gradually descending as r increased, achieving
optimal performance at r = 14. Figure 12 displays the declouded images obtained with
r = 12, 14 and 22. It is evident that r = 14 yields superior details compared to r = 12.
Notably, r = 22 preserves decent textures but exhibits color distortion.

10 15 20

r

25.2

25.4

25.6

25.8

26

26.2

P
S

N
R

(a)

0 0.5 1

tau 10
-3
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26

26.5
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N
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(b)

Figure 11. The metric with different hyper-parameters.

(a) Input (b) r = 12 (c) r = 14 (d) r = 22

Figure 12. The decloud images with τ = 4 × 10−4 and different r.

Subsequently, we fixed r = 14 and investigated τ values ranging from 1 × 10−4 to
9 × 10−4. As illustrated in Figure 11b, the PSNR curve incrementally increased before
exhibiting a tendency to decline as τ increased, yielding the optimal performance at
τ = 4 × 10−4. The declouded images with τ = 1 × 10−4, 4 × 10−4 and 9 × 10−4 are
presented in Figure 13. It should be noted that τ governs the strength of the RCTV
regularizer. A small value of τ leads to similarity in the behavior of RCTVCR and methods
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that do not employ a local smoothness prior (e.g., HaLRTC). Conversely, a large value of τ
results in a relatively blurry image.

(a) Input (b) τ = 1 × 10−4 (c) τ = 4 × 10−4 (d) τ = 9 × 10−4

Figure 13. The decloud images with r = 14 and different τ values.

5. Conclusions

In conclusion, the proposed method for removing thick clouds from remote sensing
images offers an effective and efficient solution. By employing matrix decomposition and
regularization techniques, the method not only removes thick clouds but also preserves the
textures in the images, resulting in improved visual quality. The sensitivity analysis and
comparisons with other methods further validate the superiority of the proposed approach.
This study contributes to the advancement of remote sensing image processing and has
potential applications in various fields. Further research can be conducted to enhance the
method’s robustness and applicability in different scenarios. Due to the current limitations
of our research scope and hardware resources, we are unable to incorporate deep learning
techniques into our experimental comparison at this stage. Future work includes exploring
possible avenues for incorporating deep learning methods into our research.
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