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Abstract: Scene-matching navigation is one of the essential technologies for achieving precise nav-
igation in satellite-denied environments. Selecting suitable-matching areas is crucial for planning
trajectory and reducing yaw. Most traditional selection methods of suitable-matching areas use
hierarchical screening based on multiple feature indicators. However, these methods rarely consider
the interrelationship between different feature indicators and use the same set of screening thresholds
for different categories of images, which has poor versatility and can easily cause mis-selection and
omission. To solve this problem, a suitable-matching areas’ selection method based on multi-level
saliency is proposed. The matching performance score is obtained by fusing several segmentation
levels’ salient feature extraction results and performing weighted calculations with the sub-image
edge density. Compared with the hierarchical screening methods, the matching performance of the
candidate areas selected by our algorithm is at least 22.2% higher, and it also has a better matching
ability in different scene categories. In addition, the number of missed and wrong selections is signifi-
cantly reduced. The average matching accuracy of the top three areas selected by our method reached
0.8549, 0.7993, and 0.7803, respectively, under the verification of multiple matching algorithms.
Experimental results show this paper’s suitable-matching areas’ selection method is more robust.

Keywords: scene-matching navigation; suitable-matching areas’ selection; salient feature; hierarchi-
cal screening

1. Introduction

In recent international wars, the form of wars has gradually transformed from informa-
tionization to intelligence, and unmanned warfare has become the primary development
trend. Unmanned combat platforms supported by artificial intelligence technology are
developing strongly. UAV-borne weapons and equipment with high sensing and strong
strike capabilities have become the key to changing the battlefield pattern [1]. Among
them, the high-precision navigation and positioning system is the core for unmanned
combat platforms. It can help the combat systems achieve autonomous reconnaissance and
precision strikes. It has become a research hotspot for aircraft autonomous navigation [2].

Navigation and positioning systems mainly fall into two categories: single navigation
and positioning systems and composite navigation and positioning systems [3]. The
single navigation and positioning system mainly includes INS (inertial navigation and
positioning system), GNSS (global navigation satellite system), and visual navigation
and positioning system. However, the navigation error of INS will accumulate with the
voyage, so it is unsuitable for long-endurance navigation. GNSS must rely on satellite
navigation instructions and cannot independently complete navigation calculations. It
is highly vulnerable to the enemy’s priority attacks during wartime, resulting in satellite
denial [4]. At the same time, satellites are susceptible to interference and deception, which
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significantly limits their application scenarios [5,6]. Therefore, the single navigation and
positioning systems are challenging to meet the diverse needs of modern warfare. The
composite navigation and positioning systems use various navigation technologies. They
can quickly switch to other modes when one navigation method fails. This is why they can
ensure the reliability and continuity of navigation and positioning. They have excellent
results in actual combat tests, which makes them an essential development method of
navigation and positioning.

As a visual navigation and positioning technology, scene-matching navigation [7–9]
has the advantages of strong autonomy, high terminal guidance accuracy, no accumulation
of errors with the voyage, and strong anti-interference ability. It is often combined with INS
and GNSS to improve the anti-interference ability and achieve medium and long-range
navigation. At the same time, it also helps solve the problem of autonomous navigation
under satellite-denied conditions [10].

Scene-matching navigation selects regional features as the source of information [11].
When the aircraft arrives at the pre-planned scene matching area, it captures scene images
along the navigation trajectory or adjacent to the target area in real time via the image
sensor [12]. Then, it performs matching operations on the real-time and pre-stored reference
images. Finally, the relative displacement of the two is used to calculate aircraft position
information [9].

Suitable-matching area selection, reference and real-time image matching, match-
ing result decision making, and matching position inversion are the four critical steps of
scene-matching navigation. Among them, suitable-matching area selection is the first step
in scene-matching navigation. It is the basis for reference image preparation and track
planning and is also the key to correcting positioning and reducing yaw [13]. Since the
matching performance of the reference image is closely related to the matching proba-
bility and accuracy, selecting the suitable-matching area will directly affect the overall
performance of the navigation and positioning system.

Recently, research on matching algorithms has been relatively mature. However, re-
search on suitable-matching areas’ selection and matching performance evaluation needs to
catch up. Traditional suitable-matching analysis methods extract features from images and
establish a mapping model between feature parameters and matching probabilities [14–16].
However, selecting features and setting threshold parameters will affect the analysis results,
making the model less versatile when facing different scene categories. In addition, this
research is mainly oriented towards military engineering applications, so there is little
relevant public data [17]. Although deep learning technology helps us to extract complex
potential features in images and overcomes the limitations of matching feature extraction,
it requires a large number of open-source datasets to support it [18].

Considering that when manually selecting the suitable-matching areas, the human eye
will first be attracted by the salient targets in the image. Most areas containing salient targets
have strong color contrast, rich texture information, and noticeable shape differences from
the surrounding scenes [19,20]. This is similar to the traditional selection method’s idea of
expressing adaptability from four aspects: image information, stability, uniqueness, and
saliency. Inspired by this, this paper proposes a suitable-matching area selection method
based on multi-level saliency. We also analyze the matching ability of the candidate areas.
Our approach can realize intelligent suitable-matching area selection in different scenarios
and help aircraft achieve precise navigation and positioning. Our proposed approach
differs from existing algorithms on three points:

• Before feature extraction, we perform multi-level segmentation on the image. Sub-
regions will be formed between different segmentation levels, enhancing adjacent
regions’ spatial consistency. This operation effectively solves the problem that the
hierarchical screening method does not consider the integrity of information in adja-
cent areas;

• In terms of feature extraction, our approach constructs the image saliency map, which
fuses three different feature descriptors to strengthen the connection between different
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characteristics. Our method avoids the cumbersome feature indicators and thresholds
selection process and ensures the matching performance of the selected area in different
application scenarios;

• Regarding matching performance analysis, we do not set filtering thresholds for
features but perform edge-density weighted calculations directly on the saliency
map to obtain the matching performance score. We analyzed the regional matching
performance under different scene categories and interference from various complex
environmental factors. We also use different matching algorithms to verify on the
selected suitable-matching areas.

2. Related Work

Johnson first proposed the concept, theory, and method of suitable-matching areas’
selection in 1972 [21]. The purpose is to select multiple sub-areas with good adaptability
and specific sizes in a large-size reference image as navigation reference images for scene
matching. The suitable-matching areas generally satisfy the following four points:

• Richness: The richer the image information contained in the selected area, the more
conducive it is to the later matching calculation;

• Stability: Differences in imaging quality will cause changes in scene features, so
matching in areas with unstable features is more likely to fail;

• Uniqueness: If the selected area contains similar targets, it will increase the probability
of mismatching;

• Salience: Areas with significant features usually have noticeable feature differences
from surrounding areas, which is helpful for distinguishing the foreground from
the background.

How to analyze the matching ability of the image area and determine the selection
criteria has always been the focus of research on scene-matching navigation technology.
There are three main methods for selecting the good areas: manual selection methods based
on experience, hierarchical screening methods based on multiple feature indicators, and
pattern classification methods based on machine learning.

Since the manually selected suitable-matching areas have yet to pass scientific verifica-
tion and lack objectivity, many researchers hope to perform area screening by extracting
appropriate image features so that the selected areas meet the requirement. The hierarchical
screening method is the most mature technology for selecting suitable-matching areas. It
sets different image features as feature indicators and then uses pattern classification or
multi-attribute decision-making methods to establish the mapping between scene adapt-
ability and feature indicators. In [22], it constructs a metric function by fusing edge density,
average edge intensity, and edge direction dispersion to solve the problem of automatic
suitable-matching areas’ selection in local textureless target tracking. A method based
on information entropy is proposed in [23], which uses improved information entropy,
Frieden gray entropy, and normalized average mutual information as feature indicators. To
solve the problem of changes in matching probability caused by noise in real-time images,
ref. [24] improves and proposes two new indicators: phase correlation length and effective
contour density. It also offers a matching suitability analysis method based on the fusion
of multi-indexes by evidence theory. In [25], the combined weighting method calculates
the combined weight of multiple feature attributes and selects suitable SAR (Synthetic
Aperture Radar) scene-matching areas based on the comprehensive evaluation value.

The hierarchical screening method is easy to implement and highly interpretable.
However, in constructing the mapping function, only the impact of feature indicators on
the matching probability is considered, and the connection between different features is
ignored. In addition, the fixed feature indicators and thresholds will cause the algorithm to
be unable to cope with different types of scenes, making the algorithm less robust.

In recent years, some work has been performed on suitable-matching areas’ selection
models based on machine learning. In [26,27], researchers used different image features to
establish mapping relationships and transformed the selection problem into a clustering
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discrimination problem. They built SVM classification models to distinguish scene-suitable-
matching areas from non-suitable-matching areas automatically. The essence of these
methods is still to use traditional image feature parameters to train the classifier to predict
adaptability. The trained model can present stable selection results for a particular type of
image, but it still needs better versatility. On this basis, a matching probability prediction
model, based on the ResNet deep learning network, is designed in [2,28] to guide the
selection of the suitable-matching areas by predicting the matching probability of the
subgraph. To enhance the robustness of the model, ref. [29] subdivides image data according
to typical scenes and selects the suitable-matching areas from the perspective of multi-
classification problems. Methods based on deep learning make the model more robust
and more flexible. However, these methods require a large amount of annotated images
as support. The output results are also closely related to the performance of the matching
algorithm used during training, and the overall interpretability is poor. In addition, our
research is mainly for military applications and lacks public datasets. Unbalanced sample
categories are prone to occur when the amount of data is small. Therefore, how to use deep
learning to conduct adaptability analysis with a small number of samples is a great test for
the network’s generalization ability.

In this paper, we regard the suitable-matching areas’ selection problem as the salient
areas’ search problem. We propose an approach to calculate the matching performance
score, which we call multi-level saliency suitable-matching areas’ selection (MSAS). Our
approach integrates three different regional features in the saliency calculation process,
strengthening the connection between image features and avoiding the cumbersome setting
process of feature indicators and thresholds. This paper’s suitable-matching areas’ selec-
tion method is significant for improving the reliability and effectiveness of autonomous
positioning of precision-guided weapons.

3. Methods

In using template matching technology for target positioning, it is necessary to calcu-
late the similarity between the preprocessed benchmark image and the real-time image.
The reference image quality has an essential impact on the matching results and is directly
related to the reliability of aircraft navigation and positioning. The suitable-matching areas’
selection approach in this paper consists of three main steps. Figure 1 is the framework of
our algorithm.
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1. Multi-level image segmentation: Divide a reference image into multiple regions accord-
ing to different segmentation levels, from fine segmentation to coarse segmentation;

2. Saliency computation: Extract features for each segmented sub-region, use random
forest regression to calculate saliency, and finally, fuse the saliency scores of different
segmentation levels to generate a scene saliency map;

3. Scene-matching performance analysis and suitable-matching areas’ selection: The
saliency score in the sub-region is weighted with the edge density in the area to obtain
the adaptability performance score, and the area with a higher score is selected as the
benchmark image that participates in the matching verification.

3.1. Multi-Level Segmentation

We first perform multi-level segmentation on the reference image before feature
extraction. One image can be decomposed into multiple regions via image segmentation
algorithms, and the number of divided regions is controllable. Therefore, we can obtain
multi-level image segmentation results S with different degrees of sparsity. Table 1 shows
the definition or explanation of the mathematical notations that describe the working
principle in this paper.

Table 1. Define or explain the mathematical notations that describe the working principle of the
proposed approach.

Mathematical Notation Definition or Explanation

S a set of N-level segmentation, S = {S1, S2, . . . , SN},
Km the number of segmented areas included in the mth layer

Sm the mth layer contain

G a weighted undirected graph, G = (V, E)

V a set of graph’s vertex,
{

vi, vj

}
ϵ E

E a set of graph’s edge

Given a reference image I, we represent it by a set of N-level segmentation S =
{S1, S2, . . . , SN}, where Sm represents the mth layer segmentation result and consists of
Km regions. The larger Km means that Sm is divided into more regions, which indicates the
segmentation result is finer. On the contrary, the smaller Km means that Sm is divided into
fewer regions, which suggests the segmentation result is coarser.

This paper applies the graph-based image segmentation method [30]. Taking the mth
layer segmentation result in Sm as an example, it is divided into Km regions. Each region
R can be regarded as a weighted undirected graph G = (V, E), which connects adjacent
space areas. V and E express the graph’s vertex and edge sets, respectively. In an image, a
single pixel can be seen as a vertex v, and the edge

{
vi, vj

}
ϵ E connecting a pair of vertices

has a weight w
({

vi, vj
})

, which represents the dissimilarity between pixels:

w
({

vi, vj
})

=
∣∣ I(pi)− I

(
pj
)∣∣ (1)

where I(pi) represents the gray value of the pixel point pi. Each channel can be segmented
first and then merged if I is an RGB image with three channels. In order to reduce the
amount of calculation, in constructing graph G, calculations will not be performed on
all pairs of pixels. Instead, the grid–graph method is used to calculate the approximate
dissimilarity in eight directions around each pixel.

Initially, we treat each pixel as an independent region R, and the essence of segmenta-
tion is the process of merging them from large to small according to the similarity between
regions. There are two key definitions here [30]. The first is the internal difference Int(R)
of a region, which represents the maximum difference that can be tolerated in the region,
that is, the edge with the most remarkable dissimilarity in a region:
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Int(R) = max
vi ,vj ∈R{vi ,vj}∈E

w
({

vi, vj
})

(2)

The second is the difference Di f f
(

Ri, Rj
)

between the two regions, which represents
the dissimilarity at the most similar point between the two regions, that is, the edge with
the smallest dissimilarity among all the edges connecting two regions:

Di f f
(

Ri, Rj
)
= min

vi∈Ri ,vj∈Rj {vi ,vj}∈E
w
({

vi, vj
})

(3)

Through Formulas (1) and (2), it can be easily judged whether two regions meet the
conditions for merging; that is, when both regions can tolerate their differences, they can
be merged into one:

Di f f
(

Ri, Rj
)
≤ Int(Ri) && Di f f

(
Ri, Rj

)
≤ Int

(
Rj
)

(4)

Comparing Diff and Int can determine whether there is a segmentation boundary
between the two regions. From this, the judgment function of the segmentation algorithm
can be defined as Boundary

(
Ri, Rj

)
:

Boundary
(

Ri, Rj
)
=

{
True i f Di f f

(
Ri, Rj

)
> MInt

(
Ri, Rj

)
Flase otherwise

(5)

MInt
(

Ri, Rj
)
= min

(
Int(Ri) + t(Ri), Int

(
Rj
)
+ t

(
Rj
))

(6)

In principle, each isolated pixel can be regarded as a region. However, in this case,
only adjacent identical pixels can be merged, inevitably leading to over-segmentation.
Therefore, as shown in Formula (6), we give each region a tolerance value t(R) = λ

|R| ,
where |R| is the number of pixels in the region. The function of λ is to control the size of
the segmented region. When λ = 0, each different pixel is an independent region. As λ
increases, the segmented region obtained will also increase, and the entire image belongs
to one segmented region if λ = +∞. Therefore, as shown in Figure 2, we can obtain
different-level results with different segmentation densities by setting λ.
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Figure 2. Different levels of segmentation results: When λ = 50, the image is divided into many
regions, forming fine segmentation. When λ = 400, the image is divided into very few regions,
forming coarse segmentation.

Hierarchical screening methods usually require meshing the image first and then using
various feature indicators (such as edge density, information entropy, and autocorrelation
coefficient) as decision-making attributes to filter the image blocks in sequence to obtain the



Remote Sens. 2024, 16, 161 7 of 18

final suitable-matching area. However, this kind of violent selection will cause the relation-
ship between adjacent image blocks to be ignored, which can easily lead to the omission
of suitable-matching areas. By comparing fine segmentation and coarse segmentation (as
shown in Figure 2), it can be found that the two contain intersection regions, and some
regions in the fine segmentation will form sub-regions in the coarse segmentation result.
Therefore, neighborhood information will be forcibly adopted in the subsequent multi-level
regional feature fusion, enhancing the correlation and spatial consistency between regions.

3.2. Saliency Computation

In the previous subsection, we decomposed the reference image into different regions.
In this section, we will apply three different types of feature descriptors to calculate the
saliency score of each region.

First, we utilize the general properties of image regions, including geometric features
that describe the size and location of the region and appearance features that characterize
the color and texture distribution of the region. Different from regions containing salient
objects, backgrounds usually have uniform color distribution and similar texture distri-
bution. Therefore, we extract the above features for each region and obtain the regional
property descriptor.

Second, a region can be considered salient to an observer if it differs significantly
from its surrounding regions. This paper uses regional contrast descriptors to calculate
differences in color and texture features between regions. Taking the segmentation result
in Sm as an example, R is a region in Sm, and N is the nearest neighbor region of R. The
feature vectors vR

c and vR
t are respectively defined as the color and texture features of the

region R. Similarly, vN
c , vN

t is the color and texture features of the nearest neighbor region
N. The regional contrast descriptor can be obtained by calculating the feature difference:

di f f er(R, N) = d
(

vR
c , vN

c

)
+ χ2

(
vR

t , vN
t

)
(7)

Specifically, we calculate the absolute element differences (Manhattan Distance) of the
color feature vectors, while for texture features, we calculate the distribution divergence
(Chi-square Measure) of the texton histogram [31].

There may be misjudgment if we only use the general properties of the image to
judge whether a region is salient. We also need to distinguish between the foreground
and background of the image. Regions with a similar appearance are likely to come
from the background, but the determination of the background depends on the entire
image context. When manually marking the suitable-matching areas, the boundary region
is generally avoided. That is because the scene information in the boundary region is
incomplete and inconvenient for subsequent matching and positioning work. So, when
processing the border part, we consider it less salient and classify it as the background. This
paper constructs a pseudo-background region B by intercepting the image’s narrow-band
boundary of five pixels. We can obtain the regional background descriptor by calculating the
color and texture feature difference di f f er(R, B) and use this to determine the background
degree of region R [32].

We use the random forest regressor f (x) pre-trained in the MSRA-B dataset [33]. This
dataset has 5000 images in different categories, including indoor, outdoor, animals, natural
scenes, etc. It combines the objects marked by nine users that they think are most salient
and segments the outlines of salient objects. In training the random forest regressor, we
consider a region to be confident if 80% of the pixels belong to the background or the salient
object and set its saliency score as 0 or 1. In addition, our experiments used 200 trees during
the training to balance the effectiveness and efficiency.

We use the random forest regressor f (x) to integrate regional features, including
regional property, region contrast, and regional backgroundness for each region in the seg-
mentation map Sm. The features vector sets Xm as the input into the regressor f (x) to predict
the saliency score Am of the region. Considering that we perform multi-level image segmen-
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tation on the reference image I before feature extraction to obtain S = {S1, S2, . . . , SN},
the multi-level saliency mapping set A = {A1, A2, A3, . . . , AN} can be obtained through
regressor f (x). Finally, we use least squares estimation to assign different weights w to the
set A, and the final saliency map is obtained via a linear fusion function:

Map(A) =
N

∑
i=1

wi Ai (8)

where N is the number of segmentation levels. Theoretically, the larger the segmentation
level N, the more thoroughly we can extract the saliency information of the image. However,
larger segmentation levels introduce more computational burden. From an experimental
point of view, when N > 5, the incremental effect of saliency extraction slows down,
but the time consumption increases rapidly. Therefore, to balance the efficiency and the
effectiveness, we set segmentation levels N = 5 in our experiments.

3.3. Matching Performance Measure

We can effectively capture information-rich, distinctive, and non-repetitive areas in
the image via multi-level saliency computation. Such areas generally have good matching
performance required for benchmark map preparation for scene-matching experiments.
However, the saliency map cannot guide the selection directly because the reference image
may contain larger or smaller saliency targets, and the selection of suitable-matching
areas generally has specific size requirements. Therefore, we need to use edge density
to weigh each search window to avoid insignificant parts and ensure the effectiveness
of suitable-matching areas’ selection. Calculate the matching performance score C for
each region:

C = ρedge∑ Map(A)window (9)

where Map(A)window is a search window (set a sliding window with a step size of 15) in
the saliency map. ρedge is the edge density within the window calculated based on the
Sobel operator. We will show the difference caused by whether to add edge density to the
selection of the suitable-matching areas in the experimental part. We will also show that
the higher the matching performance score C, the better it can meet the requirements as a
suitable-matching area. Algorithm 1 shows the overall process of our approach.

Algorithm 1: Multi-level Saliency Suitable-matching Area Selection

Input: Reference image I
Output: Position coordinates of suitable-matching areas

1. Divide image I into multiple regions R by Graph-based image segmentation method
2. Repeat step 1 with different λ to get multi-level segmentation S = {S1, S2, . . . , SN}
3. Region saliency computation for S:
4. For m = 1:N Xm ← Sm / ∗ Sm ∈ S, Xm is a feature vector set */

Am ← f (X m) / ∗ f (x) is a Random forest regressor, Am is saliency score*/
5. A = {A1, A2, A3, . . . , AN} ← S = {S1, S2, . . . , SN} /*A is the multi-level saliency map*/
6. Fuse A together with a combinatory to get Map(A)
7. Calculate the matching performance score C for each search window Map(A)window by

adding edge density ρedge

8. Sort C in non-increasing order, return the locations of windows with higher scores

4. Experimental Results
4.1. Dataset and Simulation Real-Time Image Preparation

Currently, there is no public standard dataset for scene-matching area selection, and
we build a reference image sample set by ourselves. The image dataset contains 500 satellite
images of 400 × 600 pixels (as shown in Figure 3). It covers various land features such as
cities, suburbs, waters, farmland, roads, and bare land.
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Figure 3. Examples of the main scene types in our dataset.

We generate the real-time simulation images by adding noise, blur, and deformation (as
shown in Figure 4). This can effectively simulate complex situations such as scale changes,
blur, deformation, and low resolution under the actual navigation conditions. Although
there are some differences between the simulated real-time image and the actual captured
image, the simulation data is easy to generate. In addition, we can know the precise position
of the real-time image in the reference image, which facilitates the subsequent accurate
calculation of the matching probability and better reflects the appropriate performance.
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4.2. Evaluation Indicator

The ‘suitable-matching areas’ selection evaluation indicators are usually related to the
matching algorithm. Depending on the task, the matching algorithm is diverse, making the
use of unified standards for measurement analysis impossible. However, no matter what
matching method is used, the matching performance of the selected areas can be evaluated
through matching error and matching probability.

The matching error refers to the degree of similarity between the matching and actual
positions. We measure the matching error between the simulation real-time image and the
reference image by calculating the overlap rate ol:

ol =
|Rest

⋂
Rtruth|

|Rest
⋃

Rtruth|
(10)

where |·| represents the number of pixels in an area, Rest represents the matching result,
and Rtruth represents the actual position. The larger the ol value, the smaller the matching
error and the better the matching performance. The match is considered successful if ol
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is within the allowed error range. When the matching algorithm is fixed, record whether
each candidate area can be matched successfully. We can obtain the matching probability
P = n/N, where n is the number of areas that can be successfully matched and N is the
number of candidate areas in an image. The matching reliability of the selected areas can
be measured by calculating the ratio of the two.

In our experimental design, we will use matching error and matching probability
evaluation indicators to conduct a quantitative analysis of our method. Among them, we
will determine a successful match when the overlap rate is greater than 0.9 and calculate
the matching probability based on this.

4.3. Adaptability Analysis and Suitable-Matching Areas’ Selection

In order to verify the effectiveness of our approach, which we call multi-level saliency
suitable-matching areas’ selection (MSAS), we conduct a comparative analysis with the
representative hierarchical screening (HS) method. We select the same feature indicators
as [2] for HS: image variance (σ > 30), edge density (ρ > 0.1), information entropy (H > 6),
and primary and secondary peak ratio (SMR > 1.2) via the multi-attribute decision-making
method, to filter out the suitable-matching areas in a given reference image.

To verify the matching performance, we select the most commonly used normalized
cross-correlation (NCC) in navigation as the matching algorithm. It can cope with illumina-
tion changes and noise effects well and finds the target position quickly and efficiently. In
order to verify that the higher the score C, the better it can meet the selection requirements
of the suitable-matching area, we screened the top 15% and the top 10% of the image areas
with scores as candidate matching areas to compare with the HS method.

We illustrate the advantages of our approach via qualitative analysis and quantitative
analysis. Figure 5 shows the candidate areas selected by the MSAS and HS for matching
template preparation. The second column in Figure 5 shows the salient feature map
extracted from the reference image. The third column is the matching performance score
map obtained after weighted calculation, allowing us to intuitively see each position’s
matching ability. The next three columns are the areas corresponding to the top 15% and
the top 10% of MSAS algorithm scores and the HS method recommendation results. It can
be found that there are many mis-selections and omissions in the HS method. In contrast,
our method can combine the overall information of the image for screening. The image
information contained in our candidate areas is rich and significant, which can well meet
the selection requirements.

We use NCC to match the simulated real-time image of each candidate area with the
reference image and count the matching errors. Then, calculate the matching probability
of each image in the dataset. We draw the receiver operating characteristic curve (ROC)
(as shown in Figure 6) and calculate the Area-under-curve (AUC) value of each curve (as
shown in Table 2) to quantify the overall accuracy, reflecting the selected area’s overall
matching performance.

Table 2. AUC score of different simulation real-time images.

Method Basic Noise + Fuzzy + Distortion +

AUC Increase AUC Increase AUC Increase AUC Increase

MSAS-10% 0.7895 25.9% 0.6497 42.6% 0.3763 45.9% 0.3833 56.8%
MSAS-15% 0.7664 22.2% 0.6181 35.7% 0.3526 36.7% 0.3502 43.3%

HS 0.6271 0.4556 0.2580 0.2444
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Figure 5. The candidate areas for matching template preparation: (a) reference image; (b) saliency
map; (c) matching performance scores map; (d) MSAS—15%; (e) MSAS—10%; and (f) HS.
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images vary greatly. Therefore, it is necessary to analyze the matching performance of the 
selected area according to different scene categories. Table 3 shows the number of images 
for each image category in our dataset and the corresponding AUC scores from MSAS and 
HS. It can be seen that our approach has better matching accuracy in the selected areas in 
six different scenarios. Combined with the ROC curve in Figure 7, we can clearly see the 
performance difference between MSAS and HS in terms of matching performance analy-
sis, which confirms the effectiveness and generalization of our approach from the side. 

Table 3. AUC score of six different scene categories. 

Method City Farmland Mountain Land Road Suburb Water Area 
 50 70 45 110 190 35 

MSAS-10% 0.8910 0.6379 0.7867 0.8018 0.8084 0.8100 
MSAS-15% 0.8920 0.6186 0.7733 0.7814 0.7753 0.7786 

HS 0.7430 0.5714 0.5833 0.6150 0.6255 0.6757 

Figure 6. Accuracy: Success curves showing the fraction of examples of matching probability >
TH ∈ [0, 1]. (a) Use the basic simulation real-time images; (b) increase the noise impact of simulation
real-time images; (c) increase the blurring effect of simulation real-time images; and (d) increase the
deformation effect of simulation real-time images.

With essential noise, blur, and deformation added, the overall matching accuracy of
the top 10% areas of the MSAS matching performance score can reach 0.7895, which is
25.9% higher than HS. The top 15% of areas’ matching accuracy reaches 0.7664, which
is 22.2% higher than HS. It can be observed from the ROC curve in Figure 6 that the
matching accuracy of our method decreases more slowly when the noise, blur, and de-
formation are increased, respectively. Combining the data in Table 2, we can see that
MSAS has noticeable performance improvements under various complex interferences. In
summary, our approach has more comprehensive advantages in analyzing the regional
matching performance.

Due to different scene categories, the color and texture information contained in the
images vary greatly. Therefore, it is necessary to analyze the matching performance of the
selected area according to different scene categories. Table 3 shows the number of images
for each image category in our dataset and the corresponding AUC scores from MSAS and
HS. It can be seen that our approach has better matching accuracy in the selected areas in
six different scenarios. Combined with the ROC curve in Figure 7, we can clearly see the
performance difference between MSAS and HS in terms of matching performance analysis,
which confirms the effectiveness and generalization of our approach from the side.
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Table 3. AUC score of six different scene categories.

Method City Farmland Mountain Land Road Suburb Water Area

50 70 45 110 190 35

MSAS-10% 0.8910 0.6379 0.7867 0.8018 0.8084 0.8100
MSAS-15% 0.8920 0.6186 0.7733 0.7814 0.7753 0.7786

HS 0.7430 0.5714 0.5833 0.6150 0.6255 0.6757
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Figure 7. Accuracy: Six different scene categories (including city, farmland, mountain land, road,
suburb, and water area).

In Section 3.3, we mentioned that there are size requirements for the production
of template images. In order to screen the suitable-matching area more reasonably and
effectively, when we construct the score map, we give the search window a certain weight
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based on the regional edge density. In Figure 8, columns (b) and (c) show the results of
directly selecting high-salience response areas without weighting, and columns (d) and
(e) show the results of candidate areas after adding weights. Through comparison, the
weighted calculation can effectively filter out the parts that are not rich in information, and
thus, make more reliable use of the salient features of the image. At the same time, the
boundary processing of candidate areas is also more delicate.
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Figure 8. Result of edge density weighting: (a) reference image; (b) scores map without weighting;
(c) suitable-matching candidate areas’ selection without weighting; (d) scores map with weighting;
and (e) suitable-matching candidate areas’ selection with weighting.

Theoretically, the matching probability of a scene area is not only related to the image
content but also to the matching algorithm. The matching errors calculated by different
matching algorithms may differ for the same area. However, we can obtain good matching
results for areas with good matching performance no matter what matching algorithm we
use. In addition to the NCC used above, we also use the DDIS [34] (based on color feature
DDIS-C and depth feature DDIS-D) and the CoTM [35] matching algorithm, which currently
has the best matching results in complex scenes. For the 500 reference images in the dataset,
we select three areas with a size of 50× 50 in each image as suitable-matching areas. The
area with the highest matching performance score C is the No.1 suitable-matching area. In
order to ensure that the three selected areas do not overlap, the score of the No.1 area is
cleared to zero after finding the maximum value area. Repeating the above operations, we
can find the No.2 and No.3 suitable-matching areas.

Next, we use various matching algorithms to match and position the simulated real-
time images of the selected areas in the reference images and conduct quantitative and
qualitative analysis of the matching results. Figure 9 plots the ROC curve, and Table 4
shows the AUC value corresponding to each curve. It can be seen that the No.1 areas
have the highest matching accuracy. The other two areas also have high matching perfor-
mance. Figure 10 shows the results of some matching experiments. The first column is
the three suitable-matching areas selected by our approach for each image. The remaining
four columns show the positioning results of different matching algorithms based on the
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simulated real-time image. It can be found that for each selected suitable-matching area,
different matching algorithms can basically match the target location.
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Figure 10. Matching results of different matching algorithms: (a) suitable area; (b) NCC; (c) DDIS-
C; (d) DDIS-D; (e) CoTM. The green box is the No.1 suitable-matching area, the red box is the
No.2 suitable-matching area, and the blue box is the No.3 suitable-matching area.
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Table 4. AUC score of different matching algorithms.

Suitable-Matching Area CoTM DDIS-Color DDIS-Deep NCC Mean

No.1 0.9411 0.8325 0.7686 0.8772 0.8549
No.2 0.9008 0.8117 0.6543 0.8304 0.7993
No.3 0.8892 0.8305 0.6007 0.8007 0.7803

In order to verify the suitable-matching areas’ selection effect in this paper under
different imaging mechanisms, we conducted experiments on aerial and near-infrared
images, respectively. In Figure 11, the first row selects three 50× 50 pixels suitable-matching
areas from the 512 × 512 size aerial images, and the second row selects one 40 × 40 pixel
from the 300 × 300 size near-infrared images. It can be seen that our algorithm selects scene
areas with clear outlines, rich textures, and noticeable features as suitable-matching areas,
which reflects that our approach can be applied under different imaging mechanisms and
has good versatility.
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5. Conclusions

In this paper, we propose the suitable-matching areas’ selection method based on
multi-level saliency to address the problem of reference map preparation in scene-matching
navigation. We perform multi-level segmentation before feature extraction to enhance
adjacent regions’ spatial consistency. We fuse three feature descriptors to strengthen
the connection between different characteristics. It improves the one-sidedness of the
traditional hierarchical rule method in scene description and the low versatility caused by
the fixed filtering threshold. To utilize the salient areas more effectively and reduce omission
and wrong selection, we perform edge-density weighted calculations on the saliency map
to obtain the matching performance score. Compared with the traditional hierarchical
screening methods, our approach’s matching performance evaluation capability improves
by at least 22.2%. By verifying multiple matching algorithms on the top suitable-matching
area we selected, the average matching success rate can reach 0.8549. The results show
that our method can effectively identify areas with high matching performance in the
image and we can achieve good results when facing different scene categories. In addition,
our approach is more than just targeting a specific image. Our method can be more
widely used in suitable-matching area selection applications for scene-matching navigation
with different imaging mechanisms, such as aerial, satellite, and near-infrared images.
In the future, we can adjust the salient feature extraction algorithm according to the
image characteristics of different imaging mechanisms to make the suitable-matching area
selection method more targeted and professional. We will conduct more in-depth research
on the applicable scope of image scenes.
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