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Abstract: Snow cover is a sensitive indicator of global climate change, and optical images are an
important means for monitoring its spatiotemporal changes. Due to the high reflectivity, rapid change,
and intense spatial heterogeneity of mountainous snow cover, Sentinel-2 (S2) and Landsat 8 (L8)
satellite imagery with both high spatial resolution and spectral resolution have become major data
sources. However, optical sensors are more susceptible to cloud cover, and the two satellite images
have significant spectral differences, making it challenging to obtain snow cover beneath clouds
and cloud shadows (CCSs). Based on our previously published approach for snow reconstruction
on S2 images using the Google Earth Engine (GEE), this study introduces two main innovations
to reconstruct snow cover: (1) combining S2 and L8 images and choosing different CCS detection
methods, and (2) improving the cloud shadow detection algorithm by considering land cover types,
thus further improving the mountainous-snow-monitoring ability. The Babao River Basin of the
Qilian Mountains in China is chosen as the study area; 399 scenes of S2 and 35 scenes of L8 are
selected to analyze the spatiotemporal variations of snow cover from September 2019 to August 2022
in GEE. The results indicate that the snow reconstruction accuracies of both images are relatively
high, and the overall accuracies for S2 and L8 are 80.74% and 88.81%, respectively. According to the
time-series analysis of three hydrological years, it is found that there is a marked difference in the
spatial distribution of snow cover in different hydrological years within the basin, with fluctuations
observed overall.

Keywords: Sen2Cor; cloud detection; SNOWL; Fmask4.0; Babao River Basin

1. Introduction

Snow cover is one of the most active land cover types on the Earth’s surface. It has
high albedo and low thermal conductivity, which strongly influence the global water cycle,
energy balance, and climate change [1–5]. Optical remote-sensing satellites are important
data sources for snow cover detection, and the normalized difference snow index (NDSI)
proposed by Dozier [6] can effectively identify snow cover through its high reflectivity in
the green band (0.5 µm) and strong absorptivity in the shortwave infrared band (1.6 µm).
Recently, both geostationary and polar-orbiting satellites released various snow cover
products at no cost, including Meteosat/MSG, MODIS, AVHRR, and FY [7–9]. However,
snow cover in mountainous areas has the characteristics of high albedo, strong spatial
heterogeneity, and a fast change rate. Therefore, the snow cover products mentioned
above are limited: a coarser spatial resolution cannot describe the spatiotemporal distribu-
tion characteristics of snow cover in detail, while a lower radiometric resolution leads to
saturation for snow [10–12].
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In recent years, the successful launch of the Sentinel-2 (S2) and Landsat 8 (L8) satellites
has brought new opportunities for mountainous snow cover identification and detection.
Compared to the Landsat 1–7 series satellites, L8 has a 12-bit radiometric resolution and
reduced saturation for snow. However, due to its low revisit period (16 days), using L8
alone cannot capture the rapid changes in mountainous snow cover. The S2 satellite not
only provides higher spectral resolution, radiometric resolution, and spatial resolution, but
its A/B satellite network can also provide two to five days of higher temporal resolution
images [13]. Therefore, the combination of S2 and L8 imagery is beneficial for studying the
rapid changes and redistribution process of mountainous snow cover.

However, optical satellites are severely influenced by clouds and cloud shadows
(CCSs), and nearly half of multispectral images are polluted [14,15]. Although most of the
snow and clouds can be distinguished by the NDSI, it cannot recover snow cover under
CCSs. Clouds alter the energy radiation transmission between sun-surface sensors [15–17],
making it difficult for snow information under clouds to accurately reach sensors. Moreover,
the spectral characteristics of its shadows are relatively similar to those of wetlands, water,
and other ground objects, thereby reducing the recognition accuracy of snow cover beneath
cloud shadows [18,19]. Generally, the spectral reflectance of snow beneath thin cloud
shadows is relatively high, and snow cover can be directly extracted by the NDSI. However,
snow information under thick cloud shadows is difficult to identify. Therefore, how to
combine S2 and L8 images to restore snow cover under CCSs is the primary necessary
mission of long-term snow cover detection.

Based on MODIS snow cover products released globally, many studies have been
conducted on recovering snow cover under clouds, mostly including temporal/spatial
filtering, multisensor synthesis, and the SNOWL (snow line) algorithm using the digital
elevation model (DEM) [20–25]. The temporal-filtering method utilizes the short-term
dynamic change in cloud layers to recover snow cover beneath the clouds, but it usually
requires very high temporal resolution satellite images, such as revisiting cycles of more
than two times in a day. The spatial filtering method typically uses adjacent cloud-free pixel
information, but it ignores rapid changes in snow cover and is not suitable for mountainous
regions with significant spatial heterogeneity [26]. The multisensor synthesis method
integrates optical satellite images with microwave satellite images or ground observation
data to enhance the recognition capability of snow cover under clouds [25,27]. However, the
effectiveness of this method is limited by the low spatial resolution of passive microwave
remote-sensing data and the sparsity of ground observation stations in mountainous
regions. Compared with the above three methods, the SNOWL developed by Parajka
et al. [21] is more suitable for S2 and L8 images with a lower temporal resolution. By
comparing the elevation of cloud pixels and the regional average snow line elevation, cloud
pixels are redefined as land pixels or snow cover. In addition, in previous MODIS snow
products, the focus was on the impact of clouds on snow cover, neglecting the extraction of
snow cover under cloud shadows. However, for high-resolution images, cloud shadows
are also an important factor in extracting snow cover.

Obviously, for S2 and L8 images with a low temporal resolution and high spatial
resolution, the SNOWL algorithm has become the main method for snow cover recon-
struction under CCSs, and cloud and cloud shadow detection is a prerequisite. There are
two main types of algorithms used for CCSs detection: machine learning and spectral
threshold detection. Machine-learning methods require many training samples and have
difficulty achieving global universality [28–30]. Spectral threshold detection methods uti-
lize the special physical features of clouds, such as brightness, whiteness, and coolness,
to construct multiple spectral indices, which are widely used [12,31–40]. For the prob-
lem of cloud pollution in Landsat-series satellite, some scholars have proposed various
CCSs algorithms based on spectral threshold detection methods, such as ACCA, Fmask,
MCM, and LaSRC, through the differences in surface reflectance and temperature between
clouds and ground objects [31,34–36]. The ACCA cloud detection algorithm targets Land-
sat 4/5 and Landsat 7 images, with high cloud omission and misalignment errors, and
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does not detect cloud shadows [32,33]. For high-resolution images, the impact of cloud
shadows on snow reconstruction cannot be ignored. The Fmask algorithm was first used
for Landsat 7 images [34], which have poor recognition accuracy for thin cirrus clouds, and
the improved Fmask 3.3 algorithm greatly improved its detection accuracy by utilizing
the cirrus band of Landsat 8 [19]. Candra et al. [35] developed the MCM algorithm for
Landsat 8 to detect CCSs through the difference in reflectivity between cloud-covered
and clear-sky pixels, but this is only effective for thick clouds and their shadows. LaSRC
generates the cloud mask of L8 images during atmospheric correction and extracts cloud
shadows by band thresholds, but the detection accuracy of thin clouds is low [41]. The
above research indicates that the Fmask algorithm and its higher version can effectively
detect CCSs information in Landsat-series satellite images.

With the wide use of Sentinel-2 A/B images, many researchers have proposed CCSs
detection algorithms [12,37–40,42,43]. The Sen2Cor tool developed by ESA can effectively
distinguish snow cover, clouds, and cloud shadows on S2 images [42]. Because of the
absence of brightness temperature (BT) observed in a cloud-sensitive thermal infrared band
in S2 images, some scholars have tried to improve Landsat CCSs detection algorithms
and apply them to Sentinel-2 images. Among them, MAJA is extensively applied in
Landsat and Sentinel-2 images but overestimates CCSs [39,40,43]. Zhu and Helmer [37]
developed the ATSA algorithm by utilizing the spectral characteristics of clouds and the
geometric relationships between clouds and their shadows. This algorithm was used in
Landsat 4/8 and Sentinel-2 images; the separation effect of clouds and snow clouds and
snow was poor. Qiu et al. [38] designed a cloud probability based on haze optimization
transformation (HOT) to replace the temperature probability of S2 images and proposed
the Fmask4.0 algorithm suitable for both Landsat-series satellites and Sentinel-2. Candra
et al. [40] improved the MCM algorithm by using the similarity of spectral features of S2
and L8 images and used multitemporal images to optimize CCS detection capabilities;
however, the improved algorithm has strict requirements for clear-sky reference images.
Tarrioa et al. [43] conducted a comparative analysis of five cloud detection algorithms
(MAJA, LaSRC, Tmask, Sen2Cor, and Fmask4.0) applied to Sentinel-2 images and found
that the Fmask4.0 algorithm has high accuracy and fast operation speed. However, its
cloud shadow detection is determined by the geometric position relationships among CCSs,
which can easily mix with dark surface pixels (water, hillshade, etc.), resulting in cloud
shadow omission. In our published study [12], the Fmask4.0 algorithm is improved based
on the darker characteristics of cloud shadows in the near-infrared/shortwave infrared
(NIR/SWIR1) bands, but there is still a problem of cloud shadow underestimation.

After the detection of CCSs, the SNOWL algorithm is applied to redefine cloud and
cloud shadow pixels with elevations greater than the average snow line as snow cover
under CCSs. Obviously, clear-sky snow cover extraction is a prerequisite for the SNOWL
algorithm to determine the instantaneous snow line. According to the high reflectivity of
snow, a comprehensive combination of various thresholds, such as the NDSI, visible light,
and NIR bands, can easily distinguish snow from other land covers. Numerous studies have
adopted nearly the same clear-sky snow cover extraction method [6,44–47]. In our previous
study, the Sen2Cor tool was able to extract Sentinel-2 images of clear-sky snowpack pixels
with high precision. Nevertheless, the original SNOWL method has some shortcomings,
such as not being able to effectively detect CCSs or not considering the impact of unstable
snowpack areas when estimating instantaneous snow lines [48–50]. Gascoin et al. [51] used
the LIS (let-it-snow) open-source processor to extract clear-sky snow based on the NDSI
and red bands of S2 and L8 images, and then reconstructed the snow cover under clouds
using the snow line elevation, but could not detect thick cirrus clouds. Premier et al. [52]
used images fused by MODIS and Sentinel-2/Landsat 8 and comprehensively considered
historical snow cover information (snow condition probability) to reconstruct snow cover
under cloud-covered images, which relies heavily on the accuracy of historical snow cover
information. Our previous study [12] improved the SNOWL algorithm by introducing
unstable snow cover areas (USCAs), which improved the reconstruction accuracy of snow
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cover on S2 images. However, the cloud shadow recognition effect was not ideal, and the
improved algorithm has not been applied to Landsat 8 satellites.

The purpose of this study is to improve the Fmask4.0 cloud shadow detection algo-
rithm and implement different cloud detection methods for L8 and S2 images for recon-
structing snow cover from September 2019 to August 2022 in the Babao River Basin based
on the GEE platform. The paper is organized as follows: Section 2 introduces the study
area and datasets. Section 3 outlines the snow cover reconstruction methods for S2 and L8
images. Sections 4 and 5 present the results and discussion. Finally, Section 6 concludes
the paper.

2. Study Area and Data
2.1. Study Area

The Babao River Basin (BRB), situated in the northeast of the Qilian Mountains in
China, has approximately 105 km in length and a total area of around 2452 km2 [53], as
displayed in Figure 1. The watershed exhibits a complex terrain, surrounded by high moun-
tains, with elevations ranging from 2673 to 4960 m. The dominant land cover types are
grassland (77.20%), bare land (11.14%), moss (8.61%), and alpine woodland (1.76%) [54,55].
The average annual temperature is −4.2 ◦C [54], which has the characteristics of a conti-
nental climate and plateau mountain climate [56]. It has an extensive range of snow cover
and frequent snowfall in winter, mainly from October to May of the subsequent year [57].
There are important snow observation sites within the watershed that are convenient for
snow monitoring, such as the Dadongshuyakou Observation Station. Due to its unique
geographical location and hydrological characteristics, the BRB has become a desired area
for researching snow cover variation in cold regions.
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2.2. Datasets

The data used in the paper mainly include two categories, Sentinel-2 A/B and
Landsat 8 multispectral images, and SRTM DEM, ERA5-Land Daily, GF-2, and other auxil-
iary data, as shown in Table 1. Multispectral data, SRTM DEM, and ERA5-Land Daily are
obtained from the GEE datasets. GF-2 is used for accuracy verification from the State Key
Laboratory of Remote Sensing Science.
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Table 1. Basic information of experimental datasets.

Datasets Track/Position
Information

Spatial/Radiometric
Resolution Data Period Scenes Application

Multispectral
images

Sentinel-2
L1C/L2A

47SPC, 47SPB,
47SPC

10, 20, 60 m,
12 bits 2019/09/01–

2022/08/31

399
Snow cover
extractionLandsat 8

TOA/SR Path 133/Row 34 30 m, 12 bits 35

Auxiliary

SRTM DEM
Babao River Basin

30 m — —
Aspect and snow

line height
extraction

ERA5-Land
Daily 0.1◦ 2019/09/01–

2022/08/31 — Air temperature

GF-2 100.8◦E _37.9◦ N
100.5◦E _37.9◦N 0.8 m 2020/03/23

2020/01/14 2 Accuracy
verification

2.2.1. Multispectral Images

This article uses S2 and L8 images to extract snow cover information. Except for the
Sentinel-2 non-BT band, the difference in visible and near-infrared bands between the
two images is very small [58,59]. Sentinel-2 L2A is a surface reflectance product obtained
by atmospheric correction of the atmospheric apparent reflectance (TOA) product (L1C).
Due to the lack of the cirrus band required for CCSs detection, it is necessary to introduce
the cirrus band from L1C data. Landsat 8 SR is surface reflectance data. Similarly, cloud
detection is conducted by the cirrus band. To perform CCSs identification, all data were
resampled to a spatial resolution of 10 m. The entire BRB requires three scenes of Sentinel-2
images or one scene of a Landsat 8 image to cover. A total of 399 Sentinel-2 images
with 133 days and Landsat 8 images with 35 days were obtained from September 2019 to
August 2022.

2.2.2. Auxiliary Data

The auxiliary data mainly include DEM, ERA5-Land Daily, and GF-2 images. The
DEM comes from the Space Shuttle Radar Mission (SRTM), which collected over 80% of
surface digital terrain information between 60◦N and 56◦S [60], with a spatial resolution
resampling to 10 m to obtain snow line height and aspect. ERA5-Land Daily obtained from
GEE provides daily average air temperatures at 2 m above the land surface. Two scenes
of GF-2 images with a 0.8 m spatial resolution are applied to verify the extraction results
of cloud-free snow cover and snow cover reconstruction under CCSs. Due to the fact that
GF-2 lacks the near-infrared feature band (1.6 um) for extracting snow, the MeanVis method
proposed by Zhang et al. [12] can improve the underestimation phenomenon of snow cover
in mountainous shadow regions when extracting snow cover using GF-2.

3. Methodology

This study used JavaScript language to process S2 and L8 data on the GEE platform,
and modified the Python version of Fmask4.0 algorithm to a JavaScript version supported
by GEE. Additionally, both Sen2Cor and SNOWL algorithms were also written in JavaScript.
As shown in Figure 2, snow cover reconstruction under CCSs for S2 and L8 consists of three
steps: detecting CCSs according to the improved Fmask4.0, extracting cloud-free snow
cover pixels using Sen2Cor, and reconstructing snow cover under CCSs according to our
proposed improved SNOWL algorithm that introduces unstable snow cover areas.
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3.1. Cloud and Cloud Shadow Detection
3.1.1. Cloud Detection

The key technology for distinguishing clouds from surface objects is cloud proba-
bility calculation and cloud spectrum testing, which are mainly based on the brightness,
whiteness, and coldness characteristics of clouds. Cloud spectrum testing is used to obtain
potential cloud pixels through five steps, Basic Test, Whiteness Test, HOT Test, Rock Test,
and Cirrus Test, and the specific formulae are detailed in the literature of Zhu et al. [19].
Different methods were selected based on S2 and L8 images in the Basic Test because S2
does not provide a thermal infrared band for capturing the “coldness” characteristic of
clouds, while other test modules are universal for both types of images. For Landsat 8,
cloud pixels can be detected when the reflectivity value of the SWIR2 band is greater than
0.03 and the value of BT is less than 27 ◦C, and the values of the NDVI and NDSI are both
less than 0.8, as shown in Formula (1). For Sentinel-2, cloud detection relies on the NDSI,
NDVI, and SWIR2 band thresholds, which are consistent with Formula (1), except for BT.

LBasic = ρSWIR2 > 0.03 and BT < 27 °C and NDSI < 0.8 and NDVI < 0.8 (1)

SBasic = ρSWIR2 > 0.03 and NDSI < 0.8 and NDVI < 0.8 (2)

where LBasic and SBasic represent the Basic Test of Landsat 8 and Sentinel-2, respectively.
ρSWIR2 is reflectivity value of the SWIR2 band, and BT represents the brightness tempera-
ture band of Landsat 8.

Through the above five cloud spectrum tests, most of the thick clouds are effectively
recognized. However, some thin clouds, clouds located at the edges, and some fragmented
clouds are still difficult to extract. Therefore, it is necessary to introduce the cloud prob-
ability to further detect these cloud pixels. Due to the lack of large-scale water in the
BRB, this study only focuses on calculating the probability of clouds over land. Generally,
cloud probability is determined by the combination of spectral change rate, temperature
probability, and the Cirrus Test. Similarly, due to the absence of the temperature band in
Sentinel-2, different cloud probability formulae are used for the two satellite datasets, as
shown in Table 2.
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Table 2. Cloud probability formulae for S2 and L8.

Sentinel-2 Landsat 8 Equation Number

Spectral
change rate lvari = 1 − max(White, abs(NDVI), abs(NDSI)) (3)

Temperature
probability


HOT = (ρblue − 0.5 × ρred − 0.08)

lHOT =
HOT − HOTlow − 0.04)

(HOThigh + 0.04)− (HOTlow − 0.04)

ltemper =
(Thigh + 4 − TBT)

(Thigh + 4 − (Tlow − 4))
(4)

Cloud
probability SCloudP = (lvari × lHOT + lCirrus × 0.5) > 0.8 LCloudP =(

lvari × ltemper + lCirrus × 0.3
)
> 0.8 (5)

where White, lvari , and lCirrus are the Whiteness Test, spectral change rate, and cirrus probability for L8 and
S2, respectively. HOT, lHOT , and SCloudp represent the HOT Test, the temperature probability, and cloud
probability for Sentinel-2, respectively. ltemper and LCloudp are the temperature probability and cloud probability
for Landsat 8, respectively. The detailed methods and terminologies applied in the formulae in Table 2 can be
found in Qiu et al. [38].

3.1.2. Improved Cloud Shadow Detection

Due to the low reflectivity of cloud shadows in both the NIR and SWIR1 bands,
the original Fmask algorithm extracted cloud shadows using threshold methods with
reflectivities less than 0.25 and 0.11 in the two bands, respectively [61]. However, the
cloud shadow detection algorithm in Fmask4.0 has two shortcomings: first, it is difficult to
distinguish between water and cloud shadows; second, when cloud shadows fall on bright
surface areas, such as bare areas, they are usually unrecognizable. However, experiments
have found that this method can effectively identify large homogeneous cloud shadows,
and cloud shadow pixels located at their boundaries are usually overlooked. Furthermore,
the reflectivity of cloud shadows is influenced and is also difficult to distinguish from
that of water. Therefore, an improved cloud shadow detection algorithm is proposed
by removing water and considering whether the surface is covered by vegetation. The
thresholds of NIR, SWIR1 band, and NDWI were obtained by many experiments on cloud
shadows in the BRB, as shown in Formulae (6) and (7).

NDWI < 0.1 (6)

CS =

{
ρNIR < 0.25 and ρSWIR1 < 0.11, NDVI > 0.08
ρNIR < 0.3 and ρSWIR1 < 0.28, NDVI ≤ 0.08

(7)

where CS represents cloud shadow.

3.2. Snow Cover Extraction

Snow extraction consists of two parts based on whether the surface is covered by
CCSs. First, the Sen2Cor algorithm provided by ESA was used to extract the cloud-free
snow cover. Subsequently, for pixels covered by CCSs, the published improved SNOWL
algorithm is adopted to reconstruct snow cover under CCSs.

3.2.1. Cloud-Free Snow Cover Extraction

Sen2Cor provides an algorithm for snow cover identification in Sentinel-2 images. It
uses four thresholds (NDSI, blue band, blue-green ratio, and NIR band) to extract cloud-free
snow cover pixels in S2 images. Because L8 provides five spectral bands similar to S2 (blue,
green, red, NIR, and SWIR1), the same algorithm is used for snow extraction of cloud-free
pixels. The specific formulae can be found in our published article [12].

3.2.2. Snow Cover Extraction under CCSs

For high-resolution Landsat 8 and Sentinel-2 satellites with longer revisit periods,
the SNOWL algorithm is generally selected to recover snow cover under CCSs based on
the snow line elevation. However, the ablation and accumulation of mountainous snow
cover are related to the surface elevation and are affected by the aspect, surface irradiance,
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and other factors. Therefore, in our published research, the original SNOWL algorithm is
modified by introducing unstable snow cover areas to improve the accuracy of snow cover
reconstruction [12].

To recover snow cover under CCSs on S2 and L8, in this study, the improved SNOWL
algorithm is used, which involves three steps: (1) Based on clear-sky snow cover of two satel-
lite images over three hydrological years, pixels with less than 22 days of snow cover within
a year were identified as USCA. (2) We use the original SNOWL algorithm by comparing the
elevation of CCSs with the average snowline elevation of each scene image to identify the
initial snow cover pixels. (3) Combining the above two results, the initial snow pixels located
in the USCA are eliminated. Thus, the snow cover pixels under CCSs are obtained. In this
paper, the USCA is extracted from all available cloud-free snow cover pixels of S2 and L8.

4. Results
4.1. Evaluation of Cloud-Free Snow Cover

The extraction of cloud-free snow cover on Sentinel-2 and Landsat 8 images is the
foundation for the reconstruction of snow cover under CCSs. In the paper, the snow
recognition results of GF-2 satellite images (0.8 m) are considered the “true value” to verify
the ability of the Sen2Cor algorithm to detect cloud-free snow cover on S2 and L8 images.
Due to data limitations, the GF-2 and L8 images used for validation were acquired on
14 January 2020 but differed by one day from S2 (13 January 2020). Five evaluation indicators
are selected: overall accuracy O, multimeasurement error M, omission error L, user accuracy
U, and Kappa coefficient. The unit for the first four indicators is percentage (%). The detailed
definitions and calculation formulae are detailed in our published literature [12].

Figure 3 illustrates that the spatial distribution of clear-sky snow cover extracted
from two satellite images is very similar to that of GF-2. Detailed accuracy results are
indicated in Table 3. The overall accuracies of the S2 and L8 images are 84.51% and 80.40%,
respectively, suggesting that the Sen2Cor algorithm can properly classify over 80% of the
pixels in the two satellite images. From the accuracy indicators listed in Table 3, it can be
observed that the extraction accuracy of snow cover on S2 is generally higher than that of
L8. However, the multimeasurement error is poor (43.19%) for the transit time difference
between Sentinel-2 and GF-2, although its user accuracy is very high (93.77%).
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Table 3. Detection accuracy of clear-sky snow cover on S2 and L8 images.

Sentinel-2 (2020/01/13) Landsat 8 (2020/01/14)
Snow Pixel Snow-Free Pixel Snow Pixel Snow-Free Pixel

GF-2 (2020/01/14)
Snow pixel 508,205 33,788 366,637 67,204

Snow-free pixel 78,259 102,959 52,578 124,745

Evaluating indicator U M L O
Sentinel-2 93.77% 43.19% 6.23% 84.51%
Landsat 8 84.51% 29.65% 15.49% 80.4%

4.2. Evaluation of Cloud and Cloud Shadow Detection

To evaluate the detection accuracy of CCSs, S2 and L8 images with snow cover under
CCSs were selected. Due to significant differences in the radiance values recorded in satellite
images when cloud shadows fall on snow and snow-free covered surfaces, S2 and L8 images
with snow and that are snow-free were selected to evaluate the cloud shadow detection effect.
As depicted within the dotted box in Figure 4, the improved Fmask4.0 algorithm has a better
recognition ability for cloud shadows on the four satellite images and obtains more detailed
cloud shadows and their profile information (Figure 4c,g,k,o), while some cloud shadow
pixels were not extracted in the original algorithm, as shown in the red circles in Figure 4d,h,l,p.
Moreover, the Fmask4.0 algorithm also has high recognition accuracy for clouds in the four
temporal images. It can detect uniform or edge clouds and effectively distinguish the pixels
of clouds and snow. Notably, the highly reflective nature of snow cover allows snow cover to
be extracted from thin cloud images directly using the Sen2Cor algorithm.
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Figure 4. Comparison of CCS detection results between the improved Fmask4.0 and the original
algorithm on S2 and L8 images: (a–h) S2 original image, clouds, and cloud shadows acquired by the
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improved and original Fmask4.0 on snow-covered and snow-free surfaces; (i–p) L8 original image,
clouds, and cloud shadows acquired by the improved and original Fmask4.0 on snow-covered and
snow-free surfaces.

4.3. Snow Cover Reconstruction under CCSs

To assess the snow cover extraction results under CCSs, the Sentinel-2 image from
21 March 2020 was compared with the latest date GF-2 (23 March 2020). As shown in
Figure 5, due to the inability to obtain cloud-free GF-2 data that meet the L8 transit date
requirements, cross-validation was selected between S2 on 19 February 2021 and L8 on
17 February 2021. Historical temperature data provided by ERA5-Land Daily show that
the temperature difference among the selected images is extremely small, and there is no
obvious snowmelt. Therefore, the CCSs extracted from S2 and L8 are used as a mask to
extract snow cover pixels from cloud-free GF-2 and S2 using this boundary to verify the
reconstruction accuracy of snow cover beneath the CCSs.
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Figure 5. Accuracy evaluation of S2 and L8 snow cover reconstruction under CCSs: (a–c) The original
image of GF-2, cloud-free snow cover, and snow cover under CCSs; (d–f) The original image of S2,
cloud-free snow cover, and snow cover under CCSs obtained using the improved SNOWL algorithm;
(g–i) The original image of S2, cloud-free snow cover, and snow cover under CCSs; (j–l) The original
image of L8, cloud-free snow cover, and snow cover under CCSs obtained using the improved
SNOWL algorithm.

Figure 5d,j describe the spatial distribution of CCSs in the false-color images of S2 and
L8, and the reconstructed snow distribution under CCSs in both images (Figure 5f,l) is very
similar to that of the corresponding validation data. By analyzing the confusion matrix of
snow cover reconstruction results (Table 4), it was found that the overall accuracy of snow
cover reconstruction on Sentinel-2 has increased from 77.27% to 80.74%. The user accuracy
is 86.26%, and the Kappa coefficient is 0.616. Similarly, the corresponding accuracy of
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Landsat 8 has also been improved, with 88.81%, 80.25%, and 0.766, respectively. The above
experimental results indicate that our improved SNOWL algorithm can effectively recover
mountainous snow cover under CCSs by introducing USCA. However, in areas with dense
cloud cover (cloud coverage exceeding 30%), the reconstruction accuracy of snow cover is
low, and the snow detail information is not good. Additionally, the effects of the nature
of snow on the reconstruction results of snow cover under CCSs was not considered. The
snow cover is mostly dry snow with high reflectivity and low and stable snow density in
the BRB [55].

Table 4. Comparison of extraction accuracy of snow cover under CCSs on S2 and L8.

Sentinel-2 (2020/03/21)
Improved SNOWL Original SNOWL

Snow Pixel Snow-Free Pixel Snow Pixel Snow-Free Pixel

GF-2 (2020/03/23)
Snow pixel 174,998 27,872 156,322 26,595

Snow-free pixel 58,124 185,574 68,099 165,633

Landsat 8 (2021/02/17)

Sentinel-2 (2021/02/19)
Snow pixel 11,941 2938 3430 1553

Snow-free pixel 1239 21224 1510 10,390

Evaluating indicator U M L O Kappa

S2
Improved SNOWL 86.26% 23.85% 13.74% 80.74% 0.616
Original SNOWL 85.46% 29.1% 14.54% 77.27% 0.549

L8
Improved SNOWL 80.25% 5.52% 19.75% 88.81% 0.766
Original SNOWL 68.83% 12.69% 31.17% 81.86% 0.563

4.4. Impact of the Terrain on Accuracy of Snow Cover Reconstruction

Terrain is an important factor affecting the reconstruction of snow cover in mountain-
ous areas, with elevation and aspect being the most significant. According to the difference
in elevation across the study area, the elevation zone is carried out with a step length of
200 m; thus, the S2 and L8 images are divided into five elevation zones. According to
the reconstruction results of snow cover in Section 4.3, the cloud-free snow cover pixels
on GF-2 and Sentinel-2 are used as true values to evaluate Sentinel-2 on 21 March 2020
and Landsat 8 on 17 February 2021 in different elevation zones, as shown in Table 5. The
findings indicate significant variation in the overall accuracy of snow cover reconstruction
among different elevation zones for Sentinel-2, but it remains above 83%, and the overall
accuracy is better than that of Landsat 8. Although Table 5 shows a decreasing trend in
overall accuracy as elevation increases, this variation principle is unreliable due to the
different SCRs in each elevation zone, especially at low altitudes.

Table 5. Impact of elevation on the reconstruction accuracy of snow cover.

Elevation SCR U O M L

Unit: m Unit: Percentage (%)

S2

3474–3600 0.15 93.14 90.94 9.54 6.86
3600–3800 4.49 88.90 88.06 12.11 11.10
3800–4000 14.17 83.73 84.92 14.02 16.27
4000–4200 18.43 88.63 86.98 15.26 11.37
4200–4485 11.50 89.07 86.55 18.02 10.93

L8

3327–3600 1.22 63.38 84.83 13.50 36.62
3600–3800 4.57 64.73 85.81 5.37 35.27
3800–4000 9.02 82.30 90.74 4.93 17.70
4000–4200 13.08 89.65 91.84 5.85 10.35
4200–4434 7.41 85.41 89.82 5.83 14.59
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To analyze the impact of aspect on the accuracy of snow cover reconstruction, it is
categorized into five groups: flat surface (−1), shady slope (0–45◦, 315–360◦), semishady
slope (45–135◦), sunny slope (135–225◦), and semisunny slope (225–315◦). As depicted in
Table 6, the shady slope exhibits the highest overall accuracy for both S2 and L8, reaching
85.13% and 89.41%, respectively, followed by the semishady slope. In contrast, the overall
accuracy on the sunny slope is the lowest because of the joint impact of the westerly wind,
monsoon, and solar irradiance, which is 78.83% and 74.03% in S2 and L8, respectively. In
addition, the SCR of aspects was not well-correlated with the reconstruction accuracy of
snow cover in both satellite images.

Table 6. Impact of aspect on the reconstruction accuracy of snow cover.

Aspect (◦)
S2 L8

SCR U O M L SCR U O M L
Unit: Percentage(%)

Flat surface 10.81 81.83 79.96 21.67 18.17 6.18 82.74 87.78 7.10 17.26
Shady slope 6.79 84.95 85.13 14.26 12.05 10.53 82.20 89.41 5.68 17.80

Semishady slope 10.84 77.95 81.86 14.38 22.05 6.54 85.41 84.74 16.57 14.59
Sunny slope 7.56 71.93 78.83 19.37 28.07 3.96 73.72 74.03 25.69 26.28

Semisunny slope 12.72 76.12 79.28 17.22 23.80 11.08 79.61 77.96 22.40 20.39

4.5. Mapping of Snow Cover

In the paper, a total of 168 days of images from Sentinel-2 (133 days) and Landsat 8 (35
days) were collected for an analysis of snow cover changes in the BRB over three hydro-
logical years from September 2019 to August 2022. Among them, 45 days of snow cover
polluted by clouds was reconstructed using the improved SNOWL algorithm, including 39
days of Sentinel-2 and 6 days of Landsat 8. Figure 6 describes the temporal variation curve
of the snow cover ratio (SCR) in the BRB for three hydrological years.
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Figure 6. Variation characteristics of SCR of three hydrological years in the BRB.

In Figure 6, intra-annual and inter-annual variations in SCR are significant, and the
curve fluctuates sharply with time. Generally, the snow cover area gradually increases
from the end of September, and the distribution of snow cover throughout the winter is
relatively widespread. However, the proportion of snow cover gradually diminishes as
time progresses. Starting in spring, the SCR gradually increases and rapidly decreases
after entering summer, even less than 1%. Furthermore, due to cloud interference and the
limited temporal resolution, relying solely on Sentinel-2 images cannot satisfy the demand
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for long-term snow cover monitoring in mountainous regions. The joint use of S2 and L8
greatly improves the mountainous snow cover monitoring ability.

In the 2021–2022 hydrological year, the overall snow cover area is relatively small,
and the changes are more severe. Figure 7 depicts in detail the spatiotemporal distribution
of snow cover in the BRB from September 2021 to August 2022, encompassing a total of
55 days of images. The bolded dates indicate snow cover extracted from cloud-covered
images, while the red dates represent snow cover extracted from Landsat 8 images. The
results suggest that, from December to January of the subsequent year, the snow cover area
is relatively small. And frequent snowfall occurs in February and March, resulting in a
higher proportion of snow cover area. In summer, the area of snow cover is smallest, and
there is almost no snow in the watershed.
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Figure 7. Spatiotemporal variations of snow cover from October 2021 to May 2022.

To further analyze the factors contributing to the fluctuating distribution of snow
cover in Figure 7 mentioned above, the daily average temperature variations over the cor-
responding period in the watershed were obtained from the GEE ERA5-Land Daily dataset.
Figure 8 illustrates a negative correlation between SCR and daily average temperature. SCR
decreases with increasing temperature; otherwise, the opposite is true, which is consistent
with our previous study [12].
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5. Discussion

The pollution of clouds and cloud shadows, coupled with the spectral differences
between different satellite image bands, cause the comprehensive application of S2 and
L8 to accurately monitor time-series snow cover variations to be of great significance in
mountainous areas. Therefore, the following three aspects will be discussed: the advantages
of integrating the two types of data, the inter-annual variation characteristics of snow cover
in three hydrological years, and the limitations of the experiment.

5.1. Advantages of Combining Two Types of Satellite Data

In the Qilian Mountains, snow cover undergoes rapid changes, exhibiting strong
spatiotemporal heterogeneity. In our published literature [12], 42 days of Sentinel-2 images
were obtained to analyze the spatiotemporal distribution features of snow cover from
September 2019 to August 2020. In this study, 11 days of Landsat 8 images were added,
which can more comprehensively describe the time-series variation characteristics of snow
cover. Figure 9 shows that Landsat 8 satellite imagery has increased the observation
density and greatly improved the snow-cover-monitoring capability in mountain areas.
As depicted within the red box in Figure 9, in the absence of Landsat 8 images during
periods, the Sentinel 2 satellite alone would not be able to capture the actual changes in
snow. Therefore, combining S2 and L8 images provides valuable insights for analyzing the
time-series variation characteristics in mountainous snow cover.
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5.2. Inter-Annual Variation Characteristics of Snow Cover in Three Hydrological Years

As is well-known, the distribution of mountainous snow cover has strong spatial
heterogeneity and rapid variations over time. Therefore, combining S2 and L8 images to
reconstruct snow cover under CCSs can greatly improve the monitoring ability of snow
cover variations. As shown in Figure 10, starting from early September, the snow cover area
in BRB gradually increased, reaching its maximum in October; starting from March of the
following year, it rapidly decreased and reached its minimum by mid-August. Comparing
the fluctuation trend of snow cover area from 2019 to 2022, it is found that this is due to the
influence of different periods of large-scale snowfall and the rapid melting of snow cover
in mountainous areas. The snow cover area in BRB showed fluctuating changes within a
year, while there were significant differences in the multi-peak morphology in different
hydrological years. From September 2019 to August 2018, due to the combined influence of
temperature and precipitation, large-scale snow accumulation mainly occurred in winter
and spring. As summer temperatures rise, the snow begins to melt violently, but there
are some periods of large-scale snowfall during this period. In the second hydrological
year, the winter snow cover shows a trend of first increasing and then decreasing, while, in
summer, it gradually decreases due to the influence of temperature. However, the winter
snow cover in the third hydrological year was significantly smaller than in the first two
years. From Figure 10, it can also be observed that there is a negative correlation between
the trend of snow cover area changes and the daily average air temperature in the three
hydrological years; that is, the snow cover area decreases with the increase of temperature.
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5.3. Limitations of Experiments

Although this study can effectively reconstruct snow cover under CCSs and greatly
improve good snow detection capabilities in mountainous areas, it still has some limitations.
First, the SNOWL algorithm does not consider the effects of factors such as solar radiation
and wind on the distribution of snow cover. The intensity of wind can affect the distribution
of snow, and the duration of solar radiation affects the rate of snow melting. Moreover, the
improved cloud shadow detection method still uses a fixed threshold. The brightness and
texture of cloud shadows vary with time and geographic location, and fixed thresholds
often cannot capture this variation. Furthermore, there is a certain time difference between
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the GF-2 used for accuracy verification and the transit times of S2 and L8 satellites. Due to
the rapid changes in snow cover in mountainous areas, comparing the accuracy of GF-2
and S2 or L8 and S2 satellite data obtained on different days will reduce the accuracy and
reliability of snow reconstruction.

In response to the above limitations, the next step of research will consider three
factors: terrain, land-cover types underlying snow cover, and different snow cover periods
to improve the fixed threshold for cloud shadow detection. Meanwhile, since the unmanned
aerial vehicle (UAV) data are not affected by cloud interference and strong flexibility and
maneuverability, they will be used as validation data. Additionally, due to the similar
spectral characteristics between Landsat 9 and Landsat 8, it can also be incorporated into
snow reconstruction applications. Therefore, combining three types of satellite remote-
sensing images, namely, Sentinel-2, Landsat 9, and Landsat 8, will further enhance snow-
cover-monitoring capabilities in mountainous areas.

6. Conclusions

This study uses different cloud detection methods for S2 and L8 and combines the im-
proved Fmask4.0 cloud shadow detection algorithm, Sen2Cor, and our improved SNOWL
algorithm published to reconstruct snow cover under CCSs. Two types of satellite imagery
of 168 days were obtained in three hydrological years, and 45-day images covered by
CCSs were successfully reconstructed. The experimental findings clearly demonstrate that
the improved cloud shadow detection algorithm significantly enhances the accuracy of
cloud shadow identification. Compared with the verification images, both satellite images
can accurately recover snow cover covered by CCSs. The snow cover images of three
hydrological years show significant differences in the spatiotemporal distribution of snow
cover in BRB, with overall fluctuations and different periods of large-scale snowfall.

The specific innovations of this study are as follows: Firstly, the cloud shadow de-
tection algorithm is improved by considering surface coverage types, which significantly
enhances the accuracy of cloud shadow identification. Secondly, for S2 and L8 imagery,
different methods are chosen to reconstruct snow cover under CCSs. Furthermore, an
improved SNOWL algorithm is used to reconstruct snow cover under CCSs by removing
unstable snow cover areas extracted from all S2 and L8 clear-sky images. Therefore, by inte-
grating the above two types of images, snow cover variation information can be captured,
which will greatly improve the ability to monitor the time-series variation in mountainous
snow cover.
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