
Citation: Yang, T.; Zhang, X.; Xu, Q.;

Zhang, S.; Wang, T. An Embedded-

GPU-Based Scheme for Real-Time

Imaging Processing of Unmanned

Aerial Vehicle Borne Video Synthetic

Aperture Radar. Remote Sens. 2024, 16,

191. https://doi.org/10.3390/

rs16010191

Academic Editor: Massimiliano

Pieraccini

Received: 1 December 2023

Revised: 29 December 2023

Accepted: 1 January 2024

Published: 2 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

An Embedded-GPU-Based Scheme for Real-Time Imaging
Processing of Unmanned Aerial Vehicle Borne Video
Synthetic Aperture Radar
Tao Yang 1,* , Xinyu Zhang 1, Qingbo Xu 2, Shuangxi Zhang 3 and Tong Wang 1

1 School of Aerospace Science and Technology, Xidian University, Xi’an 710126, China;
xinyu_z@stu.xidian.edu.cn (X.Z.); wtqxy1314@stu.xidian.edu.cn (T.W.)

2 Guangzhou Institute of Technology, Xidian University, Xi’an 710126, China; qbxu@stu.xidian.edu.cn
3 School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710129, China;

zhangsx@nwpu.edu.cn
* Correspondence: taoyang@mail.xidian.edu.cn

Abstract: The UAV-borne video SAR (ViSAR) imaging system requires miniaturization, low power
consumption, high frame rates, and high-resolution real-time imaging. In order to satisfy the
requirements of real-time imaging processing for the UAV-borne ViSAR under limited memory
and parallel computing resources, this paper proposes a method of embedded GPU-based real-
time imaging processing for the UAV-borne ViSAR. Based on a parallel programming model of the
compute unified device architecture (CUDA), this paper designed a parallel computing method for
range-Doppler (RD) and map drift (MD) algorithms. By utilizing the advantages of the embedded
GPU characterized with parallel computing, we improved the processing speed of real-time ViSAR
imaging. This paper also adopted a unified memory management method, which greatly reduces
data replication and communication latency between the CPU and the GPU. The data processing of
2048 × 2048 points took only 1.215 s on the Jetson AGX Orin platform to form a nine-consecutive-
frame image with a resolution of 0.15 m, with each frame taking only 0.135 s, enabling real-time
imaging at a high frame rate of 5 Hz. In actual testing, continuous mapping can be achieved without
losing the scenes, intuitively obtaining the dynamic observation effects of the area. The processing
results of the measured data have verified the reliability and effectiveness of the proposed scheme,
satisfying the processing requirements for real-time ViSAR imaging.

Keywords: video synthetic aperture radar; high frame rate; embedded GPU; CUDA; real-time imaging

1. Introduction

The conventional synthetic aperture radar (SAR) is capable of performing ground
detection, which possesses the advantages such as full-time, all-weather, and long-range
imaging. Unfortunately, the SAR has certain limitations in detecting moving targets [1–5].
Compared to the conventional SAR, the video SAR (ViSAR) can perform high-frame-
rate imaging and monitoring of the target area, obtaining dynamic observation effects of
the area [6–10]. The unmanned aerial vehicle (UAV)-borne ViSAR has great application
potential [11–13]. This technology integrates the advantages of unmanned flight platforms
and the ViSAR while enabling high-precision high-frame-rate imaging of the target area,
which not only reflects dynamic changes directly in the scene area, but also provides high-
resolution images for resource exploration, terrain exploration, and disaster prediction
and evaluation, etc. The UAV-borne ViSAR system receives a large amount of raw data,
and the system processor has harsh power consumption limitations. This poses severe
requirements for its imaging algorithm flow and the selection of appropriate processing
platforms. Currently, the most commonly used imaging processing platforms include the
digital signal processor (DSP), the field programmable gate array (FPGA), and the graphic

Remote Sens. 2024, 16, 191. https://doi.org/10.3390/rs16010191 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16010191
https://doi.org/10.3390/rs16010191
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-3441-1532
https://doi.org/10.3390/rs16010191
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16010191?type=check_update&version=2

Remote Sens. 2024, 16, 191 2 of 19

processing unit (GPU). Yang et al. used a back projection (BP) algorithm to achieve real-time
imaging processing of the SAR on a DSP hardware processing platform [14]. However,
since the DSP adopts a serial processing method, which is not suitable for high-frame-
rate real-time imaging of the ViSAR. In addition, due to its limited computing resources
and low operating frequency, the DSP processing system is unable to realize high-speed
parallel computing, not to mention satisfying the real-time imaging processing of large
pixel numbers and high frame rates.

The FPGA-based processing system is the most widely used real-time signal processing
platform, which not only performs parallel computing with small power consumption,
but also achieves high data throughput [15,16]. In 2022, Cao et al. proposed an efficient
architecture of an FPGA-based BP algorithm, which accomplished real-time SAR imaging
processing on a single chip [17]. The above experiment adopted the Xilinx XC7VX690T
FPGA platform, which took only 1.1 s for processing an image of 900 × 900 points at
a 200 MHz clock frequency with a maximum resource utilization rate of over 80% and
a system power consumption of 21.073 W. Although the FPGA has been widely used
within the scope of SAR real-time imaging processing owing to its advantages such as
excellent processing performance, low power consumption, high integration, and small
physical dimensions, the development of FPGA still remains challenging along with its
time-consuming development and validation cycle [18].

Despite the fact that the performance of the desktop-level GPU can satisfy the
requirements of processing the ViSAR [19], their physical dimensions and power con-
sumption are not suitable for the field of real-time imaging processing in which the
payload is limited [20–22]. As high-performance computing technology develops, the
computation power of the embedded platform has improved significantly. Compared
with the desktop-level GPU, the embedded GPU not only has advantages of high inte-
gration, small size, low power consumption, low cost, and a short development cycle,
but also solves the communication problem between the CPU and the GPU, satisfying
the requirements of high-performance, low-power, and miniaturization for UAV-borne
ViSAR imaging systems [23–27]. Implementing ViSAR imaging algorithms on the em-
bedded GPU requires optimizing not only the entire imaging algorithm flow, but also
the performances of memory and parallel computing throughout the calculation process,
thereby satisfying the imaging processing requirements of the high frame rate and the
high resolution for the ViSAR [28–30]. In 2022, Tian et al. reported a real-time airborne
SAR imaging method based on an embedded GPU. They installed the Jetson TX2 on a
UAV and processed the raw echo data captured by the UAV in real time. On a single-core
and single-thread Jetson TX2 CPU, accomplishing a complete imaging algorithm took
approximately 2640 s. However, accomplishing the same algorithm took only 193 s
on the GPU, by adopting which the real-time performance and practicality of the SAR
system can be significantly improved [31]. Subsequently, Yang et al. conducted the
experimental tests using a chirp scaling (CS) algorithm for the image processing system
on NVIDIA Jetson Nano, NVIDIA AGX Orin, and NVIDIA GeForce RTX 2060 Max-Q
platforms. The test results of processing 8192 × 8192-point data on the above different
platforms required 5.86 s, 0.395 s, and 0.956 s with the power consumptions of 5 W, 60 W,
and 230 W, respectively [32]. The test results suggested that the embedded GPU platform
exhibits better real-time performance while ensuring that imaging errors are within an
acceptable range.

In this paper, we propose a real-time imaging processing method for the UAV-
borne ViSAR based on an embedded GPU. The proposed method implements the signal
generation and acquisition on an FPGA and accelerates the parallel computing real-
time imaging processing on an embedded GPU after digital down conversion. Based
on the CUDA parallel programming model, a parallel computing method for RD and
MD algorithms is designed. By utilizing the advantages of the embedded GPU of high
memory throughput and parallel computing, the efficiency of real-time ViSAR imaging
has been effectively improved.

Remote Sens. 2024, 16, 191 3 of 19

The key contributions of this paper can be summarized as follows.

(1) In response to the problems of heavy computational duty and high computational
complexity in traditional ViSAR algorithms, we proposed parallel computing methods
for RD and MD algorithms based on the CUDA parallel programming model. By
utilizing the advantages of the embedded GPU characterized with parallel computing,
we improved the processing speed of real-time ViSAR imaging.

(2) We adopted a unified memory management approach which can greatly reduce data
replication and communication latency between the CPU and the GPU. In order to
enhance memory access efficiency, it is essential to achieve the optimal use of both
global and shared memory. When using FFT functions in the algorithm, configuring a
cuFFT plan only once and releasing cuFFT resources uniformly after accomplishing
all Fourier transforms can improve FFT execution efficiency and reduce memory
overhead. Through the above operations, the efficiency of real-time ViSAR imaging
has been further improved.

(3) We proposed a high-frame-rate ViSAR real-time imaging processing system based
on an embedded GPU, which has the characteristics of small size, low power con-
sumption, and high-frame-rate real-time imaging. The robustness and effective-
ness of the proposed system were verified by the measured data processing results
on the Jetson AGX Orin platform, satisfying the requirements of ViSAR real-time
imaging processing.

The remainder of this paper is summarized as follows. Section 2 introduces the
imaging modes and algorithms of ViSAR, to which the motion compensation algorithms
are formulated. Section 3 highlights the implementation and optimization steps of ViSAR
imaging algorithms on an embedded GPU. Section 4 analyzes the experimental results of
the test data. Section 5 discusses the importance of the integrated architecture through the
task execution times of different platforms. Section 6 summarizes conclusions of this paper.

2. Imaging Algorithm of the ViSAR
Imaging Modes of the ViSAR

The azimuth pulses in the ViSAR are divided in a certain way and processed separately
into SAR images. During the process of data collection and real-time imaging, overlapping
may exist amongst scenes in each frame. Assume that under forward side-looking scenarios,
the flight speed of the carrier aircraft is v, the radar wavelength is λ, the radar slant range
is Ra, the antenna beamwidth is β, and the synthetic aperture length is L = Na/PRF · v,
where PRF denotes the pulse repetition frequency, and Na is the number of azimuth pulses.
The imaging mode of the video SAR is shown in Figure 1.

The azimuth resolution of the above imaging system can be expressed as:

ρa =
λ

2L/Ra
=

PRF · λRa

2Nav
(1)

when the imaging processing time required is less than the synthetic aperture time, and
the frame rate of the imaging system is the reciprocal of the synthetic aperture time.
According to Figure 1, when overlapping occurs in ViSAR imaging data, it is equivalent
to re-segmenting each frame of the data, under which circumstance the frame rate of the
system is no longer the reciprocal of the synthetic aperture time. Assuming that the number
of azimuth pulse overlapping between each frame of the imaging data is N1, the number
of azimuth pulses updated each time is Na − N1. If the imaging processing time is much
less than the time required to update Na − N1 azimuth pulses, the real-time imaging frame
rate F of the system can be expressed as:

F =
PRF

(Na − N1)
. (2)

Remote Sens. 2024, 16, 191 4 of 19

Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 20

is much less than the time required to update − 1aN N azimuth pulses, the real-time im-
aging frame rate F of the system can be expressed as:

=
− 1()a

PRFF
N N

. (2)

v

Frame1

Frame2

Frame3
……

Frame1Frame2Frame3Frame n ……

Ground

Image
Video

Frame n

L

β

Figure 1. Imaging mode of the video SAR.

The radar moves along a straight line at a speed of v , and the distance from any
point P in the scene to the coordinate origin along the positive direction is nx . During
the radar beam’s continuous illuminating on point P in the scene, let the slow time be

mt . Assuming that the signal transmitted by the radar is reflected back from the transmit-
ting antenna to point P in the scene, the base frequency signal 1S received by the radar
can be expressed as:

() ()

() ()

 
 = −
 
 
            × − −           

1
1

2

1 1

2 ,

2 , 2 ,
exp exp

ˆ

2ˆ

m
r a m

m m
c

R t R
S a t a t

c

R t R R t R
j t j f t

c c
πγ π

. (3)

In the above Equation (3), c denotes the speed of light, mt denotes the slow time, t̂
denotes the fast time, t denotes the total time, ⋅()ra denotes the range window function
of the radar signal, ⋅()aa denotes the azimuth window function of the radar signal, γ

Figure 1. Imaging mode of the video SAR.

The radar moves along a straight line at a speed of v, and the distance from any point P
in the scene to the coordinate origin along the positive direction is xn. During the radar
beam’s continuous illuminating on point P in the scene, let the slow time be tm. Assuming
that the signal transmitted by the radar is reflected back from the transmitting antenna to
point P in the scene, the base frequency signal S1 received by the radar can be expressed as:

S1 = ar

(
t̂ − 2R(tm ,R1)

c

)
aa(tm)

× exp
(

jπγ
(

t̂ − 2R(tm ,R1)
c

)2
)

exp
(

j2π fc

(
t − 2R(tm ,R1)

c

)) . (3)

In the above Equation (3), c denotes the speed of light, tm denotes the slow time, t̂ denotes
the fast time, t denotes the total time, ar(·) denotes the range window function of the
radar signal, aa(·) denotes the azimuth window function of the radar signal, γ denotes the
frequency rate, and R(tm, R1) denotes the instantaneous slant range that is expressed as:

R(tm, R1) =

√
(R1 cos θ)2 + (R1 sin θ + xn − vtm)

2. (4)

Since the transmitted signal is characterized with high carrier frequency, the radar
system performs differential frequency processing on the echo signal to sample it at a
lower sampling rate in order to alleviate the processing pressure for signal receiving

Remote Sens. 2024, 16, 191 5 of 19

signal systems. Furthermore, because the different processing causes echoes from different
distances to be not time-aligned, it is necessary to conduct deramping with respect to
the output results of the intermediate frequency to align these echoes in time. The two-
dimensional (2D) time-domain signal S2 after deramping is described as:

S2 = rect
(

t̂
Tp

)
aa(tm) exp

(
−j

4πγR3

c
t̂
)

exp
(
−j

4π fc

c
R3

)
, (5)

where fc is the carrier frequency of the signal, rect(·) is the rectangular window function, Tp
is the pulse width of the signal, R2 is the instantaneous slope distance when the radar’s
central beam passes across the central point of the scene, and R3 = R(tm, R1)− R2. Let
the new range frequency variable be f̂r = γt̂, and the equivalent range frequency-domain
azimuth time-domain signal S3 is obtained, which can be expressed by:

S3 = rect

(
f̂r

γTp

)
aa(tm) exp

(
−j

4π(R(tm, R1)− R2)

c

(
f̂r + fc

))
. (6)

A range cell walk correction function H1 is constructed, which is written as:

H1 = exp
(
−j

4πvtm sin θ

c

(
f̂r + fc

))
, (7)

Function H1 is multiplied with the signal S3 to obtain the corrected signal S4, which is
written as:

S4 = rect

(
f̂r

γTp

)
aa(tm) exp

(
−j

4π(R(tm, R1)− R2 + vtm sin θ)

c

(
f̂r + fc

))
. (8)

A quadratic range pulse compression and range cell migration correction function H2 is
constructed, which is written as:

H2 = exp

jπ
2λR2β2

c2
(√

1 − β2
)3 f̂ 2

r

 exp
(

2πR2

c
β2 fr

)
, (9)

Function H2 is multiplied with 2D frequency-domain signal S4, and then quadratic range
pulse compression and range migration correction is performed on the S4. Subsequently,
an inverse fast Fourier transform (IFFT) is performed with respect to the above S4 that is
pulse-compressed and corrected, after which the range-Doppler-domain signal S5 is thus
obtained, which can be expressed as:

S5 ≈ sinc
(

B
(

t̂r − 2(R1−R2+xn sin θ)
c

))
aa(fa) exp

(
−j 4πxn sin θ

c fc

)
× exp

(
−j 2π

v cos θ R1
√

f 2
am − f 2

a

)
exp

(
−j2π fa

xn
v
)

exp(jΦE)
. (10)

The above operations realize range migration correction for the signal. It is known that
the term of theoretical azimuth pulse compression exists in the azimuth phase. However,
the phase error ΦE is mixed into the azimuth phase, which causes defocusing in the
final azimuth-focused image. In addition, the velocity variation of the airborne platform
equipped with the radar during flight also affects the final azimuth resolution, resulting
in the geometric deformation of the final focused image. In order to eliminate the above
geometric deformation of the image caused by the velocity variation of the radar platform,
we construct the azimuth scaling function H3, which is written as:

H3 = exp
(

j
2π

v cos θ
R1

√
f 2
am − f 2

a

)
exp

(
−j

π

k1
f 2
a

)
, (11)

Remote Sens. 2024, 16, 191 6 of 19

In the above Equation (11), k1 is the scaling factor and k1 = −2v2/λR4, where R4 is
the scaling slant range. Then, the azimuth scaling function H3 is multiplied with the
range-Doppler-domain signal S5 to realize geometric micro correction of the image, thereby
obtaining the azimuth-scaling processed signal. An azimuth IFFT is performed with respect
to the above signal, we obtain the 2D time-domain signal S6, which is written as:

S6 ≈ sinc
(

B
(

t̂r − 2(R1−R2+xn sin θ)
c

))
aa(tm)

× exp
(
−j 4πxn sin θ

c fc

)
exp

(
jπk1

(
tm − xn

v
)2

+ jφe

) , (12)

where φe denotes the time-domain form of the phase error ΦE.
The 2D time-domain signal is divided into azimuth-overlapped sub-apertures, and

a map drift (MD) method is conducted for estimating phase errors of each individual
sub-aperture. Then, sub-aperture phase errors are concatenated to obtain the phase error.
Phase error compensation is performed with respect to the phase error estimated by the
sub-aperture MD method to eliminate errors in the signal, and subsequent precise focusing
is realized, thereby obtaining 2D time-domain signal S7 that is phase-error-compensated,
which is written as:

S7 ≈ sinc
(

B
(

t̂r − 2(R1−R2+xn sin θ)
c

))
aa(tm)

× exp
(
−j 4πxn sin θ

c fc

)
exp

(
jπk1

(
tm − xn

v
)2
) . (13)

The azimuth dechirp function H4 is constructed, which is expressed as:

H4 = exp
(
−jπk1tm

2
)

. (14)

The azimuth dechirp function is multiplied with the phase-error-compensated 2D time-
domain signal to realize Doppler-domain focusing, which is expressed as:

S8 ≈ sinc
(

B
(

t̂r − 2(R1−R2+xn sin θ)
c

))
aa(tm) exp

(
−j2πk1

xn
v tm

)
× exp

(
−j 4πxn sin θ

c fc

)
exp

(
jπk1

(xn
v
)2
) (15)

The processing flow of the high-frame-rate ViSAR real-time imaging algorithm is
demonstrated in Figure 2.

However, in order to satisfy the demands of high-frame-rate and high-resolution
real-time imaging, the raw data volume received by unmanned aerial vehicle (UAV) video
synthetic aperture radar (SAR) systems continues to increase, imposing elevated require-
ments on real-time imaging processing platforms. While traditional CPUs exhibit strong
single-core processing capabilities, they have been proven to be insufficient for handling
such massive data volumes. Therefore, the proposed method implements the signal gener-
ation and acquisition on an FPGA and accelerates the parallel computing real-time imaging
processing on an embedded GPU after digital down conversion. Specifically, by utilizing
the CUDA parallel programming model, we devised parallel computation methods for RD
and MD algorithms. A unified memory management approach is employed to eliminate
data copying and communication latency between the CPU and the GPU. The embedded
GPU’s high memory throughput and parallel computing capabilities are fully harnessed,
significantly enhancing the efficiency of real-time video SAR imaging.

Remote Sens. 2024, 16, 191 7 of 19

Remote Sens. 2024, 16, x FOR PEER REVIEW 7 of 20

() ()
  − +    ≈ − −       

     × −        

8
1 2

1

2

1

2 sin
exp 2

4 sin
exp

ˆ

exp

n n
r a m m

n n
c

R R x x
S sinc B t a t j k t

c v

x x
j f j k

c v

θ
π

π θ
π

. (15)

The processing flow of the high-frame-rate ViSAR real-time imaging algorithm is
demonstrated in Figure 2.

However, in order to satisfy the demands of high-frame-rate and high-resolution
real-time imaging, the raw data volume received by unmanned aerial vehicle (UAV) video
synthetic aperture radar (SAR) systems continues to increase, imposing elevated require-
ments on real-time imaging processing platforms. While traditional CPUs exhibit strong
single-core processing capabilities, they have been proven to be insufficient for handling
such massive data volumes. Therefore, the proposed method implements the signal gen-
eration and acquisition on an FPGA and accelerates the parallel computing real-time im-
aging processing on an embedded GPU after digital down conversion. Specifically, by
utilizing the CUDA parallel programming model, we devised parallel computation meth-
ods for RD and MD algorithms. A unified memory management approach is employed to
eliminate data copying and communication latency between the CPU and the GPU. The
embedded GPU’s high memory throughput and parallel computing capabilities are fully
harnessed, significantly enhancing the efficiency of real-time video SAR imaging.

One frame of
raw data

Range FFT

Range IFFT

Pseudo two-dimensional
time-domain data

Inertial
navigation error

compensation

Azimuth FFT
Quadratic range pulse

compression and
range cell migration correction

function
Range IFFT

Azimuth IFFT

Azimuth
overlapping

sub-apertures
segmentation

Azimuth sub-block
traversal completed

No

MD Error
estimation

Yes

Phase error splicingError
compensation

Dechirp
function

Azimuth FFT

One frame image

MD Error
Estimation

Data
Preprocessing

RDA

Deramping

Deramping

Azimuth scaling
function

Figure 2. Flowchart of the high-frame-rate ViSAR real-time imaging algorithm.

Figure 2. Flowchart of the high-frame-rate ViSAR real-time imaging algorithm.

3. Implementing and Optimizing the Embedded-GPU-Based ViSAR
3.1. CUDA-Implemented RD Algorithm

Figure 3 shows the implementation process of the range-Doppler (RD) algorithm on
an embedded GPU, with the specific steps are presented as follows.

Remote Sens. 2024, 16, x FOR PEER REVIEW 8 of 20

3. Implementing and Optimizing the Embedded-GPU-Based ViSAR
3.1. CUDA-Implemented RD Algorithm

Figure 3 shows the implementation process of the range-Doppler (RD) algorithm on
an embedded GPU, with the specific steps are presented as follows.

Range
FFT

(Truncate)

Range walk
Correction

Range
FFT

Matrix
Transpose

Azimuth
FFT

Quadratic range pulse
Compression function

Matrix
Transpose

Range
IFFT

Matrix
Transpose

Azimuth
IFFT

Azimuth
Compensation factor

Range direction
Deramping

Range cell
Migration function

Figure 3. Flowchart of implementing the range-Doppler algorithm on an embedded GPU.

Step 1. The original data are initially stored consecutively in the range direction in an
embedded GPU. Firstly, perform a range fast Fourier transform on the data, and call
cuFFT library function in the compute unified device architecture (CUDA) to conduct a
one-dimensional (1D) range Fourier transform on the original data. Calling the cuFFT li-
brary function requires configuring a cuFFT plan. After accomplishing the fast Fourier
transform (FFT) operations, the cuFFT plan must be freed. Since the configuring and free-
ing of the cuFFT plan require calling the cuFFT library function repeatedly throughout
the entire execution process of the RD algorithm, it consumes a great amount of time.
Given the above situation, configuring only the first call to the cuFFT library function and
then freeing it after the last call can save lots of time.

Step 2. Set the first kernel function. Then, parallel compute the data on which a range-
direction FFT is performed and the function on which range-direction deramping is con-
ducted, and then multiply the two of them. Truncate the data processed by the range-
direction deramping to reduce the number of computation points to minimize computa-
tional complexity, thereby improving computational efficiency. After the above opera-
tions, perform a range-direction FFT with respect to the truncated data.

Step 3. Set the second kernel function, and then parallel compute the multiplication
of the data on which the range walk correction is conducted, the inertial navigation com-
pensation factor, and the data on which the range-direction FFT is performed. Then, set
the matrix transposing kernel function to transpose the output data of the second kernel
function arranged consecutively in the range direction to the data arranged successively
in the azimuth direction. The purpose of setting the transposed matrix is to ensure that
the imaging data are consecutively read during the azimuth-direction processing, so the
memory access in kernel functions can be merged to increase the memory access band-
width while reducing access latency. Meanwhile, the matrix-transposing kernel functions
utilize shared memory to optimize global memory access, improving the execution effi-
ciency of kernel functions.

Figure 3. Flowchart of implementing the range-Doppler algorithm on an embedded GPU.

Remote Sens. 2024, 16, 191 8 of 19

Step 1. The original data are initially stored consecutively in the range direction in
an embedded GPU. Firstly, perform a range fast Fourier transform on the data, and call
cuFFT library function in the compute unified device architecture (CUDA) to conduct a
one-dimensional (1D) range Fourier transform on the original data. Calling the cuFFT
library function requires configuring a cuFFT plan. After accomplishing the fast Fourier
transform (FFT) operations, the cuFFT plan must be freed. Since the configuring and freeing
of the cuFFT plan require calling the cuFFT library function repeatedly throughout the
entire execution process of the RD algorithm, it consumes a great amount of time. Given
the above situation, configuring only the first call to the cuFFT library function and then
freeing it after the last call can save lots of time.

Step 2. Set the first kernel function. Then, parallel compute the data on which a
range-direction FFT is performed and the function on which range-direction deramping
is conducted, and then multiply the two of them. Truncate the data processed by the
range-direction deramping to reduce the number of computation points to minimize
computational complexity, thereby improving computational efficiency. After the above
operations, perform a range-direction FFT with respect to the truncated data.

Step 3. Set the second kernel function, and then parallel compute the multiplication
of the data on which the range walk correction is conducted, the inertial navigation com-
pensation factor, and the data on which the range-direction FFT is performed. Then, set
the matrix transposing kernel function to transpose the output data of the second kernel
function arranged consecutively in the range direction to the data arranged successively
in the azimuth direction. The purpose of setting the transposed matrix is to ensure that
the imaging data are consecutively read during the azimuth-direction processing, so the
memory access in kernel functions can be merged to increase the memory access bandwidth
while reducing access latency. Meanwhile, the matrix-transposing kernel functions utilize
shared memory to optimize global memory access, improving the execution efficiency of
kernel functions.

Step 4. Perform azimuth-direction FFT operations on the transposed data, set the third
kernel function, and then parallel compute the multiplication of the quadratic-range pulse
compression function, the range cell migration correction function, and the data on which
an FFT is performed in the azimuth direction.

Step 5. Call the matrix-transposing kernel function to transpose the resultant data
of the third kernel function, and then, transpose the data arranged consecutively in the
azimuth direction to those arranged consecutively in the range direction.

Step 6. Perform an range-direction IFFT with respect to the transposed data. Set the
fourth kernel function, and then parallel compute the multiplication of the azimuthal pulse
compression function and the data on which an IFFT is performed, after which phase
compensation is conducted. Subsequently, the matrix-transposing kernel function is called
to transpose the original data that are stored in the range direction into those stored in
the azimuth direction, and conduct an IFFT in the azimuth direction with respect to the
transposed data, thereby accomplishing the imaging process of the RD algorithm.

3.2. CUDA-Implemented MD Algorithm

After the original data are processed by the RD algorithm, they enter into the flow of
the MD algorithm, with the specific flow demonstrated in Figure 4.

Remote Sens. 2024, 16, x FOR PEER REVIEW 9 of 20

Step 4. Perform azimuth-direction FFT operations on the transposed data, set the
third kernel function, and then parallel compute the multiplication of the quadratic-range
pulse compression function, the range cell migration correction function, and the data on
which an FFT is performed in the azimuth direction.

Step 5. Call the matrix-transposing kernel function to transpose the resultant data of
the third kernel function, and then, transpose the data arranged consecutively in the azi-
muth direction to those arranged consecutively in the range direction.

Step 6. Perform an range-direction IFFT with respect to the transposed data. Set the
fourth kernel function, and then parallel compute the multiplication of the azimuthal
pulse compression function and the data on which an IFFT is performed, after which
phase compensation is conducted. Subsequently, the matrix-transposing kernel function
is called to transpose the original data that are stored in the range direction into those
stored in the azimuth direction, and conduct an IFFT in the azimuth direction with respect
to the transposed data, thereby accomplishing the imaging process of the RD algorithm.

3.2. CUDA-Implemented MD Algorithm
After the original data are processed by the RD algorithm, they enter into the flow of

the MD algorithm, with the specific flow demonstrated in Figure 4.

Data
Truncate

Azimuth
Deramping

Preliminary
Imaging

Data

Motion
error

Estimation

Imaging
Results

Figure 4. Flowchart of the map drift algorithm.

Firstly, the preliminary imaging results are truncated to minimize computational
complexity and improve computational efficiency without trading off accuracy. Then, es-
timate the motion error, and compensate for the motion error of the captured preliminary
imaging results. Finally, after deramping in the azimuth direction, the final imaging re-
sults are obtained, with the flowchart of error estimation demonstrated in Figure 5.

Figure 4. Flowchart of the map drift algorithm.

Remote Sens. 2024, 16, 191 9 of 19

Firstly, the preliminary imaging results are truncated to minimize computational
complexity and improve computational efficiency without trading off accuracy. Then,
estimate the motion error, and compensate for the motion error of the captured preliminary
imaging results. Finally, after deramping in the azimuth direction, the final imaging results
are obtained, with the flowchart of error estimation demonstrated in Figure 5.

Remote Sens. 2024, 16, x FOR PEER REVIEW 10 of 20

Azimuth overlapping
Sub-apertures
Segmentation

Azimuth sub-block
Dechirp processing

Two second sub-blocks
zero-padded in azimuth

direction

Sub-block divided two
Second sub-blocks

Second sub-blocks
Azimuth FFT

Take the frequency-
domain amplitude

Azimuth FFT

Second sub-blocks
Dot product

Azimuth IFFT

Take azimuth amplitude and
Sum along the range

direction

Error
Approximation

Output error
Fitting results

Obtain motion
error for full

aperture
No

Yes

Figure 5. Flowchart of error estimation.

The specific implementing steps of the MD algorithm on an embedded GPU are for-
mulated as follows.

Step 1. Truncate preliminary imaging results. This helps minimizing computational
complexity while improving computational efficiency without trading off accuracy. Then,
estimate the motion error according to the original data, as shown in Figure 6.

Step 2. The truncated data are subjected to azimuth block processing, with the data
being partially overlapped in the azimuthal direction. The divided minimum unit of the
resultant block is an even power of two. Then, set the fifth kernel function to perform
deramping in the azimuth direction on each block of data.

Step 3. Divide the deramped data into two secondary sub-blocks of the same size,
and then perform an FFT in the azimuth direction on the two blocks after accomplishing
zero padding in the azimuth direction.

Step 4. Take the frequency-domain amplitude in the azimuth direction of the two
secondary sub-block data on which an FFT is performed, i.e., take absolute values of the
data on which the FFT is conducted. Then, perform an FFT in the azimuth direction on
the two secondary sub-block data after taking absolute values.

Step 5. Set the sixth kernel function, parallel compute the multiplication of the two
secondary sub-block data on which an FFT is conducted in the azimuth direction, and
then, perform an IFFT in the azimuth direction with respect to the multiplication result.

Step 6. Set the seventh kernel function, parallel compute the azimuth amplitude of
the data on which an IFFT is performed, and then, perform the summation of the data in
the range direction.

Step 7. Set the eighth kernel function, parallel compute the results of error fitting es-
timation. Repeat steps 3 to 7, until the motion errors of full aperture are obtained.

Step 8. Set the ninth kernel function and parallel compute the multiplication of the
motion error and the preliminary imaging result to compensate the motion error.

Figure 5. Flowchart of error estimation.

The specific implementing steps of the MD algorithm on an embedded GPU are
formulated as follows.

Step 1. Truncate preliminary imaging results. This helps minimizing computational
complexity while improving computational efficiency without trading off accuracy. Then,
estimate the motion error according to the original data, as shown in Figure 6.

Step 2. The truncated data are subjected to azimuth block processing, with the data
being partially overlapped in the azimuthal direction. The divided minimum unit of the
resultant block is an even power of two. Then, set the fifth kernel function to perform
deramping in the azimuth direction on each block of data.

Step 3. Divide the deramped data into two secondary sub-blocks of the same size, and
then perform an FFT in the azimuth direction on the two blocks after accomplishing zero
padding in the azimuth direction.

Step 4. Take the frequency-domain amplitude in the azimuth direction of the two
secondary sub-block data on which an FFT is performed, i.e., take absolute values of the
data on which the FFT is conducted. Then, perform an FFT in the azimuth direction on the
two secondary sub-block data after taking absolute values.

Step 5. Set the sixth kernel function, parallel compute the multiplication of the two
secondary sub-block data on which an FFT is conducted in the azimuth direction, and then,
perform an IFFT in the azimuth direction with respect to the multiplication result.

Remote Sens. 2024, 16, 191 10 of 19

Step 6. Set the seventh kernel function, parallel compute the azimuth amplitude of the
data on which an IFFT is performed, and then, perform the summation of the data in the
range direction.

Step 7. Set the eighth kernel function, parallel compute the results of error fitting
estimation. Repeat steps 3 to 7, until the motion errors of full aperture are obtained.

Step 8. Set the ninth kernel function and parallel compute the multiplication of the
motion error and the preliminary imaging result to compensate the motion error.

Step 9. Set the tenth kernel function, and parallel compute the multiplication of the
data for which the motion error is compensated and the deramping function in the azimuth
direction, thereby obtaining the final imaging result.

3.3. Optimizing ViSAR Imaging

Due to the linear storage characteristics of the original SAR data and the processed
intermediate result data in computer memory, we adopted the method of matrix transposi-
tion. This suggests that during data processing in the azimuth direction, the data are stored
in the azimuth direction, while during that in the range direction, the data are stored in the
range direction, thereby improving the efficiency of the processor in reading and writing
data in memory.

Considering the characteristics of the embedded GPU platform, this paper adopted
the following optimization approaches.

(1) Unified memory management. It has been acknowledged that the GPU is not an
independent computing platform; instead, it must collaborate with the CPU to form a
heterogeneous computing architecture. As shown in Figure 6a, conventional heteroge-
neous computing architectures of a GPU and a CPU are generally discrete, where the
GPU and the CPU have their own independent memory. They are connected through
peripheral component interconnect express (PCIe), and data need to be transmitted
through a PCIe bus. Conversely, the heterogeneous computing architecture of an
embedded GPU is integrated, where a CPU and a GPU are integrated on a single
chip and share main memory on physical addresses. As shown in Figure 6b, in the
embedded GPU, the CPU and the GPU do not have independent memory, thus not
requiring data transmission through a PCIe bus.

Remote Sens. 2024, 16, x FOR PEER REVIEW 11 of 20

Step 9. Set the tenth kernel function, and parallel compute the multiplication of the

data for which the motion error is compensated and the deramping function in the azi-

muth direction, thereby obtaining the final imaging result.

3.3. Optimizing ViSAR Imaging

Due to the linear storage characteristics of the original SAR data and the processed

intermediate result data in computer memory, we adopted the method of matrix transpo-

sition. This suggests that during data processing in the azimuth direction, the data are

stored in the azimuth direction, while during that in the range direction, the data are

stored in the range direction, thereby improving the efficiency of the processor in reading

and writing data in memory.

Considering the characteristics of the embedded GPU platform, this paper adopted

the following optimization approaches.

(1) Unified memory management. It has been acknowledged that the GPU is not an in-

dependent computing platform; instead, it must collaborate with the CPU to form a

heterogeneous computing architecture. As shown in Figure 6a, conventional hetero-

geneous computing architectures of a GPU and a CPU are generally discrete, where

the GPU and the CPU have their own independent memory. They are connected

through peripheral component interconnect express (PCIe), and data need to be

transmitted through a PCIe bus. Conversely, the heterogeneous computing architec-

ture of an embedded GPU is integrated, where a CPU and a GPU are integrated on a

single chip and share main memory on physical addresses. As shown in Figure 6b,

in the embedded GPU, the CPU and the GPU do not have independent memory, thus

not requiring data transmission through a PCIe bus.

dGPU（discrete

GPU）
CPU

PCIe

DRAM DRAM

CPU

iGPU

（integrated

GPU）

SoC DRAM

(a) (b)

Figure 6. System architecture of a heterogeneous computer: (a) discrete architecture; (b) integrated

architecture.

The data transmission method used by the conventional discrete architecture of the

“CPU plus GPU” heterogeneous platform is to reserve some memory space in the CPU

and the GPU separately. Specifically, data are first read into the CPU and then copied from

the CPU into the GPU for subsequent processing. After completing data processing, the

data are then copied from the GPU to the CPU. Since data transmission is affected by the

bandwidth of the PCIe bus, this physical bottleneck can hardly be overcome. In addition,

when the amount of data is tremendous, transmitting data is quite time-consuming, which

severely degrades the algorithm performance. For the embedded GPU, due to the fact that

the CPU and the GPU share the same physical memory, adopting this method for trans-

mitting data is rendered a meaningless copy in memory, seriously wasting the memory

resources of the embedded GPU and greatly limiting the amount of data that the embed-

ded GPU can process.

In response to the above problems, considering the integrated architecture of the em-

bedded GPU, this paper adopts the unified memory method for memory management.

This approach defines a managed memory space where allocated space can be accessed

on both the CPU and the GPU using the same memory address (i.e., pointer). The unified

memory provides a “unified data pointer” model, which is similar to zero-copy memory

in concept. Regardless of adopting unified memory or zero-copy memory in the

Figure 6. System architecture of a heterogeneous computer: (a) discrete architecture; (b) integrated
architecture.

The data transmission method used by the conventional discrete architecture of the
“CPU plus GPU” heterogeneous platform is to reserve some memory space in the CPU
and the GPU separately. Specifically, data are first read into the CPU and then copied from
the CPU into the GPU for subsequent processing. After completing data processing, the
data are then copied from the GPU to the CPU. Since data transmission is affected by the
bandwidth of the PCIe bus, this physical bottleneck can hardly be overcome. In addition,
when the amount of data is tremendous, transmitting data is quite time-consuming, which
severely degrades the algorithm performance. For the embedded GPU, due to the fact
that the CPU and the GPU share the same physical memory, adopting this method for
transmitting data is rendered a meaningless copy in memory, seriously wasting the memory

Remote Sens. 2024, 16, 191 11 of 19

resources of the embedded GPU and greatly limiting the amount of data that the embedded
GPU can process.

In response to the above problems, considering the integrated architecture of the
embedded GPU, this paper adopts the unified memory method for memory management.
This approach defines a managed memory space where allocated space can be accessed
on both the CPU and the GPU using the same memory address (i.e., pointer). The unified
memory provides a “unified data pointer” model, which is similar to zero-copy memory in
concept. Regardless of adopting unified memory or zero-copy memory in the embedded
GPU, neither will additional space in memory be occupied, nor will memory copy happen
between the CPU and the GPU. While using zero-copy memory can save memory space
and reduce data-copying time, it disables caching and may potentially cause a performance
degradation. In contrast, adopting unified memory not only avoids redundant memory
reservation and data transmission, but also prevents the performance degradation caused
by disabling the cache, thereby effectively saving the memory space of the embedded
GPU. In addition, adopting unified memory simplifies the program code and improves
its maintainability.

(2) Aligned and pinned memory access. Global memory is the largest and most commonly
used memory in the GPU, and most of the GPU applications are limited to memory
bandwidth. Therefore, maximizing the utilization of global memory bandwidth is the
key to optimizing kernel function performance. Using aligned and pinned memory
access to the largest extent can maximize the efficiency of memory access and achieve
optimal performance when reading and writing data. The former refers to the fact
that the first address of a memory transaction is an even multiple of the cache line size
used for transaction services (32 bytes of L2 cache or 128 bytes of L1 cache). The latter
refers to all threads in a thread warp accessing a contiguous block of threads. It can
be observed from Figure 7 that the aligned and pinned memory access only requires
one data transfer to complete data access.

Remote Sens. 2024, 16, x FOR PEER REVIEW 12 of 20

embedded GPU, neither will additional space in memory be occupied, nor will memory
copy happen between the CPU and the GPU. While using zero-copy memory can save
memory space and reduce data-copying time, it disables caching and may potentially
cause a performance degradation. In contrast, adopting unified memory not only avoids
redundant memory reservation and data transmission, but also prevents the performance
degradation caused by disabling the cache, thereby effectively saving the memory space
of the embedded GPU. In addition, adopting unified memory simplifies the program code
and improves its maintainability.
(2) Aligned and pinned memory access. Global memory is the largest and most com-

monly used memory in the GPU, and most of the GPU applications are limited to
memory bandwidth. Therefore, maximizing the utilization of global memory band-
width is the key to optimizing kernel function performance. Using aligned and
pinned memory access to the largest extent can maximize the efficiency of memory
access and achieve optimal performance when reading and writing data. The former
refers to the fact that the first address of a memory transaction is an even multiple of
the cache line size used for transaction services (32 bytes of L2 cache or 128 bytes of
L1 cache). The latter refers to all threads in a thread warp accessing a contiguous
block of threads. It can be observed from Figure 7 that the aligned and pinned
memory access only requires one data transfer to complete data access.

memory address 128 160 192 224 256

thread ID 0 31
Figure 7. Aligned and pinned memory access.

Figure 8 demonstrates the schematic diagram of unaligned and unpinned memory
access, in which multiple data transfers are required to complete data access. During this
process, most of the bytes obtained are not used, thus wasting bandwidth and affecting
the speed of accessing GPU memory. Therefore, accessing global memory must maximize
the use of aligned and pinned memory access to effectively mitigate performance degra-
dation caused by memory access.

memory address 128 160 192 224 256

thread ID 0 31
Figure 8. Unaligned and unpinned memory access.

(3) Shared memory. Shared memory is one of the important types of memory space for
the GPU, which also functions as a critical tool for optimizing CUDA programs. The
two key attributes to measuring the optimization of memory performance is the de-
lay and bandwidth. Compared to global memory, shared memory has a latency re-
duction of approximately 20 to 30 times and a bandwidth increase of approximately
10 times. Therefore, it can be used to prevent global memory latency and bandwidth
from being degraded on memory performance. When each thread block starts exe-
cution, certain amounts of shared memory are allocated and the address space of this
shared memory is shared by all threads in the thread block. Accessing shared
memory can be categorized into the following three modes:
(a) Parallel access: accessing multiple banks from multiple addresses.

Figure 7. Aligned and pinned memory access.

Figure 8 demonstrates the schematic diagram of unaligned and unpinned memory
access, in which multiple data transfers are required to complete data access. During this
process, most of the bytes obtained are not used, thus wasting bandwidth and affecting the
speed of accessing GPU memory. Therefore, accessing global memory must maximize the
use of aligned and pinned memory access to effectively mitigate performance degradation
caused by memory access.

Remote Sens. 2024, 16, x FOR PEER REVIEW 12 of 20

embedded GPU, neither will additional space in memory be occupied, nor will memory
copy happen between the CPU and the GPU. While using zero-copy memory can save
memory space and reduce data-copying time, it disables caching and may potentially
cause a performance degradation. In contrast, adopting unified memory not only avoids
redundant memory reservation and data transmission, but also prevents the performance
degradation caused by disabling the cache, thereby effectively saving the memory space
of the embedded GPU. In addition, adopting unified memory simplifies the program code
and improves its maintainability.
(2) Aligned and pinned memory access. Global memory is the largest and most com-

monly used memory in the GPU, and most of the GPU applications are limited to
memory bandwidth. Therefore, maximizing the utilization of global memory band-
width is the key to optimizing kernel function performance. Using aligned and
pinned memory access to the largest extent can maximize the efficiency of memory
access and achieve optimal performance when reading and writing data. The former
refers to the fact that the first address of a memory transaction is an even multiple of
the cache line size used for transaction services (32 bytes of L2 cache or 128 bytes of
L1 cache). The latter refers to all threads in a thread warp accessing a contiguous
block of threads. It can be observed from Figure 7 that the aligned and pinned
memory access only requires one data transfer to complete data access.

memory address 128 160 192 224 256

thread ID 0 31
Figure 7. Aligned and pinned memory access.

Figure 8 demonstrates the schematic diagram of unaligned and unpinned memory
access, in which multiple data transfers are required to complete data access. During this
process, most of the bytes obtained are not used, thus wasting bandwidth and affecting
the speed of accessing GPU memory. Therefore, accessing global memory must maximize
the use of aligned and pinned memory access to effectively mitigate performance degra-
dation caused by memory access.

memory address 128 160 192 224 256

thread ID 0 31
Figure 8. Unaligned and unpinned memory access.

(3) Shared memory. Shared memory is one of the important types of memory space for
the GPU, which also functions as a critical tool for optimizing CUDA programs. The
two key attributes to measuring the optimization of memory performance is the de-
lay and bandwidth. Compared to global memory, shared memory has a latency re-
duction of approximately 20 to 30 times and a bandwidth increase of approximately
10 times. Therefore, it can be used to prevent global memory latency and bandwidth
from being degraded on memory performance. When each thread block starts exe-
cution, certain amounts of shared memory are allocated and the address space of this
shared memory is shared by all threads in the thread block. Accessing shared
memory can be categorized into the following three modes:
(a) Parallel access: accessing multiple banks from multiple addresses.

Figure 8. Unaligned and unpinned memory access.

(3) Shared memory. Shared memory is one of the important types of memory space for
the GPU, which also functions as a critical tool for optimizing CUDA programs. The
two key attributes to measuring the optimization of memory performance is the delay

Remote Sens. 2024, 16, 191 12 of 19

and bandwidth. Compared to global memory, shared memory has a latency reduction
of approximately 20 to 30 times and a bandwidth increase of approximately 10 times.
Therefore, it can be used to prevent global memory latency and bandwidth from
being degraded on memory performance. When each thread block starts execution,
certain amounts of shared memory are allocated and the address space of this shared
memory is shared by all threads in the thread block. Accessing shared memory can
be categorized into the following three modes:

(a) Parallel access: accessing multiple banks from multiple addresses.
(b) Broadcast access: a single address reads a single bank.
(c) Serial access: multiple addresses access the same bank.

In the parallel access mode, accessing shared memory can be as fast as registers. In
the broadcast access mode, although the utilization of bandwidth is low, the accessing can
also be as fast as registers. In the serial access mode, bank conflict will occur, if multiple
addresses accessed belong to the same bank, under which circumstance requests have to
be made in a serial manner. As a result, the time required to satisfy these accesses will
greatly increase. Avoiding bank conflict must be ensured when using shared memory.
Under certain scenarios where parallel and broadcast access are not possible, memory
filling methods shall be adopted to avoid the conflict. As for both RD and MD algorithms,
matrix transposition and array multiplication can effectively utilize shared memory in
kernel functions, thereby optimizing memory access.

(4) FFT operation. In RD and MD algorithms, multiple FFT/IFFT operations need to be
executed to accomplish compression in the azimuth direction and the range direction.
Based on CUDA implementation, the cuFFT library provides highly optimized Fourier
transforms. Using the cuFFT library for FTs not only improves the computation speed,
but also saves the development time of algorithms. The configuration of the cuFFT
library is accomplished through an FFT plan, which defines a single transformation
operation to be performed. When calling the cuFFT library, a plan is configured first.
The cuFFT library uses the plan to obtain memory allocation, memory transfer, and
kernel startup to execute transformation requests. After FT operations are completed,
cuFFT resources need to be released.

Frequently configuring cuFFT plans is time-consuming. If the cuFFT plan is recon-
figured and then released every time when it is used for FTs, the execution efficiency will
decrease. Therefore, it is reasonable to configure a cuFFT plan for only one time and then
uniformly release cuFFT resources after all FT operations are completed. Subsequently, pass
the same address to the input and output parameters each time to conduct FFT operations,
thereby improving the execution efficiency of FFTs while reducing memory overhead. Note
that the data obtained from accomplishing IFFTs using the cuFFT library are not normalized.
Therefore, to ensure the correctness of the obtained data, the data must be divided by the
number of FT points after conducting IFFTs.

In summary, the optimization of video SAR imaging algorithms in this paper mainly
includes the following points:

(1) The unified memory approach is used for memory management. The advantage of
this approach lies in the fact that allocated space can be accessed using the same
memory address (i.e., pointers) on both the CPU and the GPU, thereby avoiding
the need for occupying additional space in memory and performing data copying
between the CPU and the GPU.

(2) In order to maximize memory access efficiency, we should fully leverage the global
memory bandwidth. When accessing memory, it is advisable to use aligned memory
and pinned memory to achieve the optimal performance.

(3) Shared memory is reasonably used. Shared memory, compared to global memory,
exhibits lower latency (approximately 20–30 times lower) and higher bandwidth
(approximately 10 times higher). Therefore, in range-doppler (RD) and multi-look

Remote Sens. 2024, 16, 191 13 of 19

processing (MD) algorithms, operations involving matrix transposition and array
multiplication can be optimized using shared memory within the kernel function to
enhance memory access.

(4) When using FFT functions in the algorithm, configuring a cuFFT plan only once and
releasing cuFFT resources uniformly after accomplishing all Fourier transforms can
improve FFT execution efficiency and reduce memory overhead.

4. Experimental Results and Analysis

In order to verify the processing performance of ViSAR imaging of the embedded
GPU, we conducted real-time ViSAR imaging processing on the embedded GPU using
measured data. The platform used for the GPU was the Jetson AGX Orin. The architecture
of the embedded GPU ViSAR high-frame-rate imaging system is shown in Figure 9.

Remote Sens. 2024, 16, x FOR PEER REVIEW 14 of 20

4. Experimental Results and Analysis

In order to verify the processing performance of ViSAR imaging of the embedded

GPU, we conducted real-time ViSAR imaging processing on the embedded GPU using

measured data. The platform used for the GPU was the Jetson AGX Orin. The architecture

of the embedded GPU ViSAR high-frame-rate imaging system is shown in Figure 9.

Figure 9. The embedded GPU ViSAR high-frame-rate imaging system.

The system included a radar signal acquisition module, an embedded GPU, and an

optical fiber-to-PCIe (OTP) module. The radar signal acquisition module was responsible

for signal generation and acquisition. After digital down conversion, the real-time imag-

ing processing part that could be calculated in parallel was sent to a data-processing mod-

ule. The data-processing module included the embedded GPU and the OTP module. The

embedded GPU and the OTP module were interconnected via a PCIe bus. The data be-

tween the raw data delivery module and the OTP module were transmitted through an

optical fiber.

A comprehensive analysis was performed, which took into account the atmospheric

attenuation chart shown in Figure 10 and considered the variations in signal transmission

strength under different conditions.

Figure 10. Atmospheric attenuation map.

Radar Signal

Acquisition module

Embedded GPU

Optical fiber

OTP Module

1×4 PCIe Gen2

Figure 9. The embedded GPU ViSAR high-frame-rate imaging system.

The system included a radar signal acquisition module, an embedded GPU, and an
optical fiber-to-PCIe (OTP) module. The radar signal acquisition module was responsible
for signal generation and acquisition. After digital down conversion, the real-time imaging
processing part that could be calculated in parallel was sent to a data-processing module.
The data-processing module included the embedded GPU and the OTP module. The
embedded GPU and the OTP module were interconnected via a PCIe bus. The data
between the raw data delivery module and the OTP module were transmitted through an
optical fiber.

A comprehensive analysis was performed, which took into account the atmospheric
attenuation chart shown in Figure 10 and considered the variations in signal transmission
strength under different conditions.

Based on the millimeter-wave radar’s capability to operate in all-weather and all-day
conditions, unaffected by adverse weather conditions, and recognizing its advantages
in precision, stability, sensitivity, and interference resistance, we selected the 94 GHz
millimeter-wave radar band. We performed data collection in real-world environments
to ensure the practical feasibility of our research. During the data processing phase, we
exported radar data to the embedded GPU at an echo rate through a data recorder. The
design of this process aimed to simulate real-time processing on board, allowing us to
conduct effective performance evaluation under conditions that closely resembled practical
application scenarios. The embedded GPU platform used in this paper was the Jetson AGX
Orin. For comparative analysis, experiments were also conducted on the Jetson Nano, the
Jetson TX2, and the RTX 2060 Max-Q platforms. Table 1 lists the hardware parameters for
all experimental platforms.

Remote Sens. 2024, 16, 191 14 of 19

Remote Sens. 2024, 16, x FOR PEER REVIEW 14 of 20

4. Experimental Results and Analysis
In order to verify the processing performance of ViSAR imaging of the embedded

GPU, we conducted real-time ViSAR imaging processing on the embedded GPU using
measured data. The platform used for the GPU was the Jetson AGX Orin. The architecture
of the embedded GPU ViSAR high-frame-rate imaging system is shown in Figure 9.

Figure 9. The embedded GPU ViSAR high-frame-rate imaging system.

The system included a radar signal acquisition module, an embedded GPU, and an
optical fiber-to-PCIe (OTP) module. The radar signal acquisition module was responsible
for signal generation and acquisition. After digital down conversion, the real-time imag-
ing processing part that could be calculated in parallel was sent to a data-processing mod-
ule. The data-processing module included the embedded GPU and the OTP module. The
embedded GPU and the OTP module were interconnected via a PCIe bus. The data be-
tween the raw data delivery module and the OTP module were transmitted through an
optical fiber.

A comprehensive analysis was performed, which took into account the atmospheric
attenuation chart shown in Figure 10 and considered the variations in signal transmission
strength under different conditions.

Figure 10. Atmospheric attenuation map. Figure 10. Atmospheric attenuation map.

Table 1. Hardware system parameters of the experimental platforms.

Specification Jetson AGX Orin Jetson Nano Jetson TX2 RTX 2060 Max-Q

GPU 2048-core
NVIDIA Ampere

128-core
NVIDIA Maxwell

256-core
NVIDIA Pascal 1920-core NVIDIA Turing

CPU 12-core ARM
A78AE@2.2 GHz

4-core ARM
A57@1.43 GHz

2-core Denver@2.0 GHz
4-core ARM A57@2.0 GHz

8-core
Intel i7-10875H@2.30 GHz

Memory 32 GB 256-bitLPDDR5
204.8 GB/s 4 GB 64-bit LPDDR4 25.6 GB/s 8 GB 128-bit LPDDR4 59.7 GB/s 6 GB

192-bit GDDR6 264.0 GB/s

GPU
Frequency 1.3 GHz 922 MHz 1.3 GHz 1185 MHz

Power
consumption 60 W 5 W 15 W <230 W

Figure 11 shows the nine-consecutive-frame imaging results of the ViSAR obtained
by conducting the method of high-frame-rate ViSAR real-time imaging on the Jetson AGX
Orin platform.

The area marked with a red box was a moving car. The original experimental data
used were 2048 × 2048 single-precision floating-point complex data. The total processing
time for the above data was 1215 ms, and the imaging time for each frame was 135 ms. The
test results met the requirement for real-time imaging frame rates of 5 Hz. In practical tests,
continuous imaging can be achieved without losing the scene, intuitively reflecting the
positional changes of the car.

In order to verify the ViSAR imaging processing performance of the embedded GPU,
we adopted the measured data for processing, using the original data of 2048 × 2048
single-precision floating-point complex data points. Based on the Jetson AGX Orin
platform, we processed the data using the parallel designed RD and MD algorithms. On
the MATLAB platform, we also processed the same data using the traditional RD and
MD algorithms. We obtained a frame of ViSAR imaging results separately, which are
presented in Figure 12.

Remote Sens. 2024, 16, 191 15 of 19

Remote Sens. 2024, 16, x FOR PEER REVIEW 15 of 20

Based on the millimeter-wave radar’s capability to operate in all-weather and all-day
conditions, unaffected by adverse weather conditions, and recognizing its advantages in
precision, stability, sensitivity, and interference resistance, we selected the 94 GHz milli-
meter-wave radar band. We performed data collection in real-world environments to en-
sure the practical feasibility of our research. During the data processing phase, we ex-
ported radar data to the embedded GPU at an echo rate through a data recorder. The
design of this process aimed to simulate real-time processing on board, allowing us to
conduct effective performance evaluation under conditions that closely resembled practi-
cal application scenarios. The embedded GPU platform used in this paper was the Jetson
AGX Orin. For comparative analysis, experiments were also conducted on the Jetson
Nano, the Jetson TX2, and the RTX 2060 Max-Q platforms. Table 1 lists the hardware pa-
rameters for all experimental platforms.

Table 1. Hardware system parameters of the experimental platforms.

Specification Jetson AGX Orin Jetson Nano Jetson TX2 RTX 2060 Max-Q

GPU 2048-core
NVIDIA Ampere

128-core
NVIDIA Maxwell

256-core
NVIDIA Pascal

1920-core NVIDIA
Turing

CPU 12-core ARM
A78AE@2.2 GHz

4-core ARM
A57@1.43 GHz

2-core Denver@2.0 GHz
4-core ARM A57@2.0 GHz

8-core Intel i7-
10875H@2.30 GHz

Memory 32 GB 256-bitLPDDR5
204.8 GB/s

4 GB 64-bit LPDDR4
25.6 GB/s

8 GB 128-bit LPDDR4 59.7
GB/s

6 GB 192-bit GDDR6
264.0 GB/s

GPU
Frequency 1.3 GHz 922 MHz 1.3 GHz 1185 MHz

Power
consumption

60 W 5 W 15 W <230 W

Figure 11 shows the nine-consecutive-frame imaging results of the ViSAR obtained
by conducting the method of high-frame-rate ViSAR real-time imaging on the Jetson AGX
Orin platform.

(a) (b) (c)

(d) (e) (f)

Remote Sens. 2024, 16, x FOR PEER REVIEW 16 of 20

(g) (h) (i)

Figure 11. Real-time imaging results of the ViSAR based on the Jetson AGX Orin platform: (a) first-
frame image; (b) second-frame image; (c) third-frame image; (d) fourth-frame image; (e) fifth-frame
image; (f) sixth-frame image; (g) seventh-frame image; (h) eighth-frame image; (i) ninth-frame im-
age.

The area marked with a red box was a moving car. The original experimental data
used were 2048 × 2048 single-precision floating-point complex data. The total processing
time for the above data was 1215 ms, and the imaging time for each frame was 135 ms.
The test results met the requirement for real-time imaging frame rates of 5 Hz. In practical
tests, continuous imaging can be achieved without losing the scene, intuitively reflecting
the positional changes of the car.

In order to verify the ViSAR imaging processing performance of the embedded GPU,
we adopted the measured data for processing, using the original data of 2048 × 2048 sin-
gle-precision floating-point complex data points. Based on the Jetson AGX Orin platform,
we processed the data using the parallel designed RD and MD algorithms. On the
MATLAB platform, we also processed the same data using the traditional RD and MD
algorithms. We obtained a frame of ViSAR imaging results separately, which are pre-
sented in Figure 12.

(a) (b)

Figure 12. One-frame imaging results of the ViSAR: (a) Jetson AGX Orin; (b) MATLAB.

Figure 13 shows the errors between the imaging results obtained by using the em-
bedded GPU and those by MATLAB.

Figure 11. Real-time imaging results of the ViSAR based on the Jetson AGX Orin platform: (a) first-
frame image; (b) second-frame image; (c) third-frame image; (d) fourth-frame image; (e) fifth-frame
image; (f) sixth-frame image; (g) seventh-frame image; (h) eighth-frame image; (i) ninth-frame image.

Remote Sens. 2024, 16, x FOR PEER REVIEW 16 of 20

(g) (h) (i)

Figure 11. Real-time imaging results of the ViSAR based on the Jetson AGX Orin platform: (a) first-
frame image; (b) second-frame image; (c) third-frame image; (d) fourth-frame image; (e) fifth-frame
image; (f) sixth-frame image; (g) seventh-frame image; (h) eighth-frame image; (i) ninth-frame im-
age.

The area marked with a red box was a moving car. The original experimental data
used were 2048 × 2048 single-precision floating-point complex data. The total processing
time for the above data was 1215 ms, and the imaging time for each frame was 135 ms.
The test results met the requirement for real-time imaging frame rates of 5 Hz. In practical
tests, continuous imaging can be achieved without losing the scene, intuitively reflecting
the positional changes of the car.

In order to verify the ViSAR imaging processing performance of the embedded GPU,
we adopted the measured data for processing, using the original data of 2048 × 2048 sin-
gle-precision floating-point complex data points. Based on the Jetson AGX Orin platform,
we processed the data using the parallel designed RD and MD algorithms. On the
MATLAB platform, we also processed the same data using the traditional RD and MD
algorithms. We obtained a frame of ViSAR imaging results separately, which are pre-
sented in Figure 12.

(a) (b)

Figure 12. One-frame imaging results of the ViSAR: (a) Jetson AGX Orin; (b) MATLAB.

Figure 13 shows the errors between the imaging results obtained by using the em-
bedded GPU and those by MATLAB.

Figure 12. One-frame imaging results of the ViSAR: (a) Jetson AGX Orin; (b) MATLAB.

Figure 13 shows the errors between the imaging results obtained by using the embed-
ded GPU and those by MATLAB.

Remote Sens. 2024, 16, 191 16 of 19

Remote Sens. 2024, 16, x FOR PEER REVIEW 17 of 20

Figure 13. ViSAR imaging differences.

Due to the large original echo values of the ViSAR, small differences are amplified in
ViSAR imaging algorithms. The calculations in MATLAB are generally considered accu-
rate enough. Therefore, the calculation results of MATLAB were used as a reference to
calculate the difference of the Jetson AGX Orin processing result. We adopted the percent-
age to measure the difference (i.e., using the absolute difference divided by the result in
MATLAB), and the maximum percentage difference did not exceed 0.8%, which is within
an acceptable range. Therefore, the imaging accuracy of implementing the real-time
ViSAR imaging processing algorithm on the embedded GPU can satisfy the requirements
in practical applications.

Within the realm of image quality evaluation metrics, the PSNR is primarily em-
ployed to assess the degree of distortion between two images, while the SSIM is utilized
to compare the structural similarity between two images. To investigate the variations in
the quality of video SAR frame images during the algorithm optimization process, we
conducted a comparative analysis using the PSNR and the SSIM to evaluate the quality of
ViSAR frame images obtained through the proposed method in comparison to the those
with the MATLAB method. The comparative results are presented in Table 2:

Table 2. Comparison results of test images.

 PSNR SSIM
Image 48.1308 dB 0.9652

We evaluated the real-time performance of the ViSAR imaging processing process
implemented on the Jetson AGX Orin platform, the Jetson NANO platform, the Jetson TX2
platform, and the RTX 2060 Max-Q platform and compared the results with those of the
real-time performance of the ViSAR imaging processing process on the CPU platform
without parallel computing. The CPU platform used was Intel Core i7-10875H, and the
Jetson AGX Orin platform adopted the 60 W power consumption mode. The imaging pro-
cessing time statistics are listed out in Table 3.

Table 3. Processing times of ViSAR imaging on different platforms.

Processing Platform Jetson AGX Orin RTX 2060
Max-Q

Jetson
Nano

Jetson
TX2

Core i7-10875H
CPU

Processing time required by the RD algorithm 0.012 s 0.014 s 0.163 s 0.126 s 0.348 s
Processing time required by the MD algorithm 0.123 s 0.172 s 1.825 s 1.432 s 5.022 s

Total time consumption 0.135 s 0.186 s 1.988 s 1.558 s 5.370 s

Figure 13. ViSAR imaging differences.

Due to the large original echo values of the ViSAR, small differences are amplified
in ViSAR imaging algorithms. The calculations in MATLAB are generally considered
accurate enough. Therefore, the calculation results of MATLAB were used as a reference
to calculate the difference of the Jetson AGX Orin processing result. We adopted the
percentage to measure the difference (i.e., using the absolute difference divided by the
result in MATLAB), and the maximum percentage difference did not exceed 0.8%, which
is within an acceptable range. Therefore, the imaging accuracy of implementing the
real-time ViSAR imaging processing algorithm on the embedded GPU can satisfy the
requirements in practical applications.

Within the realm of image quality evaluation metrics, the PSNR is primarily employed
to assess the degree of distortion between two images, while the SSIM is utilized to compare
the structural similarity between two images. To investigate the variations in the quality
of video SAR frame images during the algorithm optimization process, we conducted
a comparative analysis using the PSNR and the SSIM to evaluate the quality of ViSAR
frame images obtained through the proposed method in comparison to the those with the
MATLAB method. The comparative results are presented in Table 2:

Table 2. Comparison results of test images.

PSNR SSIM

Image 48.1308 dB 0.9652

We evaluated the real-time performance of the ViSAR imaging processing process
implemented on the Jetson AGX Orin platform, the Jetson NANO platform, the Jetson
TX2 platform, and the RTX 2060 Max-Q platform and compared the results with those of
the real-time performance of the ViSAR imaging processing process on the CPU platform
without parallel computing. The CPU platform used was Intel Core i7-10875H, and the
Jetson AGX Orin platform adopted the 60 W power consumption mode. The imaging
processing time statistics are listed out in Table 3.

Table 3. Processing times of ViSAR imaging on different platforms.

Processing Platform Jetson AGX Orin RTX 2060 Max-Q Jetson Nano Jetson TX2 Core i7-10875H CPU

Processing time required
by the RD algorithm 0.012 s 0.014 s 0.163 s 0.126 s 0.348 s

Processing time required
by the MD algorithm 0.123 s 0.172 s 1.825 s 1.432 s 5.022 s

Total time consumption 0.135 s 0.186 s 1.988 s 1.558 s 5.370 s

Remote Sens. 2024, 16, 191 17 of 19

It can be seen from Table 3 that the processing time of the Jetson AGX Orin plat-
form was the shortest, and its performance surpassed those of conventional higher power
consumption computers equipped with GPU RTX 2060 Max-Q. Moreover, owing to the
advantages such as the number of CUDA cores, GPU frequency, and memory, the pro-
cessing time of the Jetson AGX Orin platform was much smaller than those of the Jetson
Nano and the Jetson TX2. Compared to conventional CPUs, using an embedded GPU for
parallel computing can improve the processing performance of ViSAR imaging by nearly
40 times. The test results verified that the system can process 2048 × 2048 single-precision
floating-point complex data into an image with a resolution of 0.15 m and achieve real-time
imaging at a high frame rate of 5 Hz. The reliability and effectiveness of the system were
verified, satisfying the requirements of video SAR real-time imaging processing.

5. Discussion

By comparing the execution times of tasks on different experimental platforms, it can
be observed that the times spent running various kernel functions on the Jetson AGX Orin
platform and the RTX 2060 Max-Q platform were less than that on the Jetson Nano and the
Jetson TX2. This is related to the number of CUDA cores and GPU frequency. It is note-
worthy that the Jetson AGX Orin platform, despite having a comparable number of CUDA
cores to that of the RTX 2060 Max-Q platform, exhibited lower time consumption. This can
be largely attributed to CUDA memory copy time. Due to the integrated heterogeneous
architecture of embedded GPUs, where the CPU and the GPU share the same physical
memory space, there is no need to transfer data between the host and the device before
and after executing kernel functions. In contrast, the CPU and the GPU in the RTX 2060
Max-Q platform operate on a discrete architecture, necessitating data transfer between
them through a PCIe bus [32]. As a result, CUDA memory copy occupies a significant
portion of the runtime on the RTX 2060 Max-Q platform, leading to reduced processing
performance. The integrated architecture of the Jetson Nano, the Jetson TX2, and the Jetson
AGX Orin platforms allows them to benefit from time savings in CUDA memory copy.

6. Conclusions

Currently, most of the existing ViSAR real-time processing systems are based on FPGA
platforms. However, the overlapping apertures occurring between frames under the ViSAR
working mode pose great challenges in data storage, transmission, and processing. Due to
the limited resources of FPGAs, the processing efficiency of a complicated ViSAR imaging
algorithm flow conducted on an FPGA is hard to improve, which further hinders the
advancement of real-time imaging frame rates.

In response to the above problems, this paper proposes a heterogeneous scheme
of real-time imaging processing based on an embedded GPU and an FPGA. Firstly, the
proposed scheme implements the generation and acquisition of signals on the FPGA and
accelerates the parallel computing real-time imaging processing on the embedded GPU
after digital down conversion. By utilizing the advantages of high memory throughput
and parallel computing of the embedded GPU, the efficiency of real-time ViSAR imaging
has been effectively improved. Finally, the real-time imaging processing performance of
the embedded GPU for the ViSAR was verified by using measured data. The experimental
results suggest that it took only 0.135 s on the Jetson AGX Orin platform to process data
from 2048 × 2048 points into a one-frame image, which improved the performance of
nearly 40 times compared to CPU implementation. The results have verified that our
proposed scheme can achieve real-time imaging at a high frame rate of 5 Hz for 2048 × 2048
single-precision floating-point complex data, thereby satisfying practical requirements for
real-time ViSAR imaging processing and verifying the reliability and effectiveness of the
proposed system.

However, for the video SAR, a higher frame rate is crucial for effective target detection.
Therefore, further optimization of kernel functions is required in RD and MD parallel algo-
rithms on the embedded GPU. This involves a detailed analysis of various computational

Remote Sens. 2024, 16, 191 18 of 19

performance metrics during kernel runtime, leading to further enhancements in memory
management and thread allocation. Our plan includes a thorough optimization of the GPU,
leveraging its parallelism to achieve shorter processing times. While these optimization
efforts are designed for a single GPU, considerations for designing and improving parallel
algorithms based on dual or even multiple GPUs will be explored in subsequent work.

Simultaneously, addressing interface issues between the embedded GPU and FPGA
platforms poses a significant challenge. Redundant interfaces contribute to increased
overall system complexity, especially as multiple high-speed ADCs and DACs cannot
directly interact with the embedded GPU. The current approach involves connecting them
through an FPGA and transferring data via PCIe, limiting the real-time capabilities of
the video SAR. At present, there are heterogeneous chips similar to RFSoC that simplify
hardware connections and improve overall performance and real-time performance. We
aim to draw insights from this integrated design experience in future research. Our goal is
to explore a more compact system architecture to better satisfy the twofold requirements of
real-time performance and system complexity.

Author Contributions: Conceptualization, T.Y.; methodology, T.Y. and X.Z.; software, Q.X.; validation,
X.Z., Q.X. and T.W.; formal analysis, T.Y. and S.Z.; investigation, Q.X.; resources, T.Y.; data curation,
T.W.; writing—original draft preparation, T.Y. and X.Z.; writing—review and editing, T.Y. and S.Z.;
visualization, T.W.; supervision, T.Y.; project administration, T.Y.; funding acquisition, T.Y. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the National Natural Science Foundation of China,
under Grant 62375211, in part by the Shanxi Key Research and Development Plan Key Industry
Innovation Chain Project under Grant 2022ZDLGY03-01, and in part by the China College Innovation
Fund of Production, Education and Research under Grant 2021ZYAO8004.

Data Availability Statement: The data used to support the findings of this study are available
from the corresponding author upon reasonable request. Due to privacy concerns, the data are not
publicly available.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wu, J.; Pu, W.; An, H.; Huang, Y.; Yang, H.; Yang, J. Learning-based High-frame-rate SAR imaging. IEEE Trans. Geosci. Remote

Sens. 2023, 61, 5208813. [CrossRef]
2. Ding, J.; Wen, L.; Zhong, C.; Loffeld, O. Video SAR Moving Target Indication Using Deep Neural Network. IEEE Trans. Geosci.

Remote Sens. 2020, 58, 7194–7204. [CrossRef]
3. Wen, L.; Ding, J.; Loffeld, O. Video SAR Moving Target Detection Using Dual Faster R-CNN. IEEE J. Sel. Top. Appl. Earth Obs.

Remote Sens. 2021, 14, 2984–2994. [CrossRef]
4. Chen, J.; Xing, M.; Yu, H.; Liang, B.; Peng, J.; Sun, G.C. Motion Compensation/Autofocus in Airborne Synthetic Aperture Radar:

A Review. IEEE Geosci. Remote Sens. Mag. 2022, 10, 185–206. [CrossRef]
5. Shang, R.H.; Liu, M.M.; Jiao, L.C.; Feng, J.; Li, Y.Y.; Stolkin, R. Region-Level SAR Image Segmentation Based on Edge Feature and

Label Assistance. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5237216. [CrossRef]
6. Yang, X.; Shi, J.; Zhou, Y.; Wang, C.; Hu, Y.; Zhang, X.; Wei, S. Ground Moving Target Tracking and Refocusing Using Shadow in

Video-SAR. Remote Sens. 2020, 12, 3083. [CrossRef]
7. Guo, P.; Wu, F.; Tang, S.; Jiang, C.; Liu, C. Implementation Method of Automotive Video SAR (ViSAR) Based on Sub-Aperture

Spectrum Fusion. Remote Sens. 2023, 15, 476. [CrossRef]
8. Kim, C.K.; Azim, M.T.; Singh, A.K.; Park, S.O. Doppler Shifting Technique for Generating Multi-Frames of Video SAR via

Sub-Aperture Signal Processing. IEEE Trans. Signal Process. 2020, 68, 3990–4001. [CrossRef]
9. Yang, C.; Chen, Z.; Deng, Y.; Wang, W.; Wang, P.; Zhao, F. Generation of Multiple Frames for High Resolution Video SAR Based

on Time Frequency Sub-Aperture Technique. Remote Sens. 2023, 15, 264. [CrossRef]
10. Cheng, Y.; Ding, J.; Sun, Z. Processing of airborne video SAR data using the modified back projection algorithm. IEEE Trans.

Geosci. Remote Sens. 2022, 60, 5238013. [CrossRef]
11. Fu, C.; Li, B.; Ding, F.; Lin, F.; Lu, G. Correlation Filters for Unmanned Aerial Vehicle-Based Aerial Tracking: A Review and

Experimental Evaluation. IEEE Geosci. Remote Sens. Mag. 2022, 10, 125–160. [CrossRef]
12. Osco, L.P.; Marcato Junior, J.; Marques Ramos, A.P.; de Castro Jorge, L.A.; Fatholahi, S.N.; de Andrade Silva, J.; Matsubara,

E.T.; Pistori, H.; Gonçalves, W.N.; Li, J. A review on deep learning in UAV remote sensing. Int. J. Appl. Earth Obs. Geoinf.
2021, 102, 102456. [CrossRef]

https://doi.org/10.1109/TGRS.2023.3279694
https://doi.org/10.1109/TGRS.2020.2980419
https://doi.org/10.1109/JSTARS.2021.3062176
https://doi.org/10.1109/MGRS.2021.3113982
https://doi.org/10.1109/TGRS.2022.3217053
https://doi.org/10.3390/rs12183083
https://doi.org/10.3390/rs15020476
https://doi.org/10.1109/TSP.2020.3006749
https://doi.org/10.3390/rs15010264
https://doi.org/10.1109/TGRS.2022.3220643
https://doi.org/10.1109/MGRS.2021.3072992
https://doi.org/10.1016/j.jag.2021.102456

Remote Sens. 2024, 16, 191 19 of 19

13. Xiao, Z.; Zhu, L.; Liu, Y.; Yi, P.; Zhang, R.; Xia, X.G.; Schober, R. A Survey on Millimeter-Wave Beamforming Enabled UAV
Communications and Networking. IEEE Commun. Surv. Tutor. 2021, 24, 557–610. [CrossRef]

14. Yang, Z.; Nie, X.; Xiong, W.; Niu, X.; Tian, W. Real time imaging processing of ground-based SAR based on multicore DSP. In Pro-
ceedings of the 2017 IEEE International Conference on Imaging Systems and Techniques (IST), Beijing, China, 18–20 October 2017;
pp. 1–5. [CrossRef]

15. Yang, G.; Lei, J.; Xie, W.; Fang, Z.; Li, Y.; Wang, J.; Zhang, X. Algorithm/Hardware Codesign for Real-Time On-Satellite CNN-Based
Ship Detection in SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5226018. [CrossRef]

16. Zou, L.; Zhang, J.; Zhu, D. FPGA Implementation of Polar Format Algorithm for Airborne Spotlight SAR Processing. In
Proceedings of the 2013 IEEE International Conference on Dependable, Autonomic and Secure Computing (DASC), Chengdu,
China, 21–22 December 2013; pp. 143–147. [CrossRef]

17. Cao, Y.; Guo, S.; Jiang, S.; Zhou, X.; Wang, X.; Luo, Y.; Yu, Z.; Zhang, Z.; Deng, Y. Parallel Optimisation and Implementation of a
Real-Time Back Projection (BP) Algorithm for SAR Based on FPGA. Sensors 2022, 22, 2292. [CrossRef]

18. Wielage, M.; Cholewa, F.; Fahnemann, C.; Pirsch, P.; Blume, H. High Performance and Low Power Architectures: GPU vs. FPGA
for Fast Factorized Backprojection. In Proceedings of the 2017 Fifth International Symposium on Computing and Networking
(CANDAR), Aomori, Japan, 19–22 November 2017; pp. 351–357. [CrossRef]

19. Balz, T.; Stilla, U. Hybrid GPU-Based Single- and Double-Bounce SAR Simulation. IEEE Trans. Geosci. Remote Sens. 2009, 47,
3519–3529. [CrossRef]

20. Shi, J.; Ma, L.; Zhang, X. Streaming BP for Non-Linear Motion Compensation SAR Imaging Based on GPU. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 2013, 6, 2035–2050. [CrossRef]

21. Yu, Y.; Balz, T.; Luo, H.; Liao, M.; Zhang, L. GPU accelerated interferometric SAR processing for Sentinel-1 TOPS data. Comput.
Geosci. 2019, 129, 12–25. [CrossRef]

22. Zhang, F.; Hu, C.; Li, W.; Hu, W.; Wang, P.; Li, H. A Deep Collaborative Computing Based SAR Raw Data Simulation on Multiple
CPU/GPU Platform. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 387–399. [CrossRef]

23. Hernandez-Juarez, D.; Chacón, A.; Espinosa, A.; Vázquez, D.; Moure, J.C.; López, A.M. Embedded real-time stereo estimation via
semi-global matching on the GPU. Procedia Comput. Sci. 2016, 80, 143–153. [CrossRef]

24. Aguilera, C.A.; Aguilera, C.; Navarro, C.A.; Sappa, A.D. Fast CNN Stereo Depth Estimation through Embedded GPU Devices.
Sensors 2020, 20, 3249. [CrossRef]

25. Fernandez-Sanjurjo, M.; Mucientes, M.; Brea, V.M. Real-Time Multiple Object Visual Tracking for Embedded GPU Systems. IEEE
Internet Things J. 2021, 8, 9177–9188. [CrossRef]

26. Farooq, M.A.; Shariff, W.; Corcoran, P. Evaluation of Thermal Imaging on Embedded GPU Platforms for Application in Vehicular
Assistance Systems. IEEE Trans. Intell. Veh. 2022, 8, 1130–1144. [CrossRef]

27. Chen, J.; Yu, H.; Xu, G.; Zhang, J.; Liang, B.; Yang, D. Airborne SAR Autofocus Based on Blurry Imagery Classification. Remote
Sens. 2021, 13, 3872. [CrossRef]

28. Fatica, M.; Phillips, E. Synthetic aperture radar imaging on a CUDA-enabled mobile platform. In Proceedings of the 2014 IEEE
High Performance Extreme Computing Conference, Waltham, MA, USA, 9–11 September 2014; pp. 1–5. [CrossRef]

29. Radecki, K.; Samczynski, P.; Kulpa, K.; Drozdowicz, J. A real-time focused SAR algorithm on the Jetson TK1 board. In Proceedings
of the Image and Signal Processing for Remote Sensing XXII, Edinburgh, UK, 26–28 September 2016; pp. 351–358. [CrossRef]

30. Hawkins, B.P.; Tung, W. UAVSAR Real-Time Embedded GPU Processor. In Proceedings of the IGARSS 2019—2019 IEEE
International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 545–547. [CrossRef]

31. Tian, H.; Hua, W.; Gao, H.; Sun, Z.; Cai, M.; Guo, Y. Research on Real-time Imaging Method of Airborne SAR Based on Embedded
GPU. In Proceedings of the 2022 3rd China International SAR Symposium, Shanghai, China, 2–4 November 2022; pp. 1–4.
[CrossRef]

32. Yang, T.; Xu, Q.; Meng, F.; Zhang, S. Distributed Real-Time Image Processing of Formation Flying SAR Based on Embedded
GPUs. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 6495–6505. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/COMST.2021.3124512
https://doi.org/10.1109/IST.2017.8261537
https://doi.org/10.1109/TGRS.2022.3161499
https://doi.org/10.1109/DASC.2013.52
https://doi.org/10.3390/s22062292
https://doi.org/10.1109/CANDAR.2017.101
https://doi.org/10.1109/TGRS.2009.2022326
https://doi.org/10.1109/JSTARS.2013.2238891
https://doi.org/10.1016/j.cageo.2019.04.010
https://doi.org/10.1109/JSTARS.2016.2594272
https://doi.org/10.1016/j.procs.2016.05.305
https://doi.org/10.3390/s20113249
https://doi.org/10.1109/JIOT.2021.3056239
https://doi.org/10.1109/TIV.2022.3158094
https://doi.org/10.3390/rs13193872
https://doi.org/10.1109/HPEC.2014.7040960
https://doi.org/10.1117/12.2241209
https://doi.org/10.1109/IGARSS.2019.8900055
https://doi.org/10.1109/CISS57580.2022.9971199
https://doi.org/10.1109/JSTARS.2022.3197199

	Introduction
	Imaging Algorithm of the ViSAR
	Implementing and Optimizing the Embedded-GPU-Based ViSAR
	CUDA-Implemented RD Algorithm
	CUDA-Implemented MD Algorithm
	Optimizing ViSAR Imaging

	Experimental Results and Analysis
	Discussion
	Conclusions
	References

